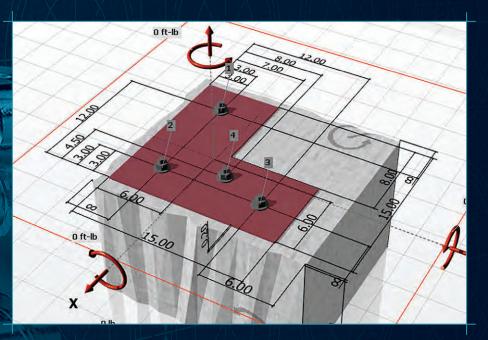

Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

C-A-2023 | (800) 999-5099 | strongtie.com



Envision anchoring solutions faster and easier with Anchor Designer.

Here's a smarter way to plan mechanical and adhesive anchoring for cracked and uncracked concrete. Developed by the engineers at Simpson Strong-Tie, Anchor Designer makes it easy to build custom solutions while meeting code requirements. Use the Load Wizard feature to streamline load input and verify your design. Explore the Multiple Design function to filter and select anchors and materials. Then, tailor all the components to your specifications. Anchor Designer generates real-time results in 3D graphics, code reports for products and more. It's a great way to save time and effort on your next concrete anchoring project.

Watch our video demos and download Anchor Designer free at go.strongtie.com/anchordesigner.

SIMPSON Strong-Tie

Product Selection Guide

			Tested Base Materials and Code Listings						Other Listings		
Product		Page No.	Cone	crete	Concrete on	CI	NU	Unreinforced Clay Brick	and Standard		
			Cracked	Uncracked	Metal Deck	Grout-Filled	Hollow	Masonry	Specifications		
	SET-3G™		24	ESR- (COLA a FL15	nd FBC),		ICC-E pen		_	ASTM C881/ AASHTO M235, DOT, CDPH Std. Method v1.2, NSF/ANSI/CAN Std 61	
Adhesive Anchors	€T-3G™		34	ICC-E pen			ICC-E pen		_	ASTM C881/ AASHTO M235, DOT, CDPH Std. Method v1.2, NSF/ANSI/CAN Std 61	
	Æ AT-3G™	Arson and a second seco	42	ESR- (COLA a FL15	nd FBC),					ASTM C881/ AASHTO M235, CDPH Std. Method v1.2, NSF/ANSI/CAN Std 61	
	CI-SLV		192	_			_		_	ASTM C881/ AASHTO M235	
	CI-LV		194	_			_			ASTM C881/ AASHTO M235 NSF/ANSI/CAN Std 61	
	CI-LV FS		196	_	_	_	_	_	_	ASTM C881/ AASHTO M235	
Restoration Solutions	CI-LPL		198						_	ASTM C881/ AASHTO M235	
Restoratio	CI-GV		200	_			_		_	ASTM C881/ AASHTO M235	
	CI-PO		206			_	_		_	ASTM C881/ AASHTO M235	
	Heli-Tie™ Wall Tie	******	216	_	Non-IBC	_	Non-IBC	Non-IBC	Non-IBC	Wood and Metal Stud	
	Heli-Tie Stitching Tie	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	219	_			_	_	Non-IBC	_	

Refer to footnotes on p. 6.

SIMPSON **Strong-Tie**

Product Selection Guide

			Tested Base Materials and Code Listings								
Proc	duct	Page No.	Con	crete	Concrete CMU			Unreinforced	Other	and Standard	
			Cracked	Uncracked	on Metal Deck	Grout-Filled	Hollow	Clay Brick Masonry	Other	Specifications	
Titen HD® (THD)		62	ES	GR-2713 (COL FL15730	A),	ESR-105 FL15		_		FM, DOT	
Titen HD Mechanically Galvanized (THD-MG)		66	ES	GR-2713 (COL FL15730	А),	ESR-105 FL15				FM, DOT	
Stainless-Steel Titen HD (THD-SS)		80	E	ER-493 (COLA FL16230),	ESR-105 FL15	6 (COLA), 5730	_	_	DOT	
Titen HD Countersunk (THD-CS)		63	ES	R-2713 (COL FL15730	А),	ESR-105 FL15		_	_	DOT	
Stainless-Steel Titen HD Countersunk (THD-CS-SS)	-	81	E	FR-493 (COLA FL16230),	ESR-105 FL15			_	DOT	
Titen HD Washer Head (THD-WH)		63	E	SR-2713 (COL FL 15730	A)	IB	C	_	_	DOT	
Titen HD Rod Coupler (THD-RC)	a	92	ES	R-2713 (COL FL15730	A),	IBC	—	_	_	_	
Titen HD Rod Hanger (THD-RH)		136	ES	GR-2713 (COL FL15730	A),	IBC	_	_	_	FM	
Strong-Bolt® 2 (STB2)		96	ES	GR-3037 (COL FL15730	A),	ER-240 (COLA), FL16230	_			UL, FM, DOT	
Strong-Bolt 2 Mechanically Galvanized (STB2-MG)		107	_	Non-IBC	_	Non-IBC	_	_		_	
Strong-Bolt® 2 Stainless Steel (STB2-SS)		110	ES	R-3037 (COL FL15730	A),	_	_		_	UL, FM, DOT	
Sleeve-All® (SL)		118	_	Non-IBC	_	Non-IBC	_	—	_	UL, FM, DOT	
Easy-Set (EZAC)		123	_	Non-IBC	_	_	_	_	_	_	
Tie-Wire (TW)		124	_	Non-IBC	Non-IBC	_	_	_	_	_	

Refer to footnotes on p. 6.

Mechanical Anchors

Product Selection Guide

						Tested Base	e Materials an	d Code Listin	gs		Other Listings
	Proc	luct	Page No.	Con	crete	Concrete on	CI	<i>I</i> U	Unreinforced Clay Brick	Other	and Standard
				Cracked	Uncracked	Metal Deck	Grout-Filled	Hollow	Masonry	Other	Specifications
	Titen Turbo™ (TNT)		126		ER-712 (COLA), FL16230	_	ER-716 FL16		_		_
	Titen Turbo Trim Head (TNT-TTR)		126	_	ER-712 (COLA), FL16230	_	ER-716 FL16	(COLA), 5230	_	_	_
	Steel Rod Hanger (RSH, RSV)		140	_	_			_	_	IBC (Steel)	UL, FM
	Wood Rod Hanger (RWH, RWV)		142	_		_		_		IBC (Wood)	UL, FM
chors	Drop-In (DIAB)		144	_	Non-IBC	Non-IBC	_	_	_	—	UL, FM
Mechanical Anchors	Drop-In Anchor (Stainless Steel: DIA-SS) (Short: DIA-S)		153 149	_	Non-IBC	Non-IBC	_	_	_	Non-IBC (Hollow-Core Concrete Panel)	UL, FM, DOT
×	Hollow Drop-In (HDIA)		156	_	Non-IBC			IBC		Non-IBC (Hollow-Core Concrete Panel)	UL,FM
	Zinc Nailon™ (ZN)		160	_	Non-IBC	_	_	_	_	—	—
	Crimp Drive [®] (CD)		161	_	Non-IBC	Non-IBC		_	_	—	FM
	Split Drive (CSD, DSD)		165	_	Non-IBC	_	_	_	_	_	_
	Sure Wall™ (SWN, SWZ)	(Application)	167					_	_	Drywall	_
Direct Fastening	Powder- Actuated Fasteners		171				38 (COLA), 15730		_	Steel, ESR-2138 (COLA), FL15730	—
Direct Fa	Gas-Actuated Fasteners		174			ESR-28 FL ⁻	11 (COLA), 15730		_	Steel, ESR-2811 (COLA), FL15730	—

 $\mathsf{ESR} - \mathsf{ICC}\mathsf{-}\mathsf{ES}$ code report available at icc-es.org.

ER - IAPMO UES code report available at iapmoes.org.

 $\rm COLA-City$ of Los Angeles Supplement within the ICC-ES or IAPMO UES code report. See supplement for LA Building Code compliance.

 $\ensuremath{\mathsf{FL}}\xspace - \ensuremath{\mathsf{Florida}}\xspace$ building code approval available.

6

 $\mathsf{IBC}-\mathsf{Load}$ data is available in this catalog intended for use under IBC, but code listings are not available.

 $\operatorname{Non-IBC}$ — Load data is available in this catalog, but it is outside

the scope of the current IBC. May be permitted for non-IBC applications.

UL - Underwriters Laboratories listing available.

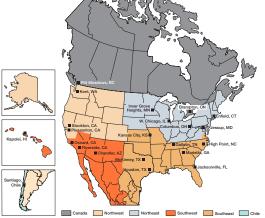
FM - Factory Mutual listing available.

DOT – Various departments of transportation listings available.

See strongtie.com/DOT for details.

SIMPSON

Strong-Tie


Simpson Strong-Tie Company Inc.

For more than 65 years, Simpson Strong-Tie has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie is one of the largest suppliers of structural building products in the world. The Simpson Strong-Tie commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of its products and services.

For more information, visit the company's website at strongtie.com.

The Simpson Strong-Tie Company Inc. No Equal Pledge® includes:

- Quality products value-engineered for the lowest installed cost at the highest-rated performance levels
- The most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- National code agency listings
- The largest number of patented connectors in the industry
- Global locations with an international sales team
- In-house R&D and tool and die professionals
- In-house product testing and quality control engineers
- Support of industry groups including AISI, AITC, ASTM, ASCE, AWC, AWPA, ACI, AISC, CSI, CFSEI, ICFA, NBMDA, NLBMDA, SDI, SETMA, SFA, SFIA, STAFDA, SREA, NFBA, TPI, WDSC, WIJMA, WTCA and local engineering groups

Getting Fast Technical Support

When you call for engineering technical support, we can help you quickly if you have the following information at hand. This will help us to serve you promptly and efficiently.

- Which Simpson Strong-Tie catalog are you using? (See the front cover for the form number.)
- Which Simpson Strong-Tie product are you using?
- What are the design requirements (i.e., loads, anchor diameter, base material, edge/spacing distance, etc.)?

Product Identification Key

SIMPSO

Strong-Tie

Products and additional information are divided into eight general categories, identified by tabs along the page's outer edge.

22–59 ►
60–167 ►
168–183 ►
184–219 ►
220-225 ►
226–243 ►
244-246 ►
247-249 ►

The Simpson Strong-Tie Quality Policy

We help people build safer structures economically. We do this by designing, engineering and manufacturing No-Equal® structural connectors and other related products that meet or exceed our customers' needs and expectations. Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System.

Mike Olosky Chief Executive Officer

r ive Officer

We Are ISO 9001 Registered

Simpson Strong-Tie is an ISO 9001 registered company. ISO 9001 is an internationally-recognized quality assurance system which lets our domestic and international customers know that they can count on the consistent quality of Simpson Strong-Tie products and services.

800-999-5099 | strongtie.com

All Rights Reserved. This catalog may not be reproduced in whole or in part without the prior written approval of Simpson Strong-Tie Company Inc.

Table of Contents

Adhesive Anchors

Adhesive Accessories	52–59
Adhesive Anchoring Installation Instructions	48–51
Adhesive Retaining Caps	54
All Thread Rod	59
鑢 AT-3G [™] High-Strength Hybrid Acrylic Adhesive	42–47
ET-3G [™] Epoxy Adhesive	34–41
Hole-Cleaning Brushes	
Opti-Mesh Adhesive-Anchoring Screen Tubes	55–56
Piston Plug Delivery System	53–54
Retrofit Bolts	
SET-3G [®] High-Strength Epoxy Adhesive	24–31
Steel Adhesive-Anchoring Screen Tubes	
Wire Brushes / Extensions / T-Handles	

Mechanical Anchors

	Crimp Drive® Anchor
	CSD/DSD Split-Drive Anchors
	Drop-In Internally Threaded Anchor (DIAB)
	Drop-In Short Internally Threaded Anchor (DIAS) 149–152
	Drop-In Stainless-Steel Internally Threaded Anchor (DIASS) 153–155
	Easy-Set Pin-Drive Expansion Anchor
	Hollow Drop-In Internally Threaded Anchor
	Sleeve-All® Sleeve Anchor
	Steel Rod Hanger Threaded Rod Anchor System 140-141
	Strong-Bolt® 2 Wedge Anchor - Zinc-Plated Carbon Steel 96-106
國	Strong-Bolt 2 Wedge Anchor — Mechanically Gavalnized 107–109
	Strong-Bolt 2 Wedge Anchor - Stainless Steel 110-117
	Sure Wall [™] Drywall Anchor167
	Tie-Wire Wedge Anchor 124–125
	Titen HD® Countersunk Screw Anchor63
	Titen HD Heavy-Duty Screw Anchor —
	Mechanically Gavalnized
	Titen HD Heavy-Duty Screw Anchor $-$ Zinc Plated
	Titen HD Rod Coupler
	Titen HD Stainless-Steel Countersunk Screw Anchor
	Titen HD Stainless-Steel Heavy-Duty Screw Anchor 80-91
	Titen HD Threaded Rod Hanger 136–139
	Titen HD Washer-Head Screw Anchor63
	Titen® Stainless-Steel Concrete and Masonry Screw
ø	Titen Turbo™ Concrete and Masonry Screw Anchor
	Wood Rod Hanger Threaded Rod Anchor System 142–143
	Zinc Nailon™ Pin Drive Anchor

Direct Fastening Solutions

Gas- and Powder-Actuated Fasteners Load Tables 175–183
Gas Tool / Fastener Suitability
Powder-Actuated Tool / Fastener Suitability 170
Powder-Actuated Tools, Fasteners and Loads 171–173

Restoration Solutions

	CI-GV Gel-Viscosity Injection Epoxy	200–201
	CI-LPL Low-Viscosity Long-Pot-Life Injection Epoxy	198–199
	CI-LV Low-Viscosity Injection Epoxy	194–195
	CI-LV FS Low-Viscosity Fast-Setting Injection Epoxy	196–197
國	CI-PO Paste-Over and Structural Repair Epoxy	206–207
	CI-SLV Super-Low-Viscosity Injection Epoxy	192–193
	CIP-F Flexible Paste-Over Adhesive and Crack Sealant	208
	Crack Injection Guide	210–215
	Crack-Pac [®] Flex-H2O [™] Polyurethane Crack Sealer	204–205
	Crack-Pac [®] Injection Epoxy	202–203

Repair and Protection Systems for Concrete

Crack Repair Accessories
CSS V-Wrap [™] FRP Composite Strengthening Systems 186–187
ETR Concrete Repair and Paste-Over Epoxy
Heli-Tie [™] Helical Stitching Tie219
Heli-Tie™ Helical Wall Tie216–218
@ RPS-207 Slurry Seal 189
BPS-263 Rapid-Hardening Vertical/Overhead Repair Mortar
BPS-406 Zinc-Rich Primer 190
RPS-505 Water-Based Acrylic Coating
@ RPS-70-9 Epoxy Coating 188
RPS 752 Epoxy Bonding Agent 190
RPS-792LPL Long Pot Life Epoxy Bonding Agent

Carbide Drill Bits and Accessories

Core Bits	
Demolition Bits	
SDS-max® Drill Bits	
SDS-plus® Drill Bits	222–223
Straight Shank Drill Bits	

Additional Information

Alphabetical Index of Products	247–249
Corrosion Information	235–236
General Instructions for the Designer	
General Instructions for the Installer	
Glossary of Common Terms	
Product Selection Guide	4–6
Simpson Strong-Tie Limited Warranty	
Supplemental Topics for Anchors	228–243
Table Icon System	14

(

New products are shown with the 🚳 symbol.

New Products

AT-3G[™] High-Strength Hybrid Acrylic Adhesive

Fast cure, cold weather performance.

AT-3G is a hybrid, acrylic-based adhesive for anchoring threaded rod and rebar into cracked and uncracked concrete. Ideal for cold weather and wet concrete applications, AT-3G dispenses easily and offers a fast curing time for same-day bolt up. It can be specified for a wide range of in-service temperatures, and maintains its strong bond strength in extreme environments for ultimate design and jobsite flexibility. Tested and code compliant with the IBC and IRC, AT-3G hybrid adhesive is easy to install with the conventional blow-brush-blow hole cleaning method.

See pp. 42-47 for more information.

ET-3G[™] Epoxy Adhesive

Ideal for general rebar doweling.

ET-3G is an epoxy-based anchoring adhesive. ET-3G is a 1:1 ratio, two-component anchoring adhesive for anchoring and doweling into concrete (cracked and uncracked) and masonry (cracked and uncracked) applications. The adhesive features jobsite flexibility as it is permitted for sustained load performance at elevated temperature, and it can be specified for dry and damp conditions when in-service temperatures range from -40°F (-40°C) to 150°F (65°C).

See pp. 34-41 for more information.

Titen HD[®] Heavy-Duty Screw Anchor Mechanically Galvanized

Now code listed for exterior use.

The Titen HD heavy-duty screw anchor is a mechanically galvanized high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. Its proprietary heat treatment and ASTM B695 Class 65 mechanically galvanized coating make it ideal for both interior and exterior anchoring applications. The Titen HD screw anchor is designed for a wide variety of applications such as sill plates, ledgers, post bases, seating, and other holdown applications. The screw anchor is easy to remove for use in temporary applications such as bracing and formwork, or when a fixture needs to be relocated.

See pp. 66-67 for more information.

New Products

Titen Turbo[™] Trim-Head Concrete and Masonry Screw Anchor

Smooth driving with less torque while providing superior holding power.

The Titen Turbo screw anchor for concrete and masonry delivers what pros want — consistently trouble-free installation and fastening strength they can depend on. This screw anchor features a patented Torque Reduction Channel that displaces dust where it can't obstruct the thread action, reducing the likelihood of binding in the hole. The 6-lobe drive's larger contact area provides better bit grip for more secure driving, lower torque and longer bit life. The new Titen Turbo trim-head screw anchor works with window applications requiring a ¼" screw anchor and a smaller head diameter. It is available in select lengths in white and bronze.

See pp. 126-128 for more information.

Strong-Bolt[®] 2 Wedge Anchor Mechanically Galvanized

New mechanically galvanized version of Strong-Bolt 2 expansion anchor (STB2-MG) for exterior-use applications.

Strong-Bolt 2 wedge-type expansion anchor is now available in mechanically galvanized finish where a high-load-resisting anchor is needed for exterior applications. It has the same dual undercutting embossments on each clip segment as the zinc-electroplated version. Suitable for horizontal, vertical and overhead applications, the STB2-MG is tested in uncracked concrete in accordance with AC193 and also in uncracked masonry in accordance with AC01.

See pp. 107–109 for more information.

RPS-207 Slurry Seal (Formerly FX-207)

RPS-207 slurry seal is a two-component, polymer-modified cementitious coating designed for fire insulation with FRP materials as well as waterproofing and damp-proofing concrete and masonry substrates. This product is part of the tested assembly in UL Design No. N861, which achieved a four-hour fire rating when subjected to ASTM E119/UL 263 full-scale fire testing.

See p. 189 for more information.

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

New Products

RPS-70-9 Epoxy Coating (Formerly FX-70-9)

RPS-70-9 epoxy coating is a high-solids, two-component, moisture-tolerant, high-build protective coating designed to protect steel, concrete and wood.

See p. 188 for more information.

RPS-505 Water-Based Acrylic Coating (Formerly FX-505)

RPS-505 water-based acrylic coating is a single-component, fast-drying, protective architectural coating for concrete, masonry and stucco.

See p. 189 for more information.

RPS-406 Zinc-Rich Primer

(Formerly FX-406)

RPS-406 zinc-rich primer is a single-component, fast-drying, zinc-rich coating designed to protect steel from corrosion by combining a barrier coating with the sacrificial galvanic protection of zinc.

See p. 190 for more information.

RPS-752 Epoxy Bonding Agent

(Formerly FX-752)

RPS-752 epoxy bonding agent is a 100%-solids, two-component, moisture-tolerant epoxy system designed to increase the bond between freshly placed repair mortars or concrete mixes and existing concrete.

See p. 190 for more information.

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

New Products

RPS-792LPL Long Pot Life Epoxy Bonding Agent (Formerly FX-792LPL)

RPS-792LPL long pot life epoxy bonding agent is a two-component, 100%-solids, moisture-tolerant epoxy resin designed to increase the bond between freshly placed repair mortars or concrete mixes and existing concrete.

See p. 191 for more information.

RPS-263 Rapid-Hardening Vertical/Overhead Repair Mortar (Formerly FX-263)

RPS-263 rapid-hardening vertical/overhead repair mortar is a cementitious, single-component, fiber-reinforced, polymer-modified, silica-fume-enhanced, structural repair mortar with integral corrosion inhibitor designed for vertical and overhead applications.

See p. 191 for more information.

CI-PO Paste-Over and Structural Repair Epoxy

CI-PO is a fast-curing, two-component, high-modulus, high-solids, moisture-tolerant, thixotropic epoxy designed for securing injection ports at the concrete surface prior to injection repair. CI-PO is suitable for general concrete repair applications when substrate temperatures are between 40°F (4°C) and 90°F (32°C).

See pp. 206-207 for more information.

G3 Gas-Actuated Fastening Tool

The new G3 gas-actuated fastening tool is designed for attachment of drywall track, lath furring strips and plywood to concrete, lightweight concrete, CMU or steel. The G3 is the only multi-functional gas-actuated tool that offers single shot and magazine functions. The G3's high-power performance is driven by 95 Joules of output and up to 8,000 shots per Li-ion battery charge. The tool is designed for speed, reliability and consistent performance.

See p. 174 for more information.

How to Use This Catalog

Using Data Tables and Load Tables

This catalog contains both strength design data tables and allowable load tables. Some allowable load tables for concrete were established under old qualification standards that are no longer valid under the IBC. The following icons indicate whether or not a given table is intended to be used under the IBC (or under other building codes that use the IBC as their basis):

Tables that are "not valid for International Building Code" may be used where the designer determines that other building codes or regulations permit it — for example, under AASTHO or temporary construction.

Valid for International Building Code

Not Valid for International Building Code

Strength Design Data Tables

Under the IBC, strength design (see p. 246) must be used for cast-in-place and post-installed mechanical and adhesive anchors that are installed into concrete. The design data from these tables are to be used with the design provisions of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17, ACI 318-11 Appendix D, IBC Chapter 19 and the respective ICC-ES Acceptance Criteria. Given the complexity of strength design calculations, designers may find Simpson Strong-Tie Anchor Designer[™] software (**strongtie.com/software**) to be a great time saver for computing anchor design strengths.

Other standard a	Ourseland.	Units	Nominal Rod Diameter (in.)						
Characteristic	Symbol		3%8	1/2	5%8	3⁄4	7⁄8	1	1¼
Steel Strength in Tension									
Minimum Tensile Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tension Resistance of Steel — ASTM F1554, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Tension Resistance of Steel — ASTM F1554, Grade 55	1		5,850 9,750 4,445	10,650	16,950	25,050	34,650	45,450	72,67
Tension Resistance of Steel — ASTM A193, Grade B7	Nsa			17,750	28,250	41,750	57,750	75,750	121,12
Tension Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)		lb.		8,095	12,880	19,040	26,335	34,540	55,23
Tension Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)		[7,800	14,200	22,600	28,390	39,270	51,510	82,365
Tension Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			8,580	15,620	24,860	36,740	50,820	66,660	106,59
Strength Reduction Factor for Tension — Steel Failure	φ	—				0.755			
Concrete Breakout Strength in T	ension (2,5	00 psi s	≤ f' _C ≤ 8,0	100 psi)					
Effectiveness Factor for Cracked Concrete	K _{c,cr}	—				17			
Effectiveness Factor for Uncracked Concrete	k _{c,uncr}	—	24						
Strength Reduction Factor — Concrete Breakout Failure in Tension	φ	—	0.655						
Bond Strength in Tension (2,500 psi ≤	f' _C ≤ 8	,000 psi) ⁶						
Minimum Embedment	h _{ef,min}	in.	2%	23⁄4	31/8	31/2	3¾	4	5
Maximum Embedment	h _{ef,max}	in.	71/2	10	121/2	15	17½	20	25
Characteristic Bond Strength in Cracked Concrete ⁸	τ_{kcr}	psi	1.448	1.402	1.356	1.310	1.265	1.219	1.128

Example Strength Design Data Table

Allowable Load Tables

Under the IBC, allowable stress design (see p. 244) may be used for cast-in-place and post-installed adhesive and mechanical anchors installed into masonry or for gas- and powder-actuated fasteners installed into concrete, masonry or steel.

Direct		Shank	Minimum	Minimum Edge	Minimum	Allowable Tension Load — Ib. (kN)						
Fastening Type	Model No.	Diameter in. (mm)	Embedment in. (mm)	Distance in. (mm)	Spacing in. (mm)	f ⁱ _c = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 5,000 psi (34.5 MPa)	f' _c = 6,000 psi (41.3 MPa)		
	PDPA PDPAT PDPAWL	0.157	3⁄4 (19)	31/2 (89)	5 (127)	110 (0.49)	110 (0.49)	110 (0.49)	-	110 (0.49)		
			1 (25)	31/2 (89)	5 (127)	210 (0.93)	240 (1.07)	310 (1.38)	_	160 (0.71)		
		(4.0)	11/4 (32)	31/2 (89)	5 (127)	320 (1.42)	340 (1.51)	380 (1.69)	-	365 (1.62)		
Powder Actuated			11/2 (38)	31/2 (89)	5 (127)	375 (1.67)	400 (1.78)	450 (2.00)	-	465 (2.07)		
	PINW	0.145	1 (25)	3 (76)	4 (102)	70 (0.31)	100 (0.44)	150 (0.67)	_	150 (0.67)		
	PINWP	(3.7)	1¼ (32)	3 (76)	4 (102)	195 (0.87)	255 (1.13)	370 (1.65)	_	370 (1.65)		
	PSLV3	0.205 (5.2)	1¼ (32)	4 (102)	6 (152)	260 (1.16)	_	_	_	_		
		0.106	5% (16)	3 (76)	4 (102)	25 (0.11)	30 (0.13)	45 (0.20)	45 (0.20)	_		
Coo	GDP	(2.7)	3/4 (19)	3 (76)	4 (102)	30 (0.13)	30 (0.13)	30 (0.13)	30 (0.13)	_		

Example Allowable Load Table

How to Use This Catalog

Table Icon System

In order to facilitate easier identification of performance data, the following icon system has been incorporated into the sections of the catalog with multiple load tables. These icons will appear in the heading of the table to promote easier visual identification of the type of load, insert type and substrate addressed in the table. Icons are intended for quick identification. All specific information regarding suitability should be read from the table itself.

Threaded Rod

Concrete Block (CMU)

Tension Load

Spacing

Rebar

Lightweight Concrete over Metal Deck

Shear Load

Valid for International **Building Code**

Concrete

Unreinforced Brick (URM)

Oblique Load

Not Valid for International **Building Code**

Lightweight Concrete

Steel

Edge Distance

General Notes

These general notes are provided to ensure proper installation of Simpson Strong-Tie Company Inc. products and must be followed fully.

- a. Simpson Strong-Tie Company Inc. reserves the right to change specifications, designs and models without notice or liability for such changes. Please refer to **strongtie.com** for the latest product updates, availability and load tables.
- b. Unless otherwise noted, dimensions are in inches and loads are in pounds.
- c. Do not overload, which will jeopardize the anchorage. Service loads shall not exceed published allowable loads. Factored loads

shall not exceed design strengths calculated in accordance with published design data.

- d. Some hardened fasteners may experience premature failure if exposed to moisture. These fasteners are recommended to be used in dry interior applications.
- e. Do not weld products listed in this catalog. Some steel types have poor weldability and a tendency to crack when welded.

Warning

Simpson Strong-Tie Company Inc. anchors, fasteners and structural connectors are designed and tested to provide specified design loads. To obtain optimal performance from Simpson Strong-Tie products and to achieve maximum design load, the products must be properly installed and used in accordance with the installation instructions and design limits provided by Simpson Strong-Tie. To ensure proper installation and use, designers and installers must carefully read the General Notes, General Instructions to the Installer and General Instructions to the Designer contained in this catalog, as well as consult the applicable catalog pages for specific product installation instructions and notes. Please always consult the Simpson Strong-Tie website at **strongtie.com** for updates regarding all Simpson Strong-Tie products.

Proper product installation requires careful attention to all notes and instructions, including the following basic rules:

- 1. Be familiar with the application and correct use of the anchor, connector or fastener.
- 2. Follow all installation instructions provided in the catalog, website, *Product Guide* (S-A-PG) or any other Simpson Strong-Tie publication.
- 3. Follow all product-related warnings provided in the catalog, website or any other Simpson Strong-Tie publication.
- 4. Install anchors, structural connectors and fasteners in accordance with their intended use.
- 5. Install all anchors, structural connectors and fasteners per installation instructions provided by Simpson Strong-Tie.
- 6. When using power tools to install fasteners: (a) use proper fastener type for direct fastening tool; (b) use proper powder or gas loads; and (c) follow appropriate safety precautions as outlined in this catalog, on the website or in the tool Operator's Manual.

In addition to following the basic rules provided above as well as all notes, warnings and instructions provided in the catalog, installers, designers, engineers and consumers should consult the Simpson Strong-Tie website at **strongtie.com** to obtain additional design and installation information, including:

- Instructional builder/contractor training kits containing an instructional video, an instructor guide and a student guide in both English and Spanish;
- Information on workshops Simpson Strong-Tie conducts at various training centers throughout the United States;
- Product-specific installation videos;
- Specialty catalogs;
- Code reports Simpson Strong-Tie Code Report Finder;
- Technical fliers, bulletins and engineering letters;
- Master format specifications;
- Safety data sheets;
- Corrosion information;
- Adhesive cartridge estimator;
- Simpson Strong-Tie Software and Web Applications at strongtie.com/softwareandwebapplications/category; and
- Answers to frequently asked questions and technical topics.

Failure to fully follow all of the notes and instructions provided by Simpson Strong-Tie may result in improper installation of products. Improperly installed products may not perform to the specifications set forth in this catalog and may reduce a structure's ability to resist the movement, stress and loading that occur from gravity loads as well as impact events such as earthquakes and high-velocity winds.

Simpson Strong-Tie Company Inc. does not guarantee the performance or safety of products that are modified, improperly installed or not used in accordance with the design and load limits set forth in this catalog.

General Instructions for the Installer

These general instructions for the installer are provided to ensure the proper selection and installation of Simpson Strong-Tie products and must be followed carefully. They are in addition to the specific design and installation instructions and notes provided for each particular product, all of which should be consulted prior to and during the installation of Simpson Strong-Tie products.

- a. Do not modify Simpson Strong-Tie products as the performance of modified products may be substantially weakened. Simpson Strong-Tie will not warrant or guarantee the performance of such modified products.
- b. Do not alter installation procedures from those set forth in this catalog.
- c. Drill holes for post-installed anchors with carbide-tipped drill bits meeting the diameter requirements of ANSI B212.15 (shown in the table to the right). A properly sized hole is critical to the performance of post-installed anchors. Rotary hammers or hammer drills are recommended for drilling holes. When holes are to be drilled in archaic or hollow base materials, the drill should be set to "rotation only" mode.
- d. For expansion anchors, failure to apply the required installation torque can result in excessive displacement of the anchor under load or premature failure of the anchor.
- e. Expansion anchors set to the required installation torque will lose pre-tension after setting due to pre-load relaxation. See p. 237 for more information.
- f. Do not disturb, make attachments, or apply load to adhesive anchors prior to the full cure of the adhesive.
- g. Use proper safety equipment.

Nominal Drill Bit Diameter (in.)	Tolerance Range Minimum (in.)	Tolerance Range Maximum (in.)
1⁄8	0.134	0.140
5⁄32	0.165	0.171
3⁄16	0.198	0.206
7/32	0.229	0.237
1/4	0.260	0.268
5⁄16	0.327	0.335
3⁄8	0.390	0.398
7⁄16	0.458	0.468
1/2	0.520	0.530
9⁄16	0.582	0.592
5/8	0.650	0.660
11/16	0.713	0.723
3⁄4	0.775	0.787
¹³ / ₁₆	0.837	0.849
27/ ₃₂	0.869	0.881
7⁄8	0.905	0.917
¹⁵ / ₁₆	0.968	0.980
1	1.030	1.042
1 1⁄8	1.160	1.175
13⁄16	1.223	1.238
1 1⁄4	1.285	1.300
15⁄16	1.352	1.367
1 3⁄8	1.410	1.425
17⁄16	1.472	1.487
1 1⁄2	1.535	1.550
1%16	1.588	1.608
1 5⁄8	1.655	1.675
1 3⁄4	1.772	1.792
2	2.008	2.028

Finished Diameters for Rotary and Rotary-Hammer Carbide-Tipped Concrete Drill Bits per ANSI B212.15

SIMPSON Strong-Tie

Prior to Tool Use — Recommended Training and Operator's Manual Review

Before operating any Simpson Strong-Tie Powder-Actuated tool (PAT), the user must read and understand the Operator's Manual and become certified by an authorized instructor or pass the online Powder-Actuated Tools Operator Certification test to receive a certified operator card (for online powder-actuated tool test, visit **strongtie.com/products/ anchoring-systems/technical-notes/direct-fastening-systems/ powder-actuated-operators-exam**). PAT tests and Operator's Manual are included with each tool kit. Manuals for gas-actuated tools are included in each kit. Gas-actuated tools do not require a certified operator card. Simpson Strong-Tie does offer additional online training for the gas tool at **training.strongtie.com**.

To avoid serious injury or death:

- a. Always make sure that the operators and bystanders wear safety glasses. Hearing and head protection is also recommended.
- b. Always post warning signs within the area when gas- or powderactuated tools are in use. Signs should state "Tool in Use."
- Always store gas- and powder-actuated tools unloaded. Store tools and powder loads in a locked container out of reach of children.
- d. Never place any part of your body over the front muzzle of the tool, even if no fastener is present. The fastener, pin or tool piston can cause serious injury or death in the event of accidental discharge.

- Never attempt to bypass or circumvent any of the safety features on a gas- or powder-actuated tool.
- f. Always keep the tool pointed in a safe direction.
- g. Always keep your finger off the trigger.
- h. Always keep the tool unloaded until ready to use.
- i. Always hold the tool perpendicular (90°) to the fastening surface to prevent ricocheting fasteners. Use the spall guard whenever possible.
- j. Never attempt to fasten into thin, brittle or very hard materials such as glass, tile or cast iron as these materials are inappropriate. Conduct a pre-punch test to determine base material adequacy.
- Never attempt to fasten into soft material such as drywall or wood.
 Fastening through soft materials into appropriate base material may be allowed if the application is appropriate.
- I. Never attempt to fasten to a spalled, cracked or uneven surface.
- m. Redriving of pins is not recommended.

General Instructions for the Designer

These general instructions for the designer are provided to ensure the proper selection and installation of Simpson Strong-Tie products and must be followed carefully. They are in addition to the specific design and installation instructions and notes provided for each particular product, all of which should be consulted prior to and during the design process.

- a. The term "designer" used throughout this catalog is intended to mean a licensed/certified building design professional, a licensed professional engineer or a licensed architect.
- b. All connected members and related elements shall be designed by the designer and must have sufficient strength (bending, shear, etc.) to resist the design loads.
- c. When the allowable stress design method is used, the design service load shall not exceed the published allowable loads reduced by load-adjustment factors for temperature, spacing and edge distance.
- d. When the strength design method is used, the factored loads shall not exceed the design strengths calculated in accordance with the published design data.
- e. Simpson Strong-Tie strongly recommends the following addition to construction drawings and specifications:
 "Simpson Strong-Tie products are specifically required to meet the structural calculations. Before substituting another brand, confirm load capacity based on reliable published testing data or calculations. The designer should evaluate and give written approval for substituton prior to installation."
- f. Where used in this catalog, "IBC" refers to the 2021 International Building Code, and "ACI 318" refers to ACI 318-19 Building Code Requirements for Structural Concrete. Local and/or regional building codes may require meeting special conditions. Building codes often require special inspection of post-installed anchors installed in concrete and masonry. For compliance with these requirements, contact the local and/or building authority having jurisdiction. Except where mandated by code, Simpson Strong-Tie products do not require special inspection.
- g. Allowable loads and design strengths are determined from test results, calculations and experience. These are guide values for sound base materials with known properties. Due to variation in base materials and site conditions, site-specific testing should be conducted if exact performance in a specific base material at a specific site must be known.
- h. Unless stated otherwise, tests conducted to derive performance information were performed in members with thicknesses that comply with the appropriate acceptance criteria during testing and assessment. Anchoring into members thinner than recommended in this catalog requires the evaluation and judgment of a qualified designer.
- Tests are conducted with anchors installed perpendicular (±6°) from a vertical reference to the surface of the base material. Deviations can result in anchor bending stresses that may reduce the load-carrying capacity of the anchor.

- j. Allowable loads and design strengths do not consider bending stresses due to shear loads applied with large eccentricities.
- k. Metal anchors and fasteners will corrode and may lose load-carrying capacity when installed in corrosive environments or exposed to corrosive materials. See p. 235.
- Mechanical anchors should not be installed into concrete that is less than 7 days old. The allowable loads and design strengths of mechanical anchors that are installed into concrete less than 28 days old should be based on the actual compressive strength of the concrete at the time of installation.
- m. Nominal embedment depth ("embedment depth") is the distance from the surface of the base material to the installed end of the anchor and is measured prior to application of an installation torque (if applicable). Effective embedment depth is the distance from the surface of the base material to the deepest point at which the load is transferred to the base material.
- Drill bits shall meet the diameter requirements of ANSI B212.15. For adhesive anchor installations in oversized holes, see p. 238. For adhesive anchor installations into core-drilled holes, see p. 239.
- Threaded-rod inserts for adhesive anchors shall be oil-free UNC fully threaded steel. Bare steel, zinc plating, mechanical galvanizing or hot-dip galvanizing coatings are acceptable.
- p. Allowable loads and design strengths are generally based on testing of adhesive anchors installed into dry holes. For installations into damp, wet and submerged environments, see p. 239.
- q. ACI 318 states that adhesive anchors should not be installed into concrete that is less than 21 days old. For information on adhesive anchors installed into concrete less than 21 days old, see p. 238.
- r. Adhesive anchors can be affected by elevated base material temperature.
- s. Anchors are permitted to support fire-resistant construction provided at least one of the following conditions is fulfilled:
 (a) anchors are used to resist wind or seismic forces only;
 (b) anchors that support gravity-load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards; or (c) anchors are used to support non-structural elements.
- t. Exposure to some chemicals may degrade the bond strength of adhesive anchors. Refer to the product description for chemical resistance information or refer to see p. 242.
- u. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

Limited Warranty

For the Limited Warranty that applies to Simpson Strong-Tie products, please consult **strongtie.com/limited-warranties**. See p. 250 for the Limited Warranty in effect when this catalog was first published. To obtain a copy of the current Limited Warranty, contact us at **limited_warranty@strongtie.com**, (800) 999-5099 or Simpson Strong-Tie Company Inc., 5956 West Las Positas Boulevard, Pleasanton, CA 94588.

The Limited Warranty contains important disclaimers, limitations and exclusions, and applies only if the products have been properly specified, installed, maintained, and used in accordance with the design limits and the structural, technical, and environmental specifications in the Simpson Strong-Tie Documentation. All future purchases of Simpson Strong-Tie products are subject to the terms of the Limited Warranty in effect as of the purchase date. Although products are designed for a wide variety of uses, Simpson Strong-Tie assumes no liability for confirming that any product is appropriate for an intended use, and each intended use of a product must be reviewed and approved by qualified professionals. Each product is designed for the load capacities and uses listed in the Simpson Strong-Tie Documentation, subject to the limitations and other information set forth therein. Due to the particular characteristics of potential impact events such as earthquakes and high velocity winds, the specific design and location of the structure, the building materials used, the quality of construction, or the condition of the soils or substrates involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie's specifications and the products are properly installed in accordance with applicable building codes, laws, rules and regulations.

Terms and Conditions of Sale

Product Use

Products in this catalog are designed and manufactured for the specific purposes shown, and should not be used with other connectors not approved by a qualified licensed/certified building design professional, a licensed professional engineer or licensed architect ("designer"). You should review our website and consult a qualified designer familiar with all applicable building codes each time you use a Simpson Strong-Tie product.

Indemnity

Any designer or other person who modifies any products, changes any installation procedures or designs any non-catalog products for fabrication by Simpson Strong-Tie Company Inc. shall, regardless of specific instructions to the user, indemnify, defend, and hold harmless Simpson Strong-Tie Company Inc. for any and all claimed loss or damage occasioned in whole or in part by such products.

Non-Catalog and Modified Products

Modifications to products or changes in installation procedures should only be made by a qualified professional designer. The performance of such modified products or altered installation procedures is the sole responsibility of the designer. Any person modifying Simpson Strong-Tie products must provide the installer with specific instructions on the modified products' specifications, installation and use.

Consult Simpson Strong-Tie Company Inc. for applications for which there is no catalog product, or for connectors for use in hostile environments, with excessive wood shrinkage, or with abnormal loading or erection requirements.

Non-catalog products must be designed by a qualified designer and will be fabricated by Simpson Strong-Tie in accordance with customer specifications.

Any modified, special order or non-catalog products, or any products that are not installed strictly in accordance with Simpson Strong-Tie installation procedures, are provided "AS IS" and without any representation or warranty of any kind.

Anchor Software and Web Apps

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.

Splice Information		Splice Class @		Existing cast-in-place reinforcing bar Existing concrete	New concrete
No	~	Class A	Ŵ		
Concrete Information		Concrete Compressive St	rength, ${f'_c}\left({{ m{psi}}} ight)$ @	Development lengt	oplication
NWC	~	2,500	~	Existing concrete	- New concrete
Rebar Information		Rebar Spacing (Center-to	-Centor), S 😡	Development length	Post-installed reinforcing bar
Uncoated / Zinc coated	~	8	in		
Minimum Clear Cover, C _{min} 🕲					
3	in				
Seismic Design Cate	gory				
Seismic Design Category @					

Visit strongtie.com/softwareandwebapplications/category

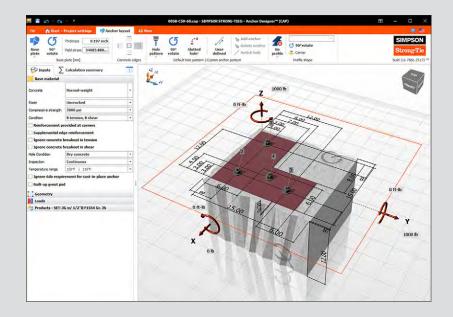
Adhesive Cartridge Estimator

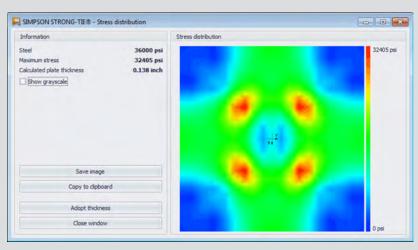
With the Adhesive Cartridge Estimator you can easily estimate how much adhesive you will need for your project, including threaded rod and rebar doweling, and crack injection.

	NPUT				OUTPUT				AC	
tridge imator	Condition				Job Tally					
		• •	1	-	Action		SET3G10 8.5 oz (cantridge)	SET3022- N 22 oz (cartridge)	User Inputs	
	Threaded Rod and Reb	bar Doweling	Criek Ins	setion		Job 1	0.05	0.02	Insert: Threaded Rod, Insert Diameter 6/8', Adhesive Anchor; 387-30, Dail B4 Diameter: 11/16', Number Installations: 1, Overage Factor: 016, Enhancement Deglin, 6'', Water Filled Holes: No	
1	nsert					Total	0.05	0.02	-	
			Ħ		SET-3G H	gh-Strength Epoxy Adl	1esive			
	Threaded Rod	Rebar	Plastic Screen Tube	Steel Screen Tube						
	Threaded Rod out Duamater (Kod Sze) 5/81 (0.8251)	Rebar	Plastic Screen Tube	Steel Screen Tube						
4	usert Duarvater (Rod Size)		Plastic Screen Tuby	Steed Screen Tube	5ET3G10 0.5 oz	5ET3G22-M 22 02				

Visit strongtie.com/softwareandwebapplications/category

Anchor Designer[™] Software for ACI 318, ETAG and CSA


Simpson Strong-Tie[®] Anchor Designer Software is the latest anchorage design tool for structural engineers to satisfy the strength design provisions and methodologies. Anchor Designer will quickly and accurately analyze an existing design or suggest anchorage solutions based upon user-defined design elements in cracked and uncracked concrete conditions.


The real-time design is visually represented in a fully-interactive 3D graphic user interface, supports imperial and metric-sized Simpson Strong-Tie mechanical and adhesive anchors, and offers cast-in-place anchor solutions. Anchor Designer can calculate single anchor solutions or with multiple anchors in a single plate. Anchor locations are fully customizable to assist engineers in complex design conditions.

Features include:

- Design standards: ACI 318-19 and ACI 318-14 Chapter 17 / ACI 318-11 Appendix D, CAN / CSA A23.3 Annex D, ETAG 001 Annex C or EOTA TR029.
- Customizable anchor pattern.
- Easy-to-use menus and updated workflows.
- Ability to calculate single anchor model or to calculate multiple anchor models at once.
- Multi-lingual options include English, German, French, Spanish, Polish and Danish languages.
- Rectangular, circular, L-shape and T-shape base plate geometries with the option to include slotted holes.
- And much more!

Visit strongtie.com/softwareandwebapplications/category

Adhesive Anchors

3

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G is an epoxy-based anchoring adhesive with high design strength and proven performance. SET-3G is a 1:1 ratio, two-component, anchoring adhesive for concrete (cracked and uncracked). SET-3G installs and performs in a variety of environmental conditions and temperature extremes.

Features

- Exceptional performance superior bond strengths permit ductile solutions in high seismic areas
- Design flexibility improved sustained load performance at elevated temperature
- Jobsite versatility can be specified for all base material conditions when in-service temperatures range from -40°F (-40°C) to 176°F (80°C)
- Recognized per ICC ES AC308 for post-installed rebar development and splice length design provisions
- Approved for installation with multiple vacuum-drill bit systems without further hole cleaning. See Code Report (ESR-4057) and engineering letter at strongtie.com for approved systems.

Product Information

Mix Ratio/Type	1:1 ероху
Mixed Color	Gray
Base Materials	Concrete and masonry - cracked and uncracked
Base Material Conditions	Dry, water-saturated, water-filled hole, submerged
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	40°F (4°C) to 100°F (38°C)
In-Service Temperature Range	–40°F (–40°C) to 176°F (80°C)
Storage Temperature	45°F (7°C) and 90°F (32°C)
Shelf Life	24 months
Volatile Organic Compound (VOC)	2 g/L
Chemical Resistance	See pp. 242–243
Manufactured in the US using global n	naterials

Test Criteria

SET-3G has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR-4057 (including post-installed rebar connections, City of LA and Florida Building Code), Florida FL15730. Masonry — ICC-ES ESR pending. ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class B & C. UL Certification — CDPH Standard Method v1.2. NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.).

SIMPSON

Strong-I

SET-3G Adhesive

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/set3g**.

• Hole cleaning brushes are located on p. 52.

SET-3G Adhesive Cartridge System

Model No.	Capacity (ounces)	Cartridge Carton Type Quantity		Dispensing Tool(s)	Mixing Nozzle ³
SET3G10 ⁴	8.5	Coaxial	12	CDT10S	
SET3G22-N ⁴	22	Side-by-side 10		EDT22S, EDTA22P, EDTA22CKT	EMN22I
SET3G56	56	Side-by-side	6	EDTA56P	

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.

3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.

4. One EMN22I mixing nozzle and one extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

24

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Cure Schedule^{1,2}

Concrete Te	emperature	Gel Time	Cure Time
(°F)	(°C)	(minutes)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: 1°F = (°C x %) + 32.

1. For water-saturated concrete, submerged concrete and water-filled holes, the cure times shall be doubled.

2. For installation of anchors in concrete where the temperature is below 70°F (21°C),

the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

SET-3G Typical Properties

	Droporty	Class B	Class C	Test
	Property	(40°–60°F)	(>60°F)	Method
Consistency		Non-sag	Non-sag	ASTM C881
	Hardened to Hardened Concrete, 2-Day Cure ¹	3,700 psi	3,300 psi	
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,850 psi	3,350 psi	ASTM C882
	Fresh to Hardened Concrete, 14-Day Cure ²	2,750 psi	2,750 psi	
Compressive Yield Strength, 7-Day Cure ²		13,000 psi	15,350 psi	ASTM D695
Compressive Modulus, 7-Day	Cure ²	650,000 psi	992,000 psi	ASTM D695
Heat Deflection Temperature,	7-Day Cure ²	147°F	ASTM D648	
Glass Transition Temperature,	7-Day Cure ²	149°F	ASTM E1356	
Decomposition Temperature, 2	24-Hour Cure ²	500°F	(260°C)	ASTM E2550
Water Absorption, 24-Hours, 7	7-Day Cure ²	0.1	3%	ASTM D570
Shore D Hardness, 24-Hour C	Cure ²	8	4	ASTM D2240
Linear Coefficient of Shrinkag	e, 7-Day Cure ²	0.002	in./in.	ASTM D2566
Coefficient of Thermal Expans	ion ²	2.3 x 10⁻	⁵ in./in.°F	ASTM C531

1. Material and curing conditions: Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

2. Material and curing conditions: $73^{\circ} \pm 2^{\circ}$ F.

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic	Cumbol	Units	Nominal Anchor Diameter da (in.) / Rebar Size									
Characteristic	Symbol		<u> % / #3</u>	1⁄2 / #4	5% / #5	3⁄4 / #6	⁷ /8 / # 7	1 / #8	1¼/#10			
Installation Information												
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7⁄16	9⁄16	11/16	7⁄8	1	1 1/8	1 3⁄8			
Drill Bit Diameter for Rebar	d _{hole}	in.	1⁄2	1/2 5/8		7⁄8	1	1 1/8	1 3⁄8			
Maximum Tightening Torque	T _{inst}	ftlb.	15 30		60	100	125	150	200			
Minimum Embedment Depth	h _{ef, min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5			
Maximum Embedment Depth	h _{ef, max}	in.	71⁄2	10	12½	15	17½	20	25			
Minimum Concrete Thickness	h _{min}	in.	h _{ef} -	+ 1¼			h _{ef} + 2d _{hole}					
Critical Edge Distance	Cac	in.				See footnote	2					
Minimum Edge Distance	C _{min}	in.			1	3⁄4			2¾			
Minimum Anchor Spacing	S _{min}	in.	1	21/2			3		6			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f_c)^{0.5} / (\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SIMPSO

Strong-Tie

LW

IBC

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

^{2.} $C_{ac} = h_{ef} (\tau_{k,uncr} / 1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

SET-3G[™] Design Information — Concrete

SET-	-3G Tension Strength Desi	ign Data for Threaded Rod ^{1,7}						IBC			LW
							Nominal	Rod Diam	neter (in.)		
	Charact	eristic	Symbol	Units	3⁄8	1⁄2	5%8	3⁄4	7⁄8	1	1¼
		Steel Stren	gth in Tensi	on					1		
Min	imum Tensile Stress Area		Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tens	sion Resistance of Steel — ASTM F15	54, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Tens	sion Resistance of Steel — ASTM F15	54, Grade 55			5,850	10,650	16,950	25,050	34,650	45,450	72,675
	sion Resistance of Steel — ASTM A19		N _{sa}	lb.	9,750	17,750	28,250	41,750	57,750	75,750	121,125
(Тур	Tension Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)				4,445	8,095	12,880	19,040	26,335	34,540	55,235
<u> </u>	sion Resistance of Steel — Stainless S			7,800	14,200	22,600	28,390	39,270	51,510	82,365	
	sion Resistance of Steel — Stainless S			8,580	15,620	24,860	36,740	50,820	66,660	106,590	
Stre	ngth Reduction Factor for Tension — S	Steel Failure	φ					0.755			
		Concrete Breakout Strength in T	ension (2,5	00 psi :	≤ f' _C ≤ 8,0	00 psi)					
	ctiveness Factor for Cracked Concrete		K _{c,cr}					17			
	ctiveness Factor for Uncracked Concre		k _{c,uncr}					24			
Stre	ngth Reduction Factor — Concrete Bro	eakout Failure in Tension	φ					0.655			
		Bond Strength in Tension (2,500 psi ≤	$f_C^i \le 8$,000 psi) ⁶						
Min	imum Embedment		h _{ef,min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5
Max	imum Embedment	1	h _{ef,max}	in.	71⁄2	10	121⁄2	15	171⁄2	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
E		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,672
spectio	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,388
inuc	Anchor Category	Dry Concrete	_					1			
Cont	Strength Reduction Factor	Dry Concrete	Ф _{dry,ci}	_				0.655			
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete		—	:	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{\it wet,ci}$	—	0.4	15⁵			0.555	1	
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,672
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,117	1,082	1,125	1087	1,050	1,012	936
c Insp		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,388
iodi	Anchor Category	Dry Concrete				2			1		
Per	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$		0.8	555			0.655		
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete		_				3			
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{wet,pi}$					0.455			
Red	uction Factor for Seismic Tension		$\alpha_{N,seis}$ 9	—	1.0	0.9	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, Maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

6. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.35}$ for uncracked concrete and a factor of $(f'_c/2,500)^{0.24}$ for cracked concrete.

7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

8. Characteristic bond strength values are for sustained loads, including dead and live loads.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

26

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMP

Strong-

SIMPSON

SET-3G[™] Design Information — Concrete

Strong-Tie

SE	T-3G Tension Streng	gth Design Data for Rebar ^{1,7}						IBC	20 22		LW
		Characteristic	Symbol	Units			l	Rebar Siz	e		
			Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Steel St	rength in Te	nsion			1				1
N	linimum Tensile Stress Area		A _{se}	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.27
Te	ension Resistance of Steel —	Rebar (ASTM A615 Grade 60)	- N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300
Te	ension Resistance of Steel —	Rebar (ASTM A706 Grade 60)	l vsa	10.	8,800	16,000	24,800	35,200	48,000	63,200	101,600
S	trength Reduction Factor for T	ension — Steel Failure	φ	—				0.755			
		in Tension (2,500 ps	$i \le f'_{C} \le 8$,000 psi)						
E	ffectiveness Factor for Cracke	d Concrete	K _{C,C}					17			
E	ffectiveness Factor for Uncrac	K _{c,uncr}					24				
S	trength Reduction Factor — (Concrete Breakout Failure in Tension	φ					0.655			
		Bond Strength in Tens			1	Ĺ					
<u> </u>	linimum Embedment		h _{ef,min}	in.	23⁄8	2¾	31⁄8	31⁄2	3¾	4	5
N	laximum Embedment		h _{ef,max}	in.	71⁄2	10	121⁄2	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
	Tomporatoro Hango A	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403
ection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165
nonu	Anchor Category	Dry Concrete	<u> </u>	—				1			
Conti	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$	/				0.655			
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	-	_	:	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{\textit{wet,ci}}$	_	0.4	45⁵			0.555		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403
ction	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936
Periodic Inspection	Temperature hange b	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165
iodic	Anchor Category	Dry Concrete		_	2	2			1		
Per	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$		0.5	ō5⁵			0.655		
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	_	_				3			
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{wet,pi}$	_				0.455			
R	eduction Factor for Seismic Te	ension	$\alpha_{N,seis^9}$	_	1.0	1.0	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, Maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

6. Bond strength values shown are for normal-weight concrete having a compressive strength of fr_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (fr_c/2,500)^{0.35} for uncracked concrete and a factor of (fr_c/2,500)^{0.24} for cracked concrete.

7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

8. Characteristic bond strength values are for sustained loads, including dead and live loads.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by a_{N,seis}.

Adhesive Anchors

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Threaded Rod¹

					Nominal	Rod Diam	eter (in.)			
Characteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	11⁄4	
	Steel St	rength in Sh	iear			1				
Minimum Shear Stress Area	Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	$lpha_{V\!,seis^3}$	-	0.75					1.0		
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	$\alpha_{V,seis^3}$	—	0.	80		0.75		1	.0	
Strength Reduction Factor for Shear — Steel Failure	φ	—				0.65 ²				
C	oncrete Brea	kout Strengt	h in Shear							
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.		Mi	n. of <i>h_{ef}</i> and	d 8 times ar	nchor diame	ter		
Strength Reduction Factor for Shear — Breakout Failure	φ	— 0.70 ²								
	Concrete Pry	out Strength	in Shear							
Coefficient for Pryout Strength	k _{cp}	in.		1.	0 for $h_{ef} < 2$	2.50"; 2.0 f	or $h_{ef} \ge 2.5$	0"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_		-	-	0.70 ²	-			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vsels} for the corresponding anchor steel type.

IBC

SIMPSON

LW

Adhesive Anchors

SIMPSON Strong-Tie

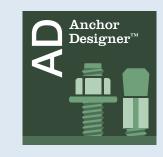
LW

IBC 🗭 🕄

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Rebar¹

Symbol	Unite	Rebar Size							
Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
el Strength	in Shear	r							
Ase	in.2	0.110	0.200	0.310	0.440	0.600	0.790	1.270	
	lb	5,940	10,800	16,740	23,760	32,400	42,660	68,580	
Vsa	ID.	5,280	9,600	14,880	21,120	28,800	37,920	60,960	
3		0.60			0	0.8			
$\alpha_{V,seis}$		0.60 0.8					.8		
φ	_	0.65 ²							
Breakout St	trength in	n Shear							
da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
le	in.	n. Min. of <i>h_{ef}</i> and 8 times anchor diameter							
φ	_	— 0.70 ²							
Concrete Pryout Strength in Shear									
k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "							
φ	_				0.70 ²				
	A_{se} V_{sa} $\alpha_{V,seis}^{3}$ ϕ Breakout St d_{a} l_{e} ϕ e Pryout Str k_{cp}	Beel Strength in Shear A_{se} in. ² V_{sa} lb. $\alpha_{V,sels}^3$ - ϕ - Breakout Strength in d_a in. l_e in. ϕ - Breakout Strength in in. k_e in. k_e in. k_e in. k_{cp} in.	#3del Strength in Shear A_{se} in. ² 0.110 V_{sa} Ib. $5,940$ V_{sa} Ib. $5,940$ $\alpha_{V,sels}^3$ ϕ ϕ Breakout Strength in Shear d_a d_a in.0.375 l_e in. ϕ - Pryout Strength in Shear k_{cp} in.	#3 #4 bel Strength in Shear A_{Se} in. ² 0.110 0.200 V_{Sa} Ib. $5,940$ 10,800 V_{Sa} Ib. $5,280$ 9,600 $\alpha_{V,seks}^3$ - - - ϕ - - - Breakout Strength in Shear d_a in. 0.375 0.5 l_e in. Min ϕ - - Breakout Strength in Shear d_a in. 0.375 0.5 l_e in. 1.0 Min ϕ -	Symbol Units #3 #4 #5 eel Strength in Shear A_{se} in. ² 0.110 0.200 0.310 V_{sa} Ib. 5,940 10,800 16,740 V_{sa} Ib. 5,940 10,800 14,880 $\alpha_{V,sels}^3$	Symbol Units #3 #4 #5 #6 eel Strength in Shear A_{se} in. ² 0.110 0.200 0.310 0.440 V_{sa} Ib. $5,940$ 10,800 16,740 23,760 V_{sa} Ib. $5,280$ 9,600 14,880 21,120 $\alpha_{V,sels}^3$ - 0.60 0.60 0.60 ϕ - 0.60° 0.65° Breakout Strength in Shear d_a in. 0.375 0.5 0.625 0.75° l_e in. Min. of h_{ef} and 8 times a ϕ $ 0.70^\circ$ Pryout Strength in Shear k_{cp} in. 1.0 for $h_{ef} < 2.50^\circ$; 2.0	Symbol Units #3 #4 #5 #6 #7 sel Strength in Shear A_{Se} in. ² 0.110 0.200 0.310 0.440 0.600 V_{Sa} B_{0} $5,940$ 10,800 16,740 23,760 32,400 V_{Sa} B_{0} $5,280$ 9,600 14,880 21,120 28,800 $\alpha_{V,Sels}^{3}$ $ 0.60$ 0.60 0.60 ϕ $ 0.60$ 0.65^2 0.75 0.875 $Breakout Strength in Shear$ 0.375 0.5 0.625 0.75 0.875 l_e in. 0.70^2 0.70^2 0.70^2 0.70^2 <td colspa<="" td=""><td>Symbol Units #3 #4 #5 #6 #7 #8 sel Strength in Shear A_{se} in.² 0.110 0.200 0.310 0.440 0.600 0.790 A_{se} in.² 0.110 0.200 0.310 0.440 0.600 0.790 V_{sa} B_{a} $5,940$ 10,800 16,740 23,760 32,400 42,660 V_{sa} B_{a} $5,280$ 9,600 14,880 21,120 28,800 37,920 $\alpha_{V,sels}^{3}$ 0.60 0.60 0 ϕ 0.60 0.65^2 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1</td></td>	<td>Symbol Units #3 #4 #5 #6 #7 #8 sel Strength in Shear A_{se} in.² 0.110 0.200 0.310 0.440 0.600 0.790 A_{se} in.² 0.110 0.200 0.310 0.440 0.600 0.790 V_{sa} B_{a} $5,940$ 10,800 16,740 23,760 32,400 42,660 V_{sa} B_{a} $5,280$ 9,600 14,880 21,120 28,800 37,920 $\alpha_{V,sels}^{3}$ 0.60 0.60 0 ϕ 0.60 0.65^2 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1</td>	Symbol Units #3 #4 #5 #6 #7 #8 sel Strength in Shear A_{se} in. ² 0.110 0.200 0.310 0.440 0.600 0.790 A_{se} in. ² 0.110 0.200 0.310 0.440 0.600 0.790 V_{sa} B_{a} $5,940$ 10,800 16,740 23,760 32,400 42,660 V_{sa} B_{a} $5,280$ 9,600 14,880 21,120 28,800 37,920 $\alpha_{V,sels}^{3}$ $ 0.60$ 0.60 0 ϕ $ 0.60$ 0.65^2 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1 d_a in. 0.375 0.5 0.625 0.75 0.875 1

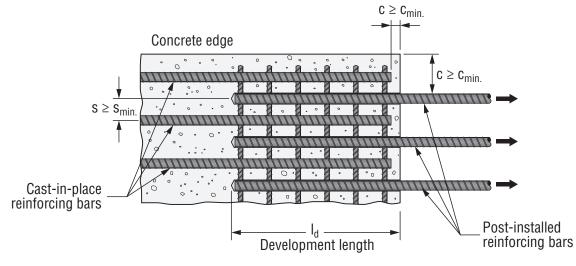

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vse/s} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.



Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SET-3G[™] Design Information -Concrete

Adhesive Anchors

SET-3G Development Length for Rebar Dowel

	Drill Bit	Clear Cover,	Development Length, in. (mm)					
Rebar Size	Diameter (in.)	in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete	
#3	1⁄2	1.125 (29)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	
#4	5⁄8	1.125 (29)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)	
#5	3⁄4	1.125 (29)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)	
#6	7⁄8	1.125 (29)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)	
#7	1	2.30 (58)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)	
#8	11/8	2.30 (58)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)	
#9	13⁄8	2.30 (58)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)	
#10	13⁄8	2.30 (58)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)	
#11	1¾	2.30 (58)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)	

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by fy/60,000 psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

5. Uncoated rebar must be used.

6. The value of Ktr is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 319-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

LW IBC

SIMPSON

Strong-Tie

SET-3G[™] Design Information — Masonry

SET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Face of Wall

Installation Information	Cumbol	Unito	Nominal Rod Diameter / Rebar Size				
Installation Information	Symbol	Units	¾" / #3	1⁄2" / #4	5%" / #5	3⁄4'' / #6	
Drill Bit Diameter — Threaded Rod	do	in.	7⁄16	9⁄16	11/16	7⁄8	
Drill Bit Diameter — Rebar	d _o	in.	1/2	5⁄8	3/4	7⁄8	
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3	

SET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Top of Wall

Installation Information	Cumbol	Units	Nomina	l Rod Diameter / Rebar Size		
instanauon mormauon	Symbol	Units	1⁄2" / #4	5%" / #5	7⁄8''	
Drill Bit Diameter — Threaded Rod	do	in.	9⁄16	11/16	1	
Drill Bit Diameter — Rebar	do	in.	5%	3⁄4	_	
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	

SET-3G Epoxy Anchor Installation Information — Ungrouted CMU Construction

Installation Information	Cumbol	Units	N	Iominal Rod Diamete	iameter	
Instanation mormation	Symbol	Units	3⁄8"	1⁄2"	5⁄8''	
Drill Bit Diameter	do	in.	9⁄16	3⁄4	7⁄8	
Embedment Depth	h _{ef,min}	in.	31⁄2	31⁄2	31⁄2	

Please see the SET-3G product page at **strongtie.com** and ICC-ES ESR Report for load data.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Strong-Tie

IBC

SIMPSON Strong-Tie

Anchor Web App

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19/ACI 318-14.

Lap Splice Application		Splice Class @		Existing concrete	-New concrete
No	~	Class A	Ø		Post-installed
Concrete Information				→ Development len Lap Splice	reinforcing bar
Concrete Type 🞯		Concrete Compressive Stre	ngth, f'_c (psi) 🛛		
NWC	~	2,500	~	Existing concrete	New concrete
					Post-installed
	~	Rebar Spacing (Center-to-C	Center), S 🕲	Development lengt	Post-installed reinforcing bar
Rebar Information Rebar Coating @ Uncoated / Zinc coated Minimum Clear Cover, C _{min} @	~			Development lengt	 reinforcing bar
Rebar Coating	×			Development lengt	 reinforcing bar
Rebar Coating @ Uncoated / Zinc coated Minimum Clear Cover, C _{min} @	in			Development lengt	 reinforcing bar
Rebar Coating @ Uncoated / Zinc coated Minimum Clear Cover, C _{min} @ 3	in			Development lengt	 reinforcing bar

SIMPSON	CIM	DEON
	SIIVI	FJUN

Simpson Strong-Tie® Ancl	horing, Fastening, Rest	oration and Strengthening	Systems for Concrete and Masonry
--------------------------	-------------------------	---------------------------	----------------------------------

Strong-Tie

Adhesive Anchors

Notes

ET-3G[™] Epoxy Adhesive

ET-3G is an epoxy-based, 1:1 ratio, two-component system ideal for general anchoring of threaded rod and rebar into concrete (cracked and uncracked) and masonry (cracked and uncracked).

Features

- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Ideal for general doweling and threaded rod applications
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)

Product Information

Mix Ratio/Type	1:1 epoxy			
Mixed Color	Teal			
Base Materials	Concrete and masonry — cracked and uncracked			
Base Material Conditions	Dry, water-saturated			
Anchor Type	Threaded rod or rebar			
Substrate Installation Temperature	50°F (4°C) to 110°F (43°C)			
In-Service Temperature Range	–40°F (–40°C) to 150°F (65°C)			
Storage Temperature	45°F (7°C) and 90°F (32°C)			
Shelf Life	24 months			
Volatile Organic Compound (VOC)	3 g/L			
Chemical Resistance	See pp. 242–243			
Manufactured in the US using global materials				

Test Criteria

ET-3G has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR pending (including post-installed rebar connections, City of LA and Florida Building Code); FL15730.
Masonry — ICC-ES ESR pending.
ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class C.
UL Certification — CDPH Standard Method v1.2.
NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.)

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/et3g**.

• Hole cleaning brushes are located on p. 52.

	Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle ³
1	ET3G10 ⁴	8.5	Single	12	CDT10S	
1	ET3G22-N ⁴	22	Side-by-Side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22I
1	ET3G56	56	Side-by-Side	6	EDTA56P	

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.

3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair ET-3G adhesive performance.

4. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

SIMPSO

Strong-I

ET-3G Adhesive

ET-3G[™] Epoxy Adhesive

ET-3G Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time		
°F	°C	(minutes)	(hr.)		
50	10	100	72		
60	16	75	48		
70	21	50	24		
90	32	30	24		
110	43	18	24		

For water-saturated concrete, the cure times must be doubled.

ET-3G Typical Properties

	Property	Class C	Test		
		(>60°F)	Method		
Consistency		Non-sag	ASTM C881		
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 2-Day Cure ¹	2,600 psi			
	Hardened to Hardened Concrete, 14-Day Cure ¹	2,900 psi	ASTM C882		
	Fresh to Hardened Concrete, 14-Day Cure ²	2,000 psi			
Compressive Yield Strength, 7-Day Cure ¹		13,000 psi	ASTM D695		
Compressive Modulus, 7-Day C	Cure ¹	580,000 psi	ASTM D695		
Heat Deflection Temperature, 7	-Day Cure ²	132°F (56°C)	ASTM D648		
Glass Transition Temperature, 7	'-Day Cure ²	124°F (51°C)	ASTM E1356		
Decomposition Temperature, 24	4-Hour Cure ²	500°F (260°C)	ASTM E2550		
Water Absorption, 24-Hours, 7-	Day Cure ²	0.15%	ASTM D570		
Shore D Hardness, 24-Hour Cu	re ²	84	ASTM D2240		
Linear Coefficient of Shrinkage	7-Day Cure ²	0.002 in./in.	ASTM D2566		
Coefficient of Thermal Expansion	n ²	2.4 x 10 ⁻⁵ in./in.°F	ASTM C531		

1. Material and curing conditions: 60° \pm 2°F.

2. Material and curing conditions: 73° \pm 2°F.

ET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic		Symbol	Units	Nominal Anchor Diameter (in.) / Rebar Size								
				3% / #3	1⁄2 / #4	5% / #5	3⁄4 / #6	7⁄8 / #7	1 / #8	1¼/#10		
Installation Information												
Drill Bit Diameter		d _{hole}	in.	1⁄2	5⁄8	3⁄4	7⁄8	1	1 1/8	1%		
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125		
Permitted Embedment Depth Range	Minimum	h _{ef}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5		
	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25		
Minimum Concrete Thickness		h _{min}	in.	h_{ef} + 5 d_{hole}								
Critical Edge Distance ²		C _{ac}	in.	See footnote 2								
Minimum Edge Distance		C _{min}	in.	1¾ 2¾								
Minimum Anchor Spacing		S _{min}	in.	3								

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr}$ (($h_{ef} \times f'_{c}$)^{0.5}/($\pi \times d_{hole}$))

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SIMPSON

ET-3G[™] Design Information — Concrete

							Nomi <u>nal A</u>	nchor Dia	mete <u>r (in.</u>)		
	Characteristic		Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	11⁄4	
		Steel St	rength in T	ension								
-	Minimum Tensile Stress Area			in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Tension Resistance of Steel — ASTM F1554, Grade 36				4,525	8,235	13,110	19,370	26,795	35,150	56,20	
	Tension Resistance of Steel — ASTM A193, Grade B7				9,750	17,750	28,250	41,750	57,750	75,750	121,1	
Threaded Rod	Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)		N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,5	
Tension Resistance of Steel — Types 30 (ASTM A193, Grade B8 and B8M)		d 316 Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,23	
	Strength Reduction Factor — Steel Failure			_	0.757							
	Concrete Bre	akout Strength i	n Tension (2,500 p	si ≤ f' _C ≤ 8	3,000 psi) [*]	10					
Effectiveness Factor — Uncracked Concrete			k _{uncr}	_		24						
Effectiveness F	actor — Cracked Concrete		k _{cr}	_	17							
Strength Reduction Factor — Breakout Failure			φ	—	0.657							
	Bond	Strength in Tensi	on (2,500 j	osi ≤ f'c	≤ 8,000 p	si) ¹⁰						
Uncracked Concrete ^{2,3,4}	Characteristic Bond Strength ⁵			psi	See strongtie.com for values							
	Permitted Embedment Depth Range	Minimum	6		23⁄8	2¾	31⁄8	3½	3¾	4	5	
		Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25	
	Characteristic Bond Strength ^{5,8,9}			psi		See strongtie.com for values						
Cracked Concrete ^{2,3,4}	Dormitted Embedment Depth Depage	Minimum	h	in.	3	4	5	6	7	8	10	
	Permitted Embedment Depth Range	Maximum	h _{ef}		71⁄2	10	12½	15	17½	20	25	
	Bond Strength in Tension –	– Bond Strength	Reduction	Factors	s for Conti	nuous Sp	ecial Inspe	ection				
Strength Reduction Factor — Dry Concrete			$\phi_{dry,\ ci}$	—		0.657						
Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$			$\phi_{\mathit{sat,ci}}$	—	0.557 0.457							
Additional Factor for Water-Saturated Concrete — $h_{ef} \le 12d_a$			K _{sat,ci} 6	—	1 0.84						84	
Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} > 12d_a$			$\phi_{sat,ci}$	—	0.457							
Additional Factor for Water-Saturated Concrete — $h_{ef} > 12d_a$			k _{sat,ci} 6	_	0.57							
	Bond Strength in Tension	— Bond Strengt	h Reductio	n Facto	rs for Per	iodic Spec	cial Inspec	tion				
Strength Reduction Factor — Dry Concrete			$\phi_{dry,pi}$	—	0.557							
Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$			$\phi_{sat,pi}$		0.457							
Additional Factor for Water-Saturated Concrete — $h_{ef} \leq 12 d_a$			K _{sat,pi} 6	—	1 0.93 0.71					71		
Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} > 12d_a$			$\phi_{sat,pi}$	—				0.457				
Additional Factor for Water-Saturated Concrete — $h_{ef} > 12d_a$			K _{sat,pi} 6	_				0.48				

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat}.

7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7%" anchors must be multiplied by $\alpha_{N,seis} = 0.80$.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N.seis} = 0.92$. 10. The values of f'_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'_c used for calculation purposes

must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

11. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

SIMP

Strong-

SIMPSO Strong-Tie

ET-3G[™] Design Information — Concrete

T-3G Tension Streng	gth Design Data for Reb	0ar ^{1,9}						IBC			
			0. maked	11				Rebar Siz	e		
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Stee	el Strength in	Tension							
	Minimum Tensile Stress Area		Ase	in ²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Tension Resistance of Steel — I (ASTM A615 Grade 60)	Rebar	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor — St	teel Failure	φ					0.657			
	Concrete Bre	eakout Stren	gth in Tension	(2,500 psi	$\leq f_{C}^{\prime} \leq 8,$	000 psi) ⁸					
Effectiveness Factor — Uncr		k _{uncr}	—				24				
Effectiveness Factor — Crac	ked Concrete		k _{cr}	—				17			
Strength Reduction Factor — Breakout Failure			φ	—				0.657			
	Bond	Strength in T	Tension (2,500	$psi \leq f'_C \leq$	8,000 ps	i) ⁸					
	Characteristic Bond Strength ⁵		τ _{k,uncr}	psi			See stror	ngtie.com	for values		
Uncracked Concrete ^{2,3,4}	Permitted Embedment	Minimum	h _{ef}		2%	2¾	31⁄8	31⁄2	3¾	4	5
	Depth Range	Maximum		in.	71⁄2	10	12½	15	17½	20	25
	Characteristic Bond Strength ⁵	$\tau_{k,cr}$	psi			See stror	ngtie.com	for values			
Cracked Concrete ^{2,3,4}	Permitted Embedment	Minimum	h	in.	3	4	5	6	7	8	10
	Depth Range	Maximum	h _{ef}		71⁄2	10	12½	15	17½	20	25
	Bond Strength in Tension –	– Bond Strer	ngth Reduction	n Factors fo	or Continu	ious Spec	ial Inspec	tion			
Strength Reduction Factor —	– Dry Concrete		ф _{dry,ci}	—				0.657			
Strength Reduction Factor —	– Water-Saturated Concrete – h _{ef} ≤	12d _a	¢sat,ci	_	0.	55 ⁷	0.457				
Additional Factor for Water-S	saturated Concrete – $h_{ef} \le 12d_a$		K _{sat,ci} 6	—			1			0.	.84
Strength Reduction Factor —	– Water-Saturated Concrete – h _{ef} >	> 12d _a	∮sat,ci	—				0.457			
Additional Factor for Water-S	saturated Concrete $-h_{ef} > 12d_a$		K _{sat,ci} 6	—				0.57			
	Bond Strength in Tension	— Bond Str	ength Reducti	on Factors	for Perio	dic Specia	I Inspecti	ion			
Strength Reduction Factor —	– Dry Concrete		ф _{dry,pi}	—				0.557			
Strength Reduction Factor —	– Water-Saturated Concrete – h _{ef} ≤	12da	ф _{sat,pi}	_				0.457			
Additional Factor for Water-S	aturated Concrete – $h_{ef} \le 12d_a$		K _{sat,pl} 6	_		1		0.93		0.	.71
Strength Reduction Factor —	– Water-Saturated Concrete – h _{ef} >	> 12d _a	ф _{sat,pi}	_				0.457			
Additional Factor for Water-S	saturated Concrete $-h_{ef} > 12d_a$		K _{sat,pl} 6	_				0.48			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature = 150°F, Maximum long-term temperature = 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term temperatures are roughly constant over significant periods of time.

5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.

6. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .

7. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3. ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. The values of f'c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

9. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

ET-3G[™] Design Information — Concrete

ET-3G Shear Strength Design Data for Threaded Rod¹

	Characteristic	Cumbol	Units	Nominal Anchor Diameter (in.)						
	Characteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
	Steel	Strength	in Shea	ar		,		,		
	Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
Threaded Rod	Shear Resistance of Steel — Types 304 and 316 Stainless (ASTM A193, Grade B8 & B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
Rou	Reduction for Seismic Shear — ASTM F1554, Grade 36			0.87 0.78 0.68				68		0.65
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.87	0.78		0.	68		0.65
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)	$\alpha_{V,seis}{}^3$	—	0.69	0.82		0.75		0.83	0.72
	Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)	-		0.69	0.82		0.75		0.83	0.72
	Strength Reduction Factor — Steel Failure	φ	_			0.65 ²				
	Concrete Br	eakout S	trength i	in Shear						
Outside D	iameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load Bea	ring Length of Anchor in Shear	le	in.		Mir	n. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter	
Strength I	Reduction Factor — Breakout Failure	Factor — Breakout Failure ϕ — 0.70 ²								
	Concrete P	Pryout Str	ength in	Shear						
Coefficier	it for Pryout Strength	k _{cp}			1.(D for <i>h_{ef} < 2</i>	2.50"; 2.0	for $h_{ef} \ge 2.5$	50"	
Strength I	Reduction Factor — Pryout Failure	φ	_				0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type. SIMPSON

LW

Strong-

IBC

- Concrete

SIMPSON Strong-<u>Tie</u>

ET-3G	Shear Strength Design Data for Rebar ¹						IB			LW
	Characteristic	Symbol	Units				Rebar Size	9		
	Gildidetenstic	Symbol	UIIIIS	#3	#4	#5	#6	#7	#8	#10
		Steel Streng	jth in Shea	r						
	Minimum Shear Stress Area	A _{se}	in²	0.11	0.2	0.31	0.44	0.6	0.79	1.23
Rebar	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
nebai	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$lpha_{V\!\!,seis}{}^{_3}$		0.85	0.88	0.	0.84		0.77 0.59	
	Strength Reduction Factor — Steel Failure	φ					0.60 ²			
	Concre	te Breakout	Strength in	n Shear						
Outsid	e Diameter of Anchor	d _o	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-E	Bearing Length of Anchor in Shear	ℓ_e	in.		Mir	i. of <i>h_{ef}</i> and	d 8 times a	nchor diam	eter	
Streng	th Reduction Factor — Breakout Failure	ϕ					0.70 ²			
	Concr	ete Pryout S	Strength in	Shear						
Coeffic	ient for Pryout Strength	k _{cp}	_		1.() for $h_{ef} < 2$	2.50"; 2.0 1	for $h_{ef} \ge 2$.	50"	
Streng	th Reduction Factor — Pryout Failure	φ	—				0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

ET-3G[™] Design Information -

 The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,seis}.

For additional load tables, visit strongtie.com/et3g.

Adhesive Cartridge Estimator

Simpson Strong-Tie[®] Adhesive Cartridge Estimator software will help you easily estimate how much adhesive you will need for your project, including threaded rod and rebar doweling, and crack injection.

ET-3G[™] Design Information — Concrete

ET-3G Development Length for Rebar Dowels

		01		Development Length, in. (mm)							
Rebar Size	Drill Bit Diameter (in.)	Clear Cover in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete				
#3	1/2	1 ½	12	12	12	12	12				
(9.5)		(38)	(305)	(305)	(305)	(305)	(305)				
#4	5⁄8	1½	14.4	14	12	12	12				
(12.7)		(38)	(366)	(356)	(305)	(305)	(305)				
#5	3⁄4	1 ½	18	17	14.2	12	12				
(15.9)		(38)	(457)	(432)	(361)	(305)	(305)				
#6	7⁄8	1½	21.6	20	17.1	14	13				
(19.1)		(38)	(549)	(508)	(434)	(356)	(330)				
#7	1	3	31.5	29	25	21	18				
(22.2)		(76)	(800)	(737)	(635)	(533)	(457)				
#8	1 1⁄8	3	36	33	28.5	24	21				
(25.4)		(76)	(914)	(838)	(724)	(610)	(533)				
#9	1 3⁄8	3	40.5	38	32	27	23				
(28.7)		(76)	(1,029)	(965)	(813)	(686)	(584)				
#10	1 3⁄8	3	45	42	35.6	30	26				
(32.3)		(76)	(1,143)	(1,067)	(904)	(762)	(660)				
#11	1¾	3	51	47	41	33	29				
(35.8)		(76)	(1,295)	(1,194)	(1,041)	(838)	(737)				

 Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f¹_c used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 (f_y = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by f_y / 60,000 psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover of less than 12" cast below rebars (Ψ_t = 1.0).

5. Uncoated rebar must be used.

6. The value of Ktr is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.

Splice Information				Existing cast-in-place reinforcing bar	
Lap Splice Application		Splice Class @		Existing concrete	New concrete
No	~	Class A	n		Post-installed
Concrete Information	ı			Development length Lap Splice App	reinforcing bar
Concrete Type @		Concrete Compressive	Strength, f'_c (psi) @		
NWC	~	2,500	v	Existing concrete	New concrete
Rebar Coating @		Rebar Spacing (Center-1		Development length	
Uncoated / Zinc coated	~	8	in		
Minimum Clear Cover, C _{min} @					
3	in				
	non				
Seismic Design Cate	gory				
Seismic Design Cate Seismic Design Category @	gory				

SIMPSON

Strong-Tie

LW

IBC

ET-3G[™] Design Information — Masonry

ET-3G Epoxy Anchor Installation Information – Fully Grouted CMU Construction – Face of Wall

Installation Information	Cumbol	Units	Nominal Rod Diameter / Rebar Size						
instantion mornation	Symbol	Units	¾" / #3	1⁄2" / #4	5%" / # 5	3⁄4" / #6			
Drill Bit Diameter — Threaded Rod	do	in.	7⁄16	9⁄16	11/16	7⁄8			
Drill Bit Diameter — Rebar	do	in.	1/2	5⁄8	3/4	7⁄8			
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3			

ET-3G Epoxy Anchor Installation Information - Fully Grouted CMU Construction - Top of Wall

Installation Information	Svmbol Units —		Nominal Rod Diameter / Rebar Size				
Instanation mormation	Symbol	Units	1⁄2" / #4	5%" / #5	7⁄8''		
Drill Bit Diameter — Threaded Rod	do	in.	⁹ ⁄16	11/16	1		
Drill Bit Diameter — Rebar	do	in.	5⁄8	3⁄4	_		
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3		

ET-3G Epoxy Anchor Installation Information — Ungrouted CMU Construction

Installation Information	Symbol Units —		Nominal Rod Diameter				
Instantion information	Symbol	Units	3⁄8"	1⁄2"	5⁄8"		
Drill Bit Diameter	d _o	in.	9⁄16	3⁄4	7⁄8		
Embedment Depth	h _{ef,min}	in.	31⁄2	31⁄2	31⁄2		

Please see the ET-3G product page at **strongtie.com** and ICC-ES ESR Report for load data. IBC

Strong-Tie

AT-3G[™] High-Strength Hybrid Acrylic Adhesive

AT-3G is a hybrid, acrylic-based adhesive for anchoring threaded rod and rebar into cracked and uncracked concrete. Ideal for cold weather and wet concrete applications, AT-3G dispenses easily and offers a fast curing time for same-day bolt up.

Features

Adhesive Anchors

- Excellent for use in cold weather conditions or applications where fast cure is required
- Recognized per ICC-ES AC308 for threaded rod and rebar anchoring, along with post-installed rebar development and splice length design provisions
- Conventional blow-brush-blow hole cleaning technique using a wire brush no power brushing required

Product Information

10:1 hybrid acrylic
Gray
Concrete — cracked and uncracked
Dry, water-saturated, water-filled hole
Threaded rod or rebar
23°F (–5°C) to 104°F (40°C)
–40°F (–40°C) to 320°F (160°C)
41°F (5°C) and 77°F (25°C)
18 months
41 g/L

Test Criteria

AT-3G has been tested in accordance with ICC-ES AC308, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

 Concrete — ICC-ES ESR-4057 (including post-installed rebar connections, City of LA and Florida Building Code), Florida FL15730.
 ASTM C881 and AASHTO M235 — Types I/IV and II/V, Grade 3, Class B & C.
 UL Certification — CDPH Standard Method v1.2.
 NSF/ANSI/CAN 61 (216 in.² / 1,000 gal.).

Installation Instructions

Installation instructions are located at the following locations: pp. 48–51; product packaging; or **strongtie.com/at3g**.

• Hole cleaning brushes are located on p. 52.

AT-3G Adhesive Cartridge System

	Model No.	Capacity Ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
	AT3G10 ⁴	9.4 (16.9)	Coaxial	6	CDT10S	AMN/100
\$	AT3G30 ⁴	28 (50.5)	Side-by-side	5	ADT30S, ADTA30P or ADTA30CKT	AMN19Q

1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.

3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair AT-3G adhesive performance. 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

AT-3G Adhesive

AT-3G[™] High-Strength Hybrid Acrylic Adhesive

SIMPSON

Strong-Tie

AT-3G Cure Schedule

Base Mater	al Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hr.)
23	-5	50	5
32	0	25	31⁄2
41	5	15	2
50	10	10	1
59	15	6	40 min.
68	20	3	30 min.
86	30	2	30 min.
104	40	2	30 min.

1. For water-saturated concrete, the cure times must be doubled.

- Cartridge temperature must be between 41°F (5°C) and 104°F (40°C) at the time of installation.
- For installation in temperatures below 23°F (-5°C), see p. 241 (Supplemental Section) for more information.

AT-3G Typical Properties

	Property	Class A (35°–40°F)	Class B (40°–60°F)	Class C (>60°F)	Test Method
Consistency		Non-sag Non-sag		Non-sag	ASTM C881
Bond Strength, Slant Shear	Hardened-to-Hardened Concrete, 2-Day Cure ¹	2,800 psi	2,800 psi	2,820 psi	ASTM C882
bonu Strength, Siant Shear	Hardened-to-Hardened Concrete, 14-Day Cure ¹	3,200 psi	3,100 psi	3,250 psi	ASTIVI COOZ
Compressive Yield Strength, 7-Day Cure ²		10,300 psi	13,400 psi	15,000 psi	ASTM D695
Compressive Modulus, 7-Day Cure ²		1,400,000 psi	1,550,000 psi	1,650,000 psi	ASTM D695
Heat Deflection Temperature, 7-Day Cure ³				ASTM D648	
Glass Transition Temperature,	7-Day Cure ³		ASTM E1640		
Decomposition Temperature,	24-Hour Cure ³		ASTM E2550		
Water Absorption, 24 Hours, 7	7-Day Cure ³		ASTM D570		
Shore D Hardness, 24-Hour C	Cure ³		ASTM D2240		
Linear Coefficient of Shrinkag	e, 7-Day Cure ³		ASTM D2566		
Coefficient of Thermal Expans	ion ³		ASTM C531		

1. Material and curing conditions: Class A at 35° \pm 2°F, Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

2. Material and curing conditions: Class A at 0° \pm 2°F, Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.

3. Material and curing conditions: 73° \pm 2°F.

AT-3G Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1, 160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

LW

IBC

Lastanas

AT-3G[™] Design Information — Concrete

SIMPSON

<u>Strong-I</u>

AT-3G Tension Strength De	sign Data for Threaded Rod ^{1,8}						IBC			LW
				Nominal Rod Diameter (in.)						
Cha	racteristic	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
	Steel Streng	gth in Tens	ion							
Minimum Tensile Stress Area		A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tension Resistance of Steel — ASTM	F1554, Grade 36			4,495	8,230	13,110	19,400	26,780	35,130	56,210
Tension Resistance of Steel — ASTM	F1554, Grade 55			5,815	10,645	16,950	25,090	34,630	45,430	72,685
Tension Resistance of Steel — ASTM	A193, Grade B7 and ASTM F1554, Grade 105	1		9,685	17,735	28,250	41,810	57,710	75,710	121,135
Tension Resistance of Steel — ASTM A	149	N _{sa}	lb.	9,300	17,030	27,120	40,140	55,405	72,685	101,755
Tension Resistance of Steel — ASTM	593 CW (Types 304 and 316 Stainless Steel)			7,750	17,190	22,600	28,430	39,245	51,485	82,370
Tension Resistance of Steel — ASTM (Types 304 and 316 Stainless Steel)	A193, Grade B8/B8M, Class 2B			7,365	13,480	21,470	31,780	43,860	57,540	92,065
Strength Reduction Factor for Tension	— Steel Failure	φ	_				0.756			
	Concrete Breakout Strength in Te	ension (2,5	00 psi	$\leq f'_{C} \leq 8,0$	000 psi)			-		
Effectiveness Factor for Cracked Conc	rete	K _{C,C}	_				17			
Effectiveness Factor for Uncracked Co	ncrete	k _{c,uncr}		24						
Strength Reduction Factor — Concret	φ	—				0.656				
	Bond Strength in Tension	(2,500 psi	≤ f' _C ≤	8,000 psi)7					
Minimum Embedment		h _{ef,min}	in.	23⁄8	2¾	31⁄8	3½	31⁄2	4	5
Maximum Embedment		h _{ef,max}	in.	7½	10	12½	15	17½	20	25
Temperature Range A ^{2,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,600	2,415	2,260	2,140	2,055	2,000	1,990
Temperature hange A	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,040	1,040	1,110	1,220	1,210	1,205	1,145
Temperature Range B ^{3,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,265	2,100	1,970	1,865	1,785	1,740	1,730
Temperature hange b	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	905	905	965	1,060	1,055	1,050	995
Temperature Range C ^{4,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,630	1,515	1,420	1,345	1,290	1,255	1,250
Temperature hange o	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	650	655	695	765	760	755	720
Anchor Category	Dry Concrete	—	—				1			
Strength Reduction Factor	Dry Concrete	ϕ_{dry}	—	0.656						
Anchor Category	Water-Saturated Concrete			2			-			
Strength Reduction Factor	Water-Saturated Concrete	$\phi_{\scriptscriptstyle WS}$	_	- 0.556						
Anchor Category	Water-Filled Hole		_				3			
Strength Reduction Factor	Water-Filled Hole	$\phi_{\scriptscriptstyle Wf}$	_	— 0.45 ⁶						
Reduction Factor for Seismic Tension		$\alpha_{N,seis}$ ¹⁰	_				0.95			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

7. Bond strength values shown are for normal-weight concrete having a compressive strength of f^r_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_{C}/2,500)^{0.10}$.

For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, 8. as applicable, where applicable.

9. Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

44

SIMPSON Strong-Tie

AT-3G[™] Design Information — Concrete

AT-3G Tension Strength Design Data for Rebar^{1,8}

		Currents and	Unite				Rebar Size	;		
	Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#9
	S	Steel Streng	gth in Te	nsion						
Minimum Tensile Stress Are	a	A _{se}	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00
Tension Resistance of Steel	— ASTM A615 Grade 60			9,900	18,000	27,900	39,600	54,000	71,100	90,00
Tension Resistance of Steel	— ASTM A706 Grade 60	N _{sa}	lb.	8,800	16,000	24,800	35,200	48,000	63,200	80,00
Tension Resistance of Steel	— ASTM A615 Grade 40			6,600	12,000	18,600	26,400	Siz	es not availa	able
Strength Reduction Factor for ASTM A615 Grades 40 and	or Tension — Steel Failure — 60	φ	_		1	1	0.656	1		
Strength Reduction Factor for	or Tension — Steel Failure — ASTM A706	φ	—				0.75 ⁶			
	Concrete Breakout St	rength in Te	ension (2	2,500 psi ≤	≤ f' _c ≤ 8,00	0 psi)				
Effectiveness Factor for Crac	cked Concrete	K _{c,cr}	_				17			
Effectiveness Factor for Unc	racked Concrete	k _{c,uncr}	_				24			
Strength Reduction Factor -	– Concrete Breakout Failure in Tension	φ	_	0.656						
	Bond Strength	in Tension (2,500 p	si ≤ f' _c ≤ 8	,000 psi) ⁷					
Minimum Embedment		h _{ef,min}	in.	2%	2¾	31⁄8	31⁄2	31⁄2	4	41⁄2
Maximum Embedment		h _{ef,max}	in.	71⁄2	10	12½	15	17½	20	221⁄2
Temperature Range A ^{2,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,200	2,100	2,030	1,970	1,920	1,880	1,845
Temperature Range A-**	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,090	1,055	1,130	1,170	1,175	1,155	1,140
Temperature Range B ^{3,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,915	1,830	1,765	1,715	1,670	1,635	1,615
	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	945	915	980	1,015	1,020	1,005	995
Temperature Range C ^{4,5}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,380	1,315	1,270	1,235	1205	1,180	1,155
Temperature nange C /	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	680	660	705	735	735	725	715
Anchor Category	Dry Concrete	—	—				1			
Strength Reduction Factor	Dry Concrete	ϕ_{dry}	_				0.656			
Anchor Category	Water-Saturated Concrete		_	2						
Strength Reduction Factor	Water-Saturated Concrete	$\phi_{_{WS}}$	_	— 0.55 ⁶						
Anchor Category	Water-Filled Hole	—	—				3			
Strength Reduction Factor	Water-Filled Hole	$\phi_{\scriptscriptstyle W\!f}$	_				0.45 ⁶			
Reduction Factor for Seismi	c Tension	$\alpha_{N,seis}$ ¹⁰	_	0.95	0.95	1.00	1.00	1.00	1.00	1.00

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 176°F, Maximum long-term temperature = 122°F.

3. Temperature Range B: Maximum short-term temperature = 248°F, Maximum long-term temperature = 161°F.

4. Temperature Range C: Maximum short-term temperature = 320°F, Maximum long-term temperature = 212°F.

5. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

6. The tabulated value of φ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.10}$.

8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

9. Characteristic bond strength values are for sustained loads, including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond strengths may be increased by 23% for Temperature Range C.

10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

AT-3G[™] Design Information — Concrete

AT-3G Shear Strength Design Data for Threaded Rod¹

46

ŝ
S
0
Ē
$\overline{\mathbf{O}}$
Ĕ
Φ
~
S
(D)
2
O

Characteristic	Symbol	Units			Nomina	l Rod Diam	eter (in.)		
Characteristic			3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
	Steel S	strength in S	hear						
Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Shear Resistance of Steel — ASTM F1554, Grade 36			2,695	4,940	7,860	11,640	16,070	21,080	33,725
Shear Resistance of Steel — ASTM F1554, Grade 55			3,490	6,385	10,170	15,055	20,780	27,260	43,610
Shear Resistance of Steel — ASTM A193, Grade B7 and ASTM F1554, Grade 105			5,810	10,640	16,950	25,085	34,625	45,425	72,680
Shear Resistance of Steel — ASTM A449	V _{sa}	lb.	5,580	10,220	16,270	24,085	33,240	43,610	61,055
Shear Resistance of Steel — ASTM F593 CW (Types 304 and 316 Stainless Steel)			4,650	8,515	13,560	17,060	23,545	30,890	49,425
Shear Resistance of Steel — ASTM A193, Grade B8/B8M, Class 2B (Types 304 and 316 Stainless Steel)			4,420	8,090	12,880	19,070	26,320	34,525	55,240
Reduction Factor for Seismic Shear	$lpha_{V,seis}{}^{3}$	—				0.65		~	
Strength Reduction Factor for Shear — Steel Failure	φ	—				0.65 ²			
C	oncrete Brea	akout Streng	gth in Shea	r					
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	le	in.		N	linimum of <i>h</i>	n _{ef} and 8x an	chor diamete	er	
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.70 ²						
	Concrete Pryout Strength in Shear								
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Reduction Factor for Shear — Breakout Failure	φ					0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

Act of 0 10 11 17.5.3 of Act of 0 10 11 12.4.3, as applicable, are net. If the load combinations of Act of 0 10 11 Appendix 0 are used, refer ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,seis} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/at3g.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SIMPSO

Strong-

IBC

SIMPSON Strong-Tie

AT-3G Shear Strength Design Data for Rebar¹

AT-3G[™] Design Information — Concrete

AT-SCI Shear Strength Design Data for hebar							<u> 1999</u>		
Characteristic	Symbol	Units			Nominal	Rod Diam	eter (in.)		
	Symbol		#3	#4	#5	#6	#7	#8	#9
Steel Strength in Shear									
Minimum Shear Stress Area	Ase	in.2	0.11	0.20	0.31	0.44	0.60	0.79	1.00
Shear Resistance of Steel — ASTM A615 Grade 60			5,940	10,800	16,740	23,760	32,400	42,660	54,000
Shear Resistance of Steel — ASTM A706 Grade 60	V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	48,000
Shear Resistance of Steel — ASTM A615 Grade 40			3,960	7,200	11,160	15,840	Size	es not availa	able
Reduction Factor for Seismic Shear	$\alpha_{V,seis}{}^{3}$	-	0.65						
Strength Reduction Factor for Shear — Steel Failure — ASTM A615 Grades 40 and 60	φ		0.602						
Strength Reduction Factor for Shear — Steel Failure — ASTM A706	φ	_				0.65 ²			
Concr	ete Breako	ut Streng	jth in Shea	r					
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	le	in.		Mi	nimum of <i>h</i>	_{ef} and 8x ar	nchor diame	ter	
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.70 ²						
Conc	Concrete Pryout Strength in Shear								
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by a_{V,seis} for the corresponding anchor steel type.

AI-3G Develop	oment Length f	or Rebar Dow	els								
Rebar	Drill Bit	Clear Cover	Development Length (in.)								
Size	Diameter (in.)	(in.)	f' _c = 2,500 psi Concrete	f ^ı _c = 3,000 psi Concrete	f' _c = 4,000 psi Concrete	f' _c = 6,000 psi Concrete	f' _c = 8,000 psi Concrete				
#3	1/2	13⁄16	12	12	12	12	12				
#4	5⁄8	13⁄16	14.4	14	12	12	12				
#5	3⁄4	13⁄16	18	17	14.2	12	12				
#6	7⁄8	13⁄16	21.6	20	17.1	14	13				
#7	1	1%16	31.5	29	25	21	18				
#8	11/8	1%16	36	33	28.5	24	21				
#9	13⁄8	1%16	40.5	38	32	27	23				

AT-3G Development Length for Rebar Dowels

1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in

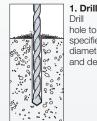
Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

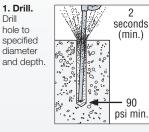
Rebar is assumed to be ASTM A615 Grade 60 or A706 (f_y = 60,000 psi). For rebar with a higher yield strength, multiply tabulated values by f_y/60,000 psi.
 Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33. Tabulated values assume bottom cover less that 12" cast below rebars (Ψ₁ = 1.0).

4. Uncoated rebar must be used.

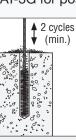
5. The value of K_{tr} is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 318-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

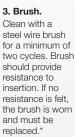
Rebar Development Length Calculator

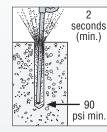

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-19 / ACI 318-14.


Strong-Tie

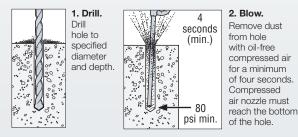
- NOTE: Always check expiration date on product label. Do not use expired product. A
 - For best results, adhesive should be conditioned to a temperature between 70°F (21°C) and 80°F (37°C) at the time of installation.
 - To warm cold adhesive, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.


WARNING: When drilling and cleaning hole, use eye and lung protection. When installing adhesive, use eye and skin protection.


1A Hole Preparation — Horizontal, Vertical and Overhead Applications (SET-3G[™] and AT-3G[™] for anchor installation) and (AT-3G for post-installed rebar connections)

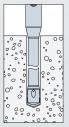


2. Blow. Remove dust from hole with oil-free compressed air for a minimum of two seconds. Compressed air nozzle must reach the bottom of the hole.


3. Brush.

4. Blow. Remove dust from hole with oilfree compressed air for a minimum of two seconds. Compressed air nozzle must reach the bottom of the hole.

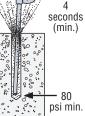
*Note: Visit strongtie.com for proper brush part number.


Hole Preparation — Horizontal, Vertical and Overhead Applications (ET-3G[™]) and (SET-3G for post-installed rebar connections only)

*Note: Visit strongtie.com for proper brush part number.

1B Hole Preparation Vacuum Dust **Extraction System with the** Simpson Strong-Tie DXS Hollow Carbide Drill Bit* - Horizontal, Vertical and Overhead Applications

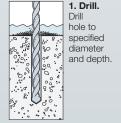
*Note: Visit strongtie.com for tested and accepted hollow carbide drill bit and vacuum

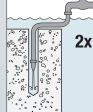

1. Drill. Drill hole to specified diameter and depth using the Simpson Strong-Tie DXS hollow carbide drill bit and vacuum dust extraction system.*

4 cycles

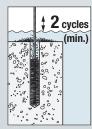
(min.)

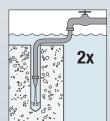
. °




Simpson Strong-Tie DXS drill bit used with the vacuum dust extraction system.*

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

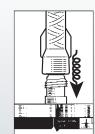

10 Hole Preparation — Submerged Applications (SET-3G only)


dust extraction systems.

2. Flush. Remove slurry from hole by flushing hole twice with water until water runs clear

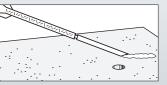
3. Brush. Clean with a steel wire brush for a minimum of two cycles. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.'

4. Flush. Remove slurry from hole by flushing hole twice with water until water runs clear


Refer to strongtie.com for proper mixing nozzle and dispensing tool part number.

*Note: Visit strongtie.com for proper brush part number.

Strong-Tie


2 Cartridge Preparation

1. Check. Check expiration date on product label. Do not use expired product.

3. Attach. Attach proper Simpson Strong-Tie nozzle and extension to cartridge. Do not modify nozzle.

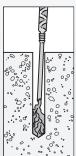
4. Insert. Insert cartridge into dispensing tool.

5. Dispense.

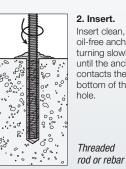
Dispense adhesive to the side until properly mixed (uniform color).

FOR SOLID BASE MATERIALS

3A Filling the Hole — Vertical Anchorage


Prepare the hole per "Hole Preparation" instructions on product label.

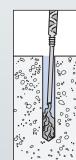
2. Open.


Open cartridge per package

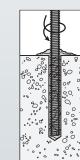
instructions.

Dry and Damp Holes:

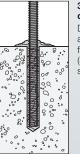
1. Fill. Fill hole ½ to ⅔ full, starting from bottom of hole to prevent air pockets. Withdraw nozzle as hole fills up.



2. Insert. Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the Threaded


disturb. Do not disturb anchor until fully cured.(See cure schedule for specific adhesive.)

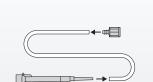
Water-Filled Holes:


C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

1. Fill. Fill hole completely full, starting from bottom of hole to prevent water pockets. Withdraw nozzle as hole fills up.

2. Insert. Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the hole.

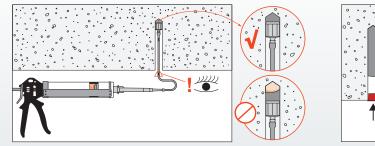
> Threaded rod or rebar



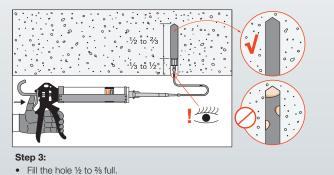
3. Do not disturb. Do not disturb anchor until fully cured. (See cure schedule.)

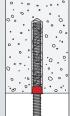
SIMPSON Strong-Tie

3 Filling the Hole - Horizontal and Overhead Anchorage


Prepare the hole per "Hole Preparation" instructions on product label.

Step 1:


- Attach the piston plug to one end of the flexible tubing (PPFT25).
- Cut tubing to the length needed for the application, mark tubing as noted below and attach other end of tubing to the mixing nozzle.
- If using a pneumatic dispensing tool, regulate air pressure to 80–100 psi.



Step 2:

• Insert the piston plug to the back of the drilled hole and dispense adhesive.

 Note: As adhesive is dispensed into the drilled hole, the piston plug will slowly displace out of the hole due to back pressure, preventing air gaps.

٥,

'0

0

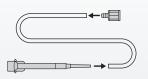
Step 5:

Step 4:

cap.

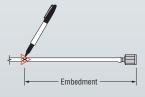
 Place either threaded rod or rebar through the adhesive retaining cap and into adhesivefilled hole.

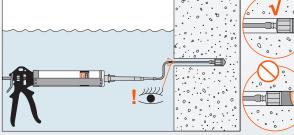
Install the appropriate


Simpson Strong-Tie

adhesive retaining

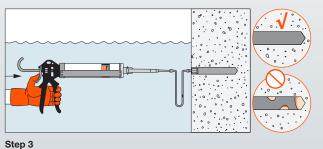
- Turn rod/rebar slowly until the insert bottoms out.
- Do not disturb until fully cured.

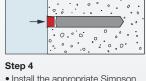

3C Filling the Hole — Submerged Anchorage (SET-3G[™] only)


Prepare the hole per "Hole Preparation" instructions on product label.

Step 1

- Attach the piston plug to one end of the flexible tubing (PPFT25).
- Cut tubing to the length needed for the application, mark tubing as noted below and attach other end of tubing to the mixing nozzle.
- If using a pneumatic dispensing tool, regulate air pressure to 80–100 psi.




Step 2

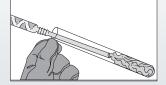
• Fill the hole completely full.

Insert the piston plug to the back of the drilled hole and dispense adhesive.

Note: As adhesive is dispensed into the drilled hole, the piston plug will slowly displace out of the hole due to back pressure, preventing air gaps.

Install the appropriate Simpson Strong-Tie adhesive retaining cap.

e,	, 0	。 *	۰,	•	0		0
 •	; ;	· .	· ·	•	• •	°.	;
Anti			JUUNTH	0 U	<u> </u>	•	
°	°.	•	.°:	°°	°.		。 。


Step 5

- Place either threaded rod or rebar through the adhesive retaining cap and into adhesive filled hole.
- Turn rod/rebar (marked with the required embedment depth) slowly until the insert bottoms out.
- Do not disturb load or torque anchor until fully cured.

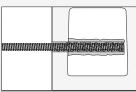
FOR HOLLOW BASE MATERIALS

3D Filling the Hole - For Hollow Base Material Installations.

Prepare the hole per instructions on "Hole Preparation."

1. Fill.

Fill screen completely. Fill from the bottom of the screen and withdraw the nozzle as the screen fills to prevent air pockets. (Close integral cap after filling.)



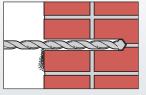
2. Insert. Insert adhesive-filled screen into hole.

|--|--|

3. Insert.

Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the screen.

SIMPS

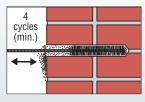

Strong-Tie

4. Do not disturb. Do not disturb anchor until fully

cured. (See cure schedule for specific adhesive.)

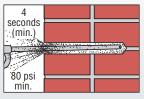
FOR UNREINFORCED BRICK MASONRY

1 Hole Preparation — For Configurations A (Horizontal) and B (22½° Downward) Installations with a Carbide-Tipped Drill Bit.


1. Drill.

Drill 1"-diameter hole to specified depth with a carbide-tipped drill bit, using rotation only mode. For Configuration B, drill 8" deep. For Configuration B, drill to within 1" of the opposite side of wall (minimum 13" deep).

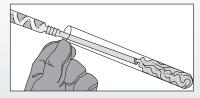
4 seconds	
(min.)	
80 psi min.	
min.	

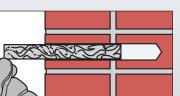

2. Blow.

Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle MUST reach the bottom of the hole.

^{3.} Brush.

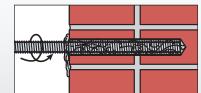
Clean with a nylon brush for a minimum of four cycles. Brush MUST reach the bottom of the hole. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.

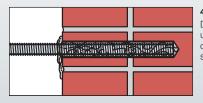

4. Blow.


Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle MUST reach the bottom of the hole.

2 Cartridge Preparation

Reference p. 49 for cartridge preparation.


3 Filling the Hole — For Configurations A (Horizontal) and B (22½-Degree Downward) Installations.



1. Fill. Fill screen completely. Fill from the bottom of the screen and withdraw the nozzle as the screen fills to prevent air pockets.

2. Insert. Insert adhesive filled screen into hole.

3. Insert.

Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the screen.

4. Do not disturb. Do not disturb anchor until fully cured. (See cure schedule for specific adhesive.)

Note: Steel wire mesh screens may be used for Configurations A and B.

Hole-Cleaning Brushes

Brushes are used for cleaning drilled holes prior to adhesive installation.

Note: The standard hole-cleaning method (blow-brush-blow) can be avoided by using the vacuum dust extraction system (DXS Hollow Carbide Drill Bit) with SET-3G[™] and ET-3G[™].

Wire Brush - Standard

(For use with SET-3G and AT-3G[™])

-		,			
Model No.	Hole Diameter (in.)	Anchor Diameter (in.)	Rebar Size	Usable Length (in.)	Carton Quantity
ETB43S	7/16	3⁄8	—	5	25
ETB50S	1/2	—	#3	5	25
ETB56S	9⁄16	1/2	—	5	25
ETB62S	5⁄8	—	#4	5	25
ETB68S	11/16	5⁄8	—	5	25
ETB75S	3⁄4	—	#5	5	25
ETB87S	7⁄8	3⁄4	#6	5	25
ETB100S	1	7⁄8	#7	5	25
ETB112S	1 1⁄8	1	#8	5	25
ETB137S	1 3⁄8	1 1⁄4	#10	5	25
ETBS-TH		T-handle		81⁄2	25
ETBS-EXT		Extension		11½	25

1. T-handle is required for use with all sizes of standard wire brush.

2. To obtain total usable length, add the usable length for each part used.

Nylon Brush - Standard

(For use with ET-3G)

Model No.	Hole Diameter (in.)	Anchor Diameter (in.)	Rebar Size	Usable Length (in.)	Carton Quantity
ETB4	3⁄8—7⁄16	1⁄4—5⁄16	_	7	24
ETB6	1/2-3/4	3/8—5/8	#3 – #5	15	24
ETB8	13/16-7/8	3⁄4	#6	15	24
ETB8L	13/16-7/8	3⁄4	#6	23	24
ETB10	1-11/8	7∕8—1	#7 – #8	28	24
ETB12	1 3⁄16—1 3⁄8	1 1⁄4	#10	33	24

1. All standard nylon brushes are one-piece which includes a twisted wire handle.

#7 – #8

#10

#11

8

8

7

351/4

25

25

25

25

Nylon Brush – Rebar

ETB10R

ETB12R

ETB14R

ETBR-EXT

(For use with ET-3G and SET-3G) (Note: Brushes are only applicable for SET-3G when used ant installed reb

for post-installed repar connections.)									
Model No.	Hole Diameter (in.)	Rebar Size	Usable Length (in.)	Carton Quantity					
ETB6R	1/2-3/4	#3 – #5	6	25					
ETB8R	7⁄8	#6	6	25					

1-11/8

1 3⁄8

1 3⁄4

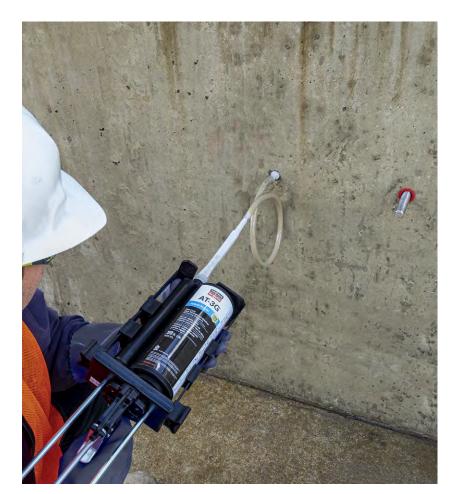
for lap splices and development length.

1. ETBR-EXT is required for use with all sizes of rebar nylon brushes.

T-handle and extension

2. To obtain total usable length, add the usable length for each part used. 3. Brushes are used when rebar is installed to replace cast-in-place bar

Piston Plug Delivery System


The Simpson Strong-Tie Piston Plug Delivery System for adhesives offers you an easy-to-use, reliable and less time-consuming means to dispense adhesive into drilled holes for threaded rod and rebar dowel installations in overhead, upwardly inclined and horizontal orientations. The matched tolerance design between the piston plug and drilled hole virtually eliminates the formation of voids and air pockets during adhesive dispensing.

The Piston Plug Delivery System consists of three components: piston plug, flexible extension tubing, and adhesive retaining cap.

Features

- Designed for dispensing adhesive into drilled holes in overhead, upwardly inclined and horizontal orientations, as well as deep embedments
- Suitable for use with all Simpson Strong-Tie anchoring adhesives
- Adhesive piston plugs are sized to fit each drilled hole diameter
- Model number is embossed on each adhesive piston plug for identification
- A barbed end provides a reliable connection to the flexible extension tubing
- Flexible extension tubing is available in 25-foot-long rolls to be cut to required lengths

Use the piston plug delivery system with all Simpson Strong-Tie adhesive products:

SET-3G[™]

ET-3G[™]

AT-3G[™]

SIMPSON

Strong-Tie

Piston Plug Delivery System (cont.)

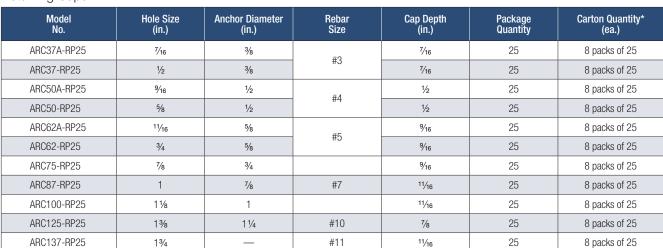
Piston Plugs

Adhesive Anchors

Model No.	Hole Size (in.)	Package Quantity	Carton Quantity*
PP56-RP10	9⁄16	10	10 packs of 10
PP62-RP10	5⁄8	10	10 packs of 10
PP68-RP10	11/16	10	10 packs of 10
PP75-RP10	3⁄4	10	10 packs of 10
PP87-RP10	7⁄8	10	10 packs of 10
PP100-RP10	1	10	10 packs of 10
PP112-RP10	1 1/8	10	10 packs of 10
PP137-RP10	1%	10	10 packs of 10
PP175-RP10	1¾	10	10 packs of 10

*Product is sold by package.

Tubing


Model No.	Description	Package Quantity
PPFT25	Piston Plug Flexible Extension Tubing — 25 ft. roll	1

1. Tubing dimensions: inner diameter 3/8", outer diameter 1/2".

Adhesive Retaining Caps

Adhesive retaining caps make overhead and horizontal installation easier by preventing the adhesive from running out of the hole. They also center the rod in the hole, making them ideal for applications where precise anchor placement is required. It may be necessary to provide support for the anchor during cure time. Adhesive retaining caps are not designed to support the weight of the anchor in overhead installations. Adhesive retaining caps should be used for horizontal and overhead adhesive installations. ARCs may be used in conjunction with the Piston Plug Delivery system.

Retaining Caps

Piston Plugs

Piston Plug Flexible Extension Tubing

*Product is sold by package.

Opti-Mesh Adhesive-Anchoring Screen Tubes

Screen tubes are vital to the performance of adhesive anchors in base materials that are hollow or contain voids, such as hollow block and brick. The Simpson Strong-Tie Opti-Mesh screen tube with woven mesh insert provides the advantages of a plastic screen tube while providing superior performance to steel screen tubes and competitive plastic screen tubes.

Material: Plastic

Caution: Screen tubes are designed for a specific adhesive type.

Integral Cap: Serves to center and secure the rod in the screen tube, while displaying important information such as rod diameter, drill bit diameter and the Simpson Strong-Tie "≠" symbol for easy inspection after installation. The cap also prevents adhesive from running out the front of the screen tube. Flanges: Prevents the screen tube from slipping into over-drilled holes. Allows screen tube to function in holes that are drilled too deep. Open-Mesh Collar: This section of larger mesh allows extra adhesive to flow out the screen tube behind the face shell of hollow block applications. The extra "collar" of adhesive increases bearing area and results in higher load capacities in hollow concrete block. Color-Coded, Formula-Specific Mesh: The openings between the woven mesh screen tube strands are sized to allow only the right amount of adhesive to flow through the screen tube to bond with the base material while the balance remains in the screen to bond the rod. **EWSP Epoxy Adhesive** Screen Tube (mesh is black) For use with ET-3G[™] US Patent 6,837,018 The integral cap centers the rod and displays drill bit and rod diameter. **3GWSP Adhesive** Screen Tube (gray frame with gray mesh)

For use with SET-3G[™]

Opti-Mesh Adhesive-Anchoring Screen Tubes

Screen Tubes - Plastic

Adhesive Anchors

For Rod Diameter (in.)	Hole Size (in.)	Length (in.)	EWSP Model No. for ET-3G™	3GWSP Model No. for SET-3G™	Carton Quantity
		31⁄2	EWS373P	3GWS373P	150
3⁄8	3⁄8 9⁄16	6	EWS376P	3GWS376P	150
		10	EWS3710P	3GWS3710P	100
		31⁄2	EWS503P	3GWS503P	100
1/2	3⁄4	6	EWS506P	3GWS506P	100
		10	EWS5010P	3GWS5010P	50
		31⁄2	EWS623P	3GWS623P	50
5%8	7⁄8	6	EWS626P	3GWS626P	50
		10	EWS6210P	3GWS6210P	25
3⁄4	1	8	EWS758P	3GWS758P	25
74	1	13	EWS7513P	3GWS7513P	25

Specially sized holes in Opti-Mesh screens allow for adhesive to seep out at the appropriate location at the hollow portion of the CMU to create a better bond to the face shell.

Steel Adhesive-Anchoring Screen Tubes

Screen tubes are used in unreinforced brick masonry applications to contain adhesive around the anchor and prevent it from running into voids. Simpson Strong-Tie screen tubes are specifically designed to work with ET-3G[™] adhesive in order to precisely control the amount of adhesive that passes through the mesh. This results in thorough coating and bonding of the rod to the screen tube and base material. Order screen tubes based upon rod diameter and adhesive type. The actual outside diameter of the screen tube is larger than the rod diameter.

Material: 60 mesh carbon steel

A

Caution: Screen tubes are designed specifically for unreinforced brick masonry applications.

Screen Tube Screen tubes are for use in unreinforced brick masonry applications.

Screen Tubes

For	For		ETS Carbon Steel Screen Tubes for ET-3G			
Rod Diameter (in.)	Hole Size (in.)	Actual Screen Size O.D./Length (in.)	Model No.	Carton Quantity		
		³¹ / ₃₂ x 8	ETS758	25		
3/		³¹ / ₃₂ x 13	ETS7513	25		
3⁄4		³¹ / ₃₂ x 17	ETS7517	25		
		³¹ ⁄ ₃₂ x 21	ETS7521	25		

SIMPSO

Strong-Tie

SIMPSON Strong-Tie

Adhesive Accessories

Retrofit Bolts

RFBs are pre-cut threaded rod, supplied with nut and washer. Each end of the threaded rod is stamped with the rod length in inches and our No-Equal® symbol for easy identification after installation.

Material: ASTM F1554 Grade 36

Coating: Zinc-plated, hot-dip galvanized

Retrofit Bolts

Size. (in.)	Zinc-Plated Model No.	Hot-Dip Galvanized Model No.	Carton Quantity	Hot-Dip Galvanized Retail Model No.*	Package Quantity	Carton Quantity
3∕8 x 4	RFB#3x4	RFB#3x4HDG	50	_	—	—
3% X 6	RFB#3x6		50			_
3∕8 X 8	RFB#3x8		50	_		_
1⁄2 x 4	RFB#4x4	_	50	_	_	_
½ x 5	RFB#4x5	RFB#4x5HDG	50	RFB#4x5HDGP2	2	5 packs of 2
1⁄2 X 6	RFB#4x6	RFB#4x6HDG	50			_
½ x 7	RFB#4x7	RFB#4x7HDG	50		_	_
1⁄2 X 8	RFB#4x8	RFB#4x8HDG	50	RFB#4x8HDGP2	2	5 packs of 2
½ x 10	RFB#4x10	RFB#4x10HDG	25		_	_
5% x 5	RFB#5x5	RFB#5x5HDG	50	RFB#5x5HDGP2	2	5 packs of 2
5% x 8	RFB#5x8	RFB#5x8HDG	50	RFB#5x8HDGP2	2	5 packs of 2
5% x 10	RFB#5x10	RFB#5x10HDG	50	_		_
5% x 12	_	RFB#5x12HDG	25	RFB#5x12HDGP2	2	5 packs of 2
5% x 16	RFB#5x16	RFB#5x16HDG	25	RFB#5x16HDGP2	2	5 packs of 2
3⁄4 X 6	RFB#6x6	—	50	—	—	_
3⁄4 x 8	RFB#6x8	RFB#6x8HDG	50	—	—	_
3⁄4 x 101∕2	RFB#6x10.5	RFB#6x10.5HDG	25	—	—	_

*Retail products ("P2") packaged in a polybag.

All Thread Rod

ATRs are pre-cut threaded rod for use with Simpson Strong-Tie adhesives.

Material: ASTM F1554 Grade 36, A36 or A307 min fy = 36 ksi, min Fu = 58 ksi and not to exceed 80 ksi

Coating: Uncoated, zinc-plated; hot-dip galvanized

> ATR All Thread Rod

Description Dia. x Length (in.)	Uncoated Model No.	Zinc-Plated Model No.	Hot-Dip Galvanized Model No.	Carton Quantity
3∕8 x 12	ATR3/8x12	—	—	1
3∕8 x 24	ATR3/8x24	—	—	1
3∕% x 36	ATR3/8x36	—	ATR3/8x36HDG	1
1⁄2 x 12	ATR1/2x12	ATR1/2x12ZP	ATR1/2x12HDG	1
½ x 18	ATR1/2x18	—	ATR1/2x18HDG	1
1⁄2 x 24	ATR1/2x24	ATR1/2x24ZP	ATR1/2x24HDG	1
1⁄2 x 36	ATR1/2x36	ATR1/2x36ZP	ATR1/2x36HDG	1
5∕8 x 12	ATR5/8x12	ATR5/8x12ZP	ATR5/8x12HDG	1
5% x 18	ATR5/8x18	ATR5/8x18ZP	ATR5/8x18HDG	1
5∕8 x 24	ATR5/8x24	ATR5/8x24ZP	ATR5/8x24HDG	1
5% x 30	ATR5/8x30	_	—	1
5% x 36	ATR5/8x36	ATR5/8x36ZP	ATR5/8x36HDG	1
3⁄4 x 12	ATR3/4x12	ATR3/4x12ZP	ATR3/4x12HDG	1
3⁄4 x 18	ATR3/4x18	ATR3/4x18ZP	ATR3/4x18HDG	1
3⁄4 x 24	ATR3/4x24	ATR3/4x24ZP	ATR3/4x24HDG	1
3⁄4 x 36	ATR3/4x36	ATR3/4x36ZP	ATR3/4x36HDG	1
7∕8 x 12	ATR7/8x12	ATR7/8x12ZP	ATR7/8x12HDG	1
7∕8 x 18	ATR7/8x18	ATR7/8x18ZP	ATR7/8x18HDG	1
7∕8 x 20	ATR7/8x20	—	_	1
⁷ ∕8 x 24	ATR7/8x24	ATR7/8x24ZP	ATR7/8x24HDG	1
7∕8 x 26	ATR7/8x26			1
7∕8 x 36	ATR7/8x36	ATR7/8x36ZP	ATR7/8x36HDG	1
1 x 12	ATR1x12	ATR1x12ZP	ATR1x12HDG	1
1 x 18	ATR1x18	ATR1x18ZP ATR1x18HDG		1
1 x 24	ATR1x24	ATR1x24ZP	ATR1x24HDG	1
1 x 36	ATR1x36	ATR1x36ZP	ATR1x36HDG	1

Mechanical Anchors

Titen HD[®] Heavy-Duty Screw Anchor

A high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. The Titen HD offers low installation torque and outstanding performance. The Titen HD screw anchor is designed for a wide variety of applications such as sill plates, ledgers, post bases, seating, and other holdown applications. The screw anchor is easy to remove when used in temporary applications such as bracing and formwork, or when a fixture needs to be relocated.

Features

Mechanical Anchors

- Tested in accordance with ACI 355.2, AC193 and AC106
- · Qualified for static, wind and seismic loading conditions
- Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes
- Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility
- No special drill bit required designed to install using standard-sized ANSI tolerance drill bits
- Hex-washer head requires no separate washer, unless required by code, and provides a clean installed appearance
- Removable ideal for temporary anchoring (e.g. formwork, bracing) or applications where fixtures may need to be moved
- · Use in dry interior environments only

Codes: ICC-ES ESR-2713 (concrete): ICC-ES ESR-1056 (masonry); City of LA Supplement within ESR-2713 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (concrete and masonry); FM 3017082, 3035761 and 3043442; Multiple DOT listings

Material: Carbon steel

Coating: Zinc plated

Installation

Holes in steel fixtures to be mounted should match the diameter specified in the table below.

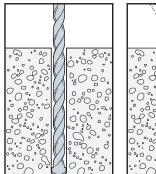
Use a Titen HD screw anchor one time only - installing the anchor multiple times may result in excessive thread wear and reduce load capacity.

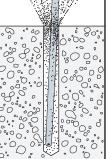
- A Do not use impact wrenches to install into hollow CMU.
- Caution: Oversized holes in base material will reduce or eliminate the A mechanical interlock of the threads with the base material and reduce the anchor's load capacity.
- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- 3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

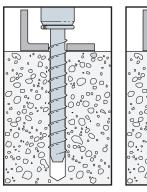
Additional Installation Information

Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1⁄4	3⁄8	3% to 7⁄16	1⁄8
3⁄8	9⁄16	½ to %16	1⁄4
1/2	3⁄4	5% to 11/16	1/2
5⁄8	¹⁵ ⁄16	3⁄4 t0 13⁄16	1/2
3⁄4	1 1⁄8	7⁄8 to ¹⁵ ⁄16	1/2

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.






Serrated teeth on the tip of the Titen HD screw anchor facilitate cutting and reduce installation torque.

Titen HD **Screw Anchor**

Installation Sequence

00 D 20 .0%. 0,0 Qo ò a D 0.00 0°0 200 0 .000°°°°

0 ~ ----

ć

Ö

0

D

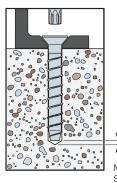
 \mathcal{L}

D

Titen HD® Heavy-Duty Screw Anchor

Countersunk Head Style

The countersunk head style is for applications that require a flush-mount profile. Countersinking also leaves a cleaner surface appearance for exposed through-set applications. The anchor head's 6-lobe drive eases installation and is less prone to stripping than traditional recessed anchor heads.


Features

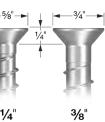
- Available in many standard lengths in 1/4" and 3/8" diameters
- Driver bit included in each box

Codes: ICC-ES ESR-2713 (concrete); ICC-ES ESR-1056 (masonry); City of LA Supplement within ESR-2713 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (concrete and masonry)

Material: Carbon steel

Coating: Zinc plated

Additional Installation Information


Titen HD Diameter (in.)	Bit Size	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1⁄4	T30	3% to 7⁄16	1⁄8
3⁄8	T50	1⁄2 t0 %16	1⁄4

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.

Minimum overdrill See table

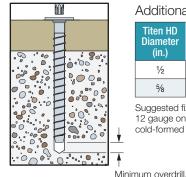
Titen HD Countersunk **Head Style**

Washer-Head Head Style

The washer-head design is commonly used where a minimal head profile is necessary. The model is offered in sizes suitable for use in sill plate applications, and the washer head's low installed profile means modular wall and floor systems can be installed on top with no need for notching the wall framing to accommodate the anchor. The anchor's 6-lobe drive eases driving and seating without stripping.

Features

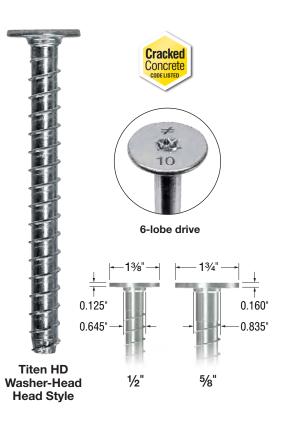
- Available in many standard lengths in ½" and %" diameters
- Driver bit included in each box


Codes: ICC-ES ESR-2713 (concrete);

City of LA Supplement within ESR-2713 (concrete) Florida FL15730 (concrete)

See table

Material: Carbon steel


Coating: Zinc plated

Additional Installation Information

Titen HD Diameter (in.)	Bit Size	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1⁄2	T50	3⁄4 t0 11⁄16	1/2
5⁄8	T60	¹⁵ ⁄16 t0 ¹³ ⁄16	1⁄2

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.

SIMPSO

Strong-Tie

Titen HD® Heavy-Duty Screw Anchor

Titen HD Anchor Product Data — Hex Washer Head — Zinc Plated¹

		or Froduct Data — Fiex Washer Flead — Zinc Flated				
Size	Model	Thread Length	Drill Bit Diameter	Wrench Size	Qua	ntity
(in.)	No.	(in.)	(in.)	(in.)	Box	Carton
1⁄4 x 1 7⁄8	THDB25178H	1 1⁄2	1⁄4	3⁄8	100	500
1⁄4 x 2³⁄4	THDB25234H	23⁄8	1⁄4	3⁄8	50	250
1⁄4 x 3	THDB25300H	2%	1⁄4	3⁄8	50	250
1⁄4 x 31⁄2	THDB25312H	31⁄8	1⁄4	3⁄8	50	250
1⁄4 x 4	THDB25400H	3%	1⁄4	3⁄8	50	250
3∕8 X 1 3⁄4	THD37134H ^{2,3}	1 1⁄4	3⁄8	9⁄16	50	250
3∕8 x 21⁄2	THD37212H ^{2,3}	2	3⁄8	9⁄16	50	200
3% x 3	THD37300H	21/2	3⁄8	9⁄16	50	200
3∕8 x 4	THD37400H	31⁄2	3⁄8	9⁄16	50	200
3∕% x 5	THD37500H	41⁄2	3⁄8	9⁄16	50	100
3% x 6	THD37600H	51⁄2	3⁄8	9⁄16	50	100
1⁄2 X 3	THD50300H ^{2,4}	21⁄2	1/2	3⁄4	25	100
1⁄2 x 4	THD50400H	31⁄2	1/2	3⁄4	20	80
½ x 5	THD50500H	41⁄2	1/2	3⁄4	20	80
1⁄2 X 6	THD50600H	5½	1/2	3⁄4	20	80
1⁄2 x 61⁄2	THD50612H	5½	1/2	3⁄4	20	40
1⁄2 X 8	THD50800H	5½	1/2	3⁄4	20	40
½ x 12	THD501200H	5½	1/2	3⁄4	5	20
½ x 13	THD501300H	5½	1/2	3⁄4	5	20
½ x 14	THD501400H	51⁄2	1/2	3⁄4	5	20
½ x 15	THD501500H	51⁄2	1/2	3⁄4	5	20
5∕8 x 4	THDB62400H ^{2,4}	31⁄2	5⁄8	15/16	10	40
5% x 5	THDB62500H	41⁄2	5⁄8	15/16	10	40
5% x 6	THDB62600H	51⁄2	5⁄8	15/16	10	40
5% x 6½	THDB62612H	51⁄2	5⁄8	15/16	10	40
5% x 8	THDB62800H	5½	5⁄8	15/16	10	20
5% x 10	THDB62100H	5½	5%8	15/16	10	20
3⁄4 x 4	THD75400H ^{2,5}	31/2	3⁄4	1 1/8	10	40
3⁄4 x 5	THD75500H	41/2	3⁄4	1 1/8	5	20
3⁄4 x 6	THDT75600H	41/2	3⁄4	1 1/8	5	20
3⁄4 x 7	THD75700H	5½	3⁄4	11/8	5	10
3⁄4 X 81⁄2	THD75812H	51⁄2	3⁄4	1 1/8	5	10
³ ⁄ ₄ x 10	THD75100H	51/2	3⁄4	1 1/8	5	10
,		- / -	/ 7		L Ű	

C.A.2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

1. Length of anchor is measured from underside of head to end of anchor.

2. These models do not meet minimum embedment depth requirements for strength design.

3. Installation torque shall not exceed 25 ft.-lb. using a manual torque wrench or maximum torque rating of 100 ft.-lb. when installed with impact wrench.

4. Installation torque shall not exceed 50 ft.-lb. using a manual torque wrench or maximum torque rating of 100 ft.-lb. when installed with impact wrench.

5. Installation torque shall not exceed 50 ft.-lb. using a manual torque wrench or maximum torque rating of 135 ft.-lb. when installed with impact wrench.

SIMPSON Strong-Tie

Titen HD[®] Heavy-Duty Screw Anchor

Size	Model		Drill Bit Diameter	Bit	Quantity	
(in.)	No.	Length (in.)	(in.)	Size	Box	Carton
1⁄4 x 1 7⁄8	THDB25178CS	1 1⁄2	1⁄4	T30	100	500
1⁄4 X 23⁄4	THDB25234CS	23⁄8	1⁄4	T30	50	250
1⁄4 X 31⁄2	THDB25312CS	31⁄8	1⁄4	T30	50	250
1⁄4 X 4 1⁄2	THDB25412CS	41⁄8	1⁄4	T30	50	250
3∕8 x 21⁄2	THD37212CS ⁺	2	3⁄8	T50	50	200
3% x 3	THD37300CS	21⁄2	3⁄8	T50	50	200
3⁄8 x 4	THD37400CS	31⁄2	3⁄8	T50	50	200
3∕8 x 5	THD37500CS	41⁄2	3⁄8	T50	50	100

Titen HD Anchor Product Data — Countersunk — Zinc Plated

[†] This model does not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft.-lb. using a torque wrench, driver drill or cordless ¼" impact driver with a maximum permitted torque rating of 100 ft.-lb.

1. Length of anchor is measured from top of head to bottom of anchor.

Titen HD Anchor Product Data - Washer Head - Zinc Plated

Size	Model	Thread	Drill Bit	Bit Size	Quantity	
(in.)	No.	Length (in.)	Diameter (in.)		Вох	Carton
1⁄2 x 6	THD50600WH	5½	1/2	T50	15	60
1⁄2 X 8	THD50800WH	5½	1/2	T50	15	30
5% x 6	THDB62600WH	5½	5⁄8	T60	10	40
5% x 8	THDB62800WH	5½	5⁄8	T60	10	20
5% x 10	THDB62100WH	5½	5⁄8	T60	10	20

1. Length of anchor is measured from underside of head to bottom of anchor.

Cracked

Concrete

Titen HD® Heavy-Duty Screw Anchor

Hex Head Mechanically Galvanized

The Titen HD heavy-duty screw anchor is a mechanically galvanized high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. Its proprietary heat treatment and ASTM B695 Class 65 mechanically galvanized coating make it ideal for both interior and exterior anchoring applications.

The Titen HD screw anchor is designed for a wide variety of applications such as sill plates, ledgers, post bases, seating, and other holdown applications. The screw anchor is easy to remove for use in temporary applications such as bracing and formwork, or when a fixture needs to be relocated.

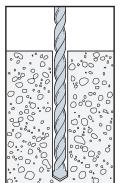
Features

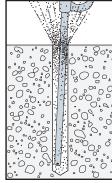
- Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes, hole size equals anchor size
- Specialized heat-treating process creates tip hardness for better cutting without compromising ductility
- Hex washer head requires no separate washer, unless required by code
- Fully and easily removable
- Code listed for exterior applications

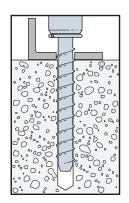
Codes: ICC-ES ESR-2713 (concrete);

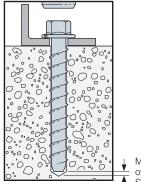
ICC-ES ESR-1056 (masonry); City of LA Supplement within ESR-2713 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (concrete and masonry); FM 3017082, 3035761 and 3043442; Multiple DOT listings

Material: Carbon steel


Coating: Mechanically galvanized


Additional Installation Information


Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
3⁄8	9⁄16	½ to %16	1⁄4
1/2	3⁄4	5% to 11/16	1/2
5⁄8	¹⁵ ⁄16	3⁄4 t0 13⁄16	1/2
3⁄4	1 1/8	7% to ¹⁵ /16	1/2


Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or cold-formed steel members.

Installation Sequence

Serrated teeth on the tip of the Titen HD screw anchor facilitates cutting and reduces installation torque.

Titen HD Screw Anchor Mechanically Galvanized

Minimum overdrill. See table.

Titen HD^{$^{\circ}$} Heavy-Duty Screw Anchor — Mechanically Galvanized

SIMPSON

Strong-Tie

Titen HD Anchor Product Data - Mechanically Galvanized

Size			Drill Bit	Wrench	Quantity			
(in.)	No.	(in.)	Diameter (in.)	Size (in.)	Box	Carton		
3∕8 x 3	THD37300HMG	21⁄2			50	200		
3∕8 x 4	THD37400HMG	31⁄2	- 3%	⁹ ⁄16	50	200		
3∕8 x 5	THD37500HMG	41⁄2		%16	50	100		
3∕8 X 6	THD37600HMG	5½	-		50	100		
1⁄2 x 4	THD50400HMG	31⁄2			20	80		
½ x 5	THD50500HMG	41⁄2			20	80		
½ x 6	THD50600HMG	5½	1/	3⁄4	20	80		
1⁄2 X 61⁄2	THD50612HMG	5½	- 1/2	9/4	20	40		
½ x 8	THD50800HMG	5½			20	40		
½ x 12	THD501200HMG	5½	-		5	20		
5∕8 x 5	THDB62500HMG	41⁄2			10	40		
5% x 6	THDB62600HMG	5½	-		10	40		
5∕8 X 61⁄2	THDB62612HMG	5½	5⁄8	15/16	10	40		
5% x 8	THDB62800HMG	5½	-		10	20		
5% x 10	THDB62100HMG	5½			10	20		
³∕4 x 5	THD75500HMG	41⁄2			5	20		
3∕4 X 6	THDT75600HMG	41⁄2	3/	11/	5	20		
3⁄4 x 81∕2	THD75812HMG	5½	- 3⁄4	1 1⁄8	5	10		
³⁄4 x 10	THD75100HMG	5½			5	10		

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Visit **strongtie.com/info** for corrosion information.

Titen HD® Heavy-Duty Screw Anchor

Titen HD Installation Information and Additional Data¹

Characteristic	Units	Nominal Anchor Diameter, d _a (in.)											
	Symbol	Units	1,	4	3,	8	1,	1/2	5	8		3⁄4	
			Installa	tion Info	rmation								
Drill Bit Diameter	d _{bit}	in.	1,	4	3,	8	1,	/2	5⁄8		3⁄4		
Baseplate Clearance Hole Diameter	d _c	in.	3,	8	1/	2	5	/8	3	4	7/8		
Maximum Installation Torque	T _{inst,max}	ftlbf	24	4 ²	50) ²	6	5 ²	10	0 ²		150 ²	
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	5 ³	15	0 ³	34	0 ³	34	.0 ³		385 ³	
Minimum Hole Depth	h _{hole}	in.	1 3⁄4	2%	2¾	31⁄2	3¾	41⁄2	41⁄2	6	41⁄2	6	6¾
Nominal Embedment Depth	h _{nom}	in.	1 5⁄8	21⁄2	21⁄2	3¼	31⁄4	4	4	5½	4	5½	6¼
Critical Edge Distance	C _{ac}	in.	3	6	211/16	3%	3%16	41⁄2	41⁄2	6%	6	63⁄8	75⁄16
Minimum Edge Distance	C _{min}	in.	11/2 13/4										
Minimum Spacing	S _{min}	in.	1	1/2		3					2¾ 3		3
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄2	4	5	5	6¼	6	81⁄2	6	8¾	10
			Ado	litional D	ata								
Anchor Category	Category	_						1					
Yield Strength	f _{ya}	psi	100	000					97,000				
Tensile Strength	f _{uta}	psi	125	000					110,000				
Minimum Tensile and Shear Stress Area	Ase	in²	0.042		0.0	99	0.1	83	0.2	.76		0.414	
Axial Stiffness in Service Load Range — Uncracked Concrete	β_{uncr}	lb./in.	202	000	672,000								
Axial Stiffness in Service Load Range — Cracked Concrete	β_{cr}	lb./in.	173	000					345,000				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17,

ACI 318-14 Chapter 17 and ACI 318-11 Appendix D.

2. T_{inst,max} is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.

3. Timpact.max is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

Strong-I

SIMPSON

Mechanical Anchors

Titen HD[®] Design Information — Concrete

Titen HD Tension Strength Design Data¹

SIMPSON Strong-Tie

IBC		LW

Characteristic		Units	Nominal Anchor Diameter, d _a (in.)										
	Symbol	Units	1	4	3,	/8	1	/2	5	/8		3⁄4	
Nominal Embedment Depth	h _{nom}	in.	1 5⁄8	21⁄2	21⁄2	31⁄4	3¼	4	4	5½	4	5½	6¼
Steel Strength in Tension — ACI 318-19 17.6.1, ACI 318-14 17.4.1 or ACI 318-11 Section D.5.1													
Tension Resistance of Steel	N _{sa}	lb.	5,1	95	10,	890	20,	130	30,	360		45,540	
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_						0.65					
Concrete Breakout Strength in Tension ⁶ — ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 Section D.5.2													
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Critical Edge Distance	C _{ac}	in.	3	6	211/16	35⁄8	3%16	41⁄2	41⁄2	6%	6	6%	75⁄16
Effectiveness Factor — Uncracked Concrete	k _{uncr}		30				24				27	2	24
Effectiveness Factor — Cracked Concrete	k _{cr}							17					
Modification Factor	$\Psi_{c,N}$	_						1.0					
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_						0.65					
Pullout Strength in Ten	sion — Al	CI 318-1	19 17.6.3	3, ACI 31	8-14 17	.4.3 or A	CI 318-1	1 Sectio	n D.5.3				
Pullout Resistance, Uncracked Concrete ($f'_c = 2,500$ psi)	N _{p,uncr}	lb.	3	3	2,700 ⁴	3	3	3	3	9,810 ⁴	3	3	3
Pullout Resistance, Cracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,cr}	lb.	3	1,905 ⁴	1,2354	2,7004	3	3	3,0404	5,5704	3	6,070 ⁴	7,195 ⁴
Strength Reduction Factor — Pullout Failure ²	ϕ_p	_						0.65					
Tension Strength for Seismic Applications — ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 Section D.3.3.3													
Nominal Pullout Strength for Seismic Loads ($f_c = 2,500$ psi)	N _{p,eq}	lb.	3	1,9054	1,2354	2,7004	3	3	3,0404	5,5704	3,8404	6,0704	7,1954
Strength Reduction Factor — Pullout Failure ²	ϕ_{eq}	_						0.65					

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

2. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

3. Pullout strength is not reported since concrete breakout controls.

4. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (r_{c,specified} / 2,500)^{0.5}.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

Titen HD[®] Design Information — Concrete

Titen HD Shear Strength Design Data¹

Characteristic	Cumbol	Unit	Nominal Anchor Diameter, d _a (in.)										
Characteristic	Symbol		1⁄4		3	3⁄8		1⁄2		5⁄8		3⁄4	
Nominal Embedment Depth	h _{nom}	in.	1 5⁄8	21⁄2	21⁄2	31⁄4	31⁄4	4	4	5½	4	5½	6¼
Steel Strength in Shear (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318-11 Section D.6.1)													
Shear Resistance of Steel	V _{sa}	lb.	2,0	20	4,4	460	7,4	55	10,	000	14,950	16,	840
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.60										
Concrete Breakout Strength in Shear (ACI 318-19 17.7.2 ACI 318-14 17.5.2 or ACI 318-11 Section D.6.2)													
Outside Diameter	da	in.	0.:	25	0.3	375	0.500		0.625		0.750		
Load Bearing Length of Anchor in Shear	le	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	—						0.70					
Concrete Pryout Streng	th in She	ar (ACI	318-19 1	7.7.3, A	CI 318-14	4 17.5.3 (or ACI 31	8-11 Sec	ction D.6.	3)			
Coefficient for Pryout Strength	k _{cp}	lb.			1.0					2	.0		
Strength Reduction Factor — Concrete Pryout Failure ²	ϕ_{cp}	—						0.70					
Steel Strength in Shear for Seisn	nic Applic	ations	(ACI 318-	19 17.10).3, ACI 3	318-14 1	7.2.3.3 oi	· ACI 318	8-11 Sect	ion D.3.3	3.3)		
Shear Resistance for Seismic Loads	V _{eq}	lb.	1,695 2,855 4,790 8,000				9,350						
Strength Reduction Factor — Steel Failure ²	ϕ_{eq}	_						0.60					

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.

2. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Steel Deck^{1,6,7}

			Nominal Anchor Diameter, d _a (in.)										
Characteristic	Symbol	Unite	Lower Flute							Upper Flute			
Gildidetensue	Symbol	symbol Units		Figure 2		Figure 1				Figure 2		ire 1	
			1	1⁄4		3⁄8		1⁄2		1⁄4		1⁄2	
Nominal Embedment Depth	h _{nom}	in.	1 5⁄8	21⁄2	1 1 1/8	21⁄2	2	31⁄2	1 5⁄8	21⁄2	1 1 1/8	2	
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29	
Pullout Resistance, concrete on steel deck (cracked) ^{2,3,4}	N _{p,deck,cr}	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700	
Pullout Resistance, concrete on steel deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430	
Steel Strength in Shear, concrete on steel deck5	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145	
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,565	2,846	1,305	1,575	2,676	4,591	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.

2. Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by $(f_{c,specified}^{*}/3,000)^{0.5}$.

3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}.

5. In accordance with ACI 318-19 Section 17.7.1.2(c), ACI 318-14 Section 17.5.1.2(c) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies $V_{sa,deck}$ and $V_{sa,deck,eq}$ shall be substituted for V_{sa} .

6. Minimum edge distance to edge of panel is 2hef.

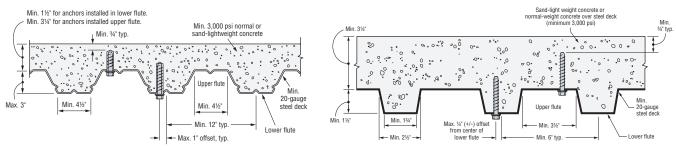
7. The minimum anchor spacing along the flute must be the greater of $3h_{eft}$ or 1.5 times the flute width.

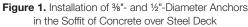
70

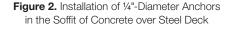
Titen HD[®] Design Information — Concrete

Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck^{1,2,3,4}

			Nominal Anchor Diameter, d _a (in.) Figure 3							
Design Information	Symbol	Units								
			1⁄4	3⁄8		1⁄2				
Nominal Embedment Depth	h _{nom}	in.	1 %	21⁄2	31⁄4	4				
Effective Embedment Depth	h _{ef}	in.	1.19	1.77	2.35	2.99				
Minimum Concrete Thickness ⁵	h _{min, deck}	in.	21⁄2	31⁄4	41⁄2	41⁄2				
Critical Edge Distance	Cac,deck,top	in.	3¾	71⁄4	9	9				
Minimum Edge Distance	C _{min,deck,top}	in.	31⁄2	3	21⁄2	21⁄2				
Minimum Spacing	S _{min,deck,top}	in.	31⁄2	3	3	3				


 For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figure 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg}, respectively, must be calculated in accordance with ACI 318-19 Section 17.7.2, ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, h_{min,deck}, in the determination of A_{vc}.


2. Design capacity shall be based on calculations according to values in the tables featured on pp. 69 and 70.


3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\frac{1}{2}$ " (see Figure 3).

4. Steel deck thickness shall be minimum 20 gauge.

5. Minimum concrete thickness (h_{min,deck}) refers to concrete thickness above upper flute (see Figure 3).

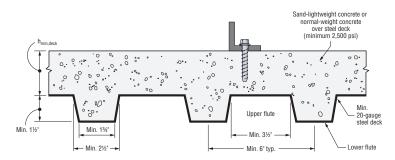


Figure 3. Installation of 1/4"- and %"-Diameter Anchors in the Topside of Concrete over Steel Deck

SIMPSO

Strong-Tie

► •

IBC

Titen HD[®] Design Information — Masonry

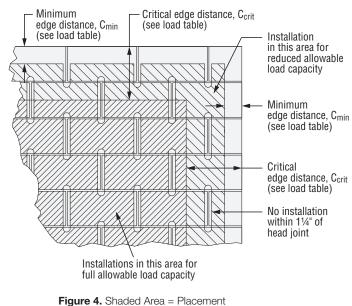
Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

0:	D.:	Minimum	Critical Edge	Minimum Edge	Critical	Va	lues for 8" Lightwe or Normal-Weight	eight, Medium-Weig : Grout-Filled CMU	ıht					
Size in. (mm)	Drill Bit Diameter in.	Embedment Depth in.	Distance C _{crit}	Distance C _{min}	Spacing Distance in.	Tensio	n Load	Shear Load						
(1111)		(mm)	in. (mm)	in. (mm)	(mm)	Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)					
	Anchor Installed in the Face of the CMU Wall (See Figure 4)													
1/4	1⁄4	21⁄2	4	1 ¼	4	2,050	410	2,500	500					
(6.4)		(64)	(102)	(32)	(102)	(9.1)	(1.8)	(11.1)	(2.2)					
3%	3⁄8	2¾	12	4	6	2,390	480	4,340	870					
(9.5)		(70)	(305)	(102)	(152)	(10.6)	(2.1)	(19.3)	(3.9)					
½	1⁄2	31⁄2	12	4	8	3,440	690	6,920	1,385					
(12.7)		(89)	(305)	(102)	(203)	(15.3)	(3.1)	(30.8)	(6.2)					
5%8	5/8	4½	12	4	10	5,300	1,060	10,420	2,085					
(15.9)		(114)	(305)	(102)	(254)	(23.6)	(4.7)	(46.4)	(9.3)					
3⁄4	3⁄4	5½	12	4	12	7,990	1,600	15,000	3,000					
(19.1)		(140)	(305)	(102)	(305)	(35.5)	(7.1)	(66.7)	(13.3)					

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

3. The masonry units must be fully grouted.


Mechanical Anchors

4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.

5. Embedment depth is measured from the outside face of the concrete masonry unit.

6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 78-79.

for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

SIMPSON

Strong-I

IBC 1

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

Cine		it Embedment	Minimum	8" Hollow CMU Loads Based on CMU Strength				
Size in. (mm)	Drill Bit Diameter in.	Depth⁴ in.	Edge Distance in.	Tensio	n Load	Shear	^r Load	
(11111)		(mm)	(mm)	Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)	
		Anc	hor Installed in Fa	ce Shell (See Figur	re 5)			
¾	3⁄8	1¾	4	720	145	1,240	250	
(9.5)		(45)	(102)	(3.2)	(0.6)	(5.5)	(1.1)	
½	1/2	1¾	4	760	150	1,240	250	
(12.7)		(45)	(102)	(3.4)	(0.7)	(5.5)	(1.1)	
5%	5⁄8	1¾	4	800	160	1,240	250	
(15.9)		(45)	(102)	(3.6)	(0.7)	(5.5)	(1.1)	
3⁄4	3⁄4	1¾	4	880	175	1,240	250	
(19.1)		(45)	(102)	(3.9)	(0.8)	(5.5)	(1.1)	

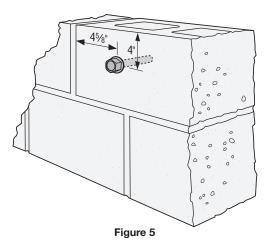
The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
 Nate: No installation within 45⁽ⁱⁱⁱ⁾ of bod joint of bollow maconau block well.

Note: No installation within 4%" of bed joint of hollow masonry block wall. 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

values for 8 -wide, light weight, medium-weight and hormal-weight concrete masonry during the second second

4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional ½"- through 1 ¼"-thick face shell.

5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.


6. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

7. Do not use impact wrenches to install in hollow CMU.

8. Set drill to rotation-only mode when drilling into hollow CMU.

9. The tabulated allowable loads are based on one anchor installed in a single cell.

10. Distance from centerline of anchor to head joint shall be a minimum of 45%".

SIMPSO

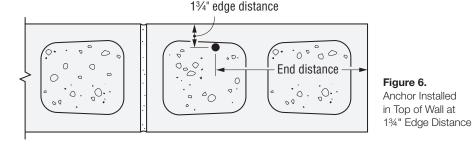
Strong-Tie

Titen HD Allowable Tension and Shear Loads in

8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum	Minimum	Critical 8" Grout-Filled CMU All			lowable Loads Based on CMU Strength, f'm = 1,500 psi			
Size in.	Drill Bit Diameter	Depth	Edge Distance	End Distance	Spacing Distance	Ten	sion	Shear Perpend	licular to Edge	Shear Para	llel to Edge
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)
				Anchor Ir	stalled in C	ell Opening or W	/eb (Top of Wall)	(See Figure 6)			
1⁄2 (12.7)	1⁄2	4½ (114)	1¾ (45)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)
5%8 (15.9)	5⁄8	4½ (114)	1¾ (45)	10 (254)	10 (254)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.


2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

3. The masonry units must be fully grouted.

4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.

5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.

6. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

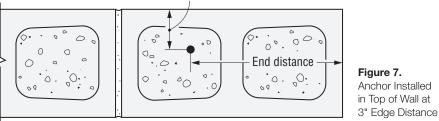
Titen HD Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

		Embed.	Minimum	Minimum	Critical	8" Grout-Filled CMU All		lowable Loads Based on CMU Strength, $f^{i}_{m} = 2,000$ psi				
Size in.	Drill Bit Diameter	Depth	Edge Distance	End Distance	Spacing Distance	Ten	Tension		licular to Edge	Shear Parallel to Edge		
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	
				Anch	or Installed	in Cell Opening	(Top of Wall) (Se	e Figure 7)				
1⁄2 (12.7)	1/2	4½	3	12	12	5,800	1,160	2,750	550	7,500	1,500	
5% (15.9)	5⁄8	(114)	(76)	(305)	(305)	(25.8)	(5.2)	(12.2)	(2.5)	(33.4)	(6.7)	

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values are for 8"-wide, medium-weight and normal-weight concrete masonry units.

3. The masonry units must be fully grouted.


4. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.

5. Allowable loads are not permitted to be increased for short-term loading due to wind or seismic forces.

6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.

7. Loads are based on anchor installed in grout-filled cell opening in the top of wall.

3" edge distance

Mechanical Anchors

IBC

74

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Wall

	Drill Bit	Embedment	Minimum	Minimum	Minimum	Allowable Loads			
Size (in.)	Diameter (in.)	Depth (in.)	Edge Distance (in.)	End Distance (in.)	Spacing (in.)	Tension (lbf)	Shear Vertical (lbf)	Shear Horizontal (lbf)	
1⁄4	1⁄4	23⁄8	3 ¹³ ⁄16	1 3⁄4	4	310	215	375	
3⁄8	3⁄8	23⁄8	3 ¹³ ⁄16	1 3⁄4	6	335	215	375	

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

3. The masonry units must be fully grouted.

4. The minimum specified compressive strength of masonry, f'_m, at 28 days is 2,000 psi.

5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.

6. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 8 below.

> End distance Shear vertical Shear vertical Control Con

Figure 8. Anchor Installed in End of Grout-Filled CMU Wall SIMPSO

Strong-

IBC 1

Titen HD Allowable Tension and Shear Loads in End of 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU Wall

SIMPSON

Strong-I

	Deill Dit	Embodmont	Minimum	Minimum	Minimum	Allowable Loads			
Size (in.)	Drill Bit Diameter (in.)	Embedment Depth (in.)	Minimum Edge Distance (in.)	Minimum End Distance (in.)	Spacing (in.)	Tension (lbf)	Shear Vertical (lbf)	Shear Horizontal (lbf)	
1⁄4	1⁄4	2%	3 ¹³ ⁄16	1¾	4	130	105	120	
3⁄8	3⁄8	23⁄8	3 ¹³ ⁄16	1¾	6	130	115	125	

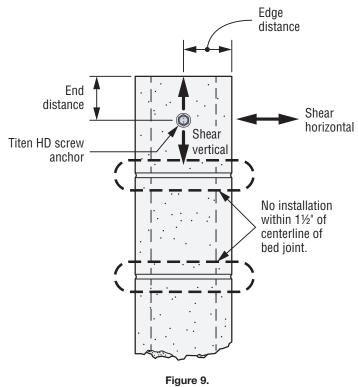
1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

3. The minimum specified compressive strength of masonry, f'_m , at 28 days is 2,000 psi.

 Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1[']/₈"- through 1[']/₄"-thick face shell.

5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.


6. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

7. Do not use impact wrenches to install in hollow CMU.

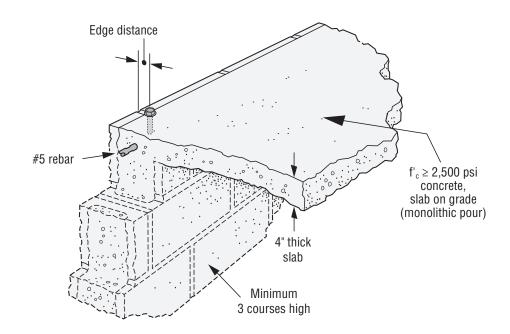
8. Set drill to rotation-only mode when drilling into hollow CMU.

9. Minimum edge and end distances are measured from anchor centerline to the edge and end of the CMU masonry wall, respectively. Refer to Figure 9 below.

10. Anchors must be installed a minimum of 11/2" from centerlie of bed joints. See Figure 9 for prohibited anchor installation locations.

Anchor Installed in End of Hollow CMU Wall

Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete


Size	Drill Bit	Minimum Embedment	Minimum Edge	Critical	8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strengt		
in. (mm)	Diameter (in.)	Depth in. (mm)	Distance in. (mm)	Spacing in. (mm)	Ultimate Ib. (KN)	Allowable Ib. (KN)	
		2 % (60)	1 ¾ (44)	91⁄2 (241)	3,175 (14.1)	635 (2.8)	
3⁄8 (9.5)	3⁄8	3% (86)	1 ¾ (44)	13½ (343)	5,175 (23.0)	1,035 (4.6)	
		5 (127)	21⁄4 (57)	20 (508)	10,584 (47.1)	2,115 (9.4)	
1/2	1/	8 (203)	21⁄4 (57)	32 (813)	13,722 (61.0)	2,754 (12.2)	
(12.7)	1/2	10 (254)	21⁄4 (57)	40 (1016)	16,630 (74.0)	3,325 (14.8)	
5% (15.9)	5⁄8	5½ (140)	1 ¾ (44)	22 (559)	9,025 (40.1)	1,805 (8.1)	

1. The tabulated allowable loads are based on a safety factor of 5.0.

2. Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum

compressive strength of 2,500 psi and poured monolithically with the floor slab.

3. Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

SIMPSON

Strong-Tie

IBC

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Dista	ance Tensi	on (f _c)			IBC	
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4
	E	21⁄2	23⁄4	31⁄2	41⁄2	51⁄2
C _{act} (in.)	C _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.77	1.00	1.00	0.83	0.66
1.25		0.77				
2		0.83				
3		0.92				
4		1.00	1.00	1.00	0.83	0.66
6		1.00	1.00	1.00	0.87	0.75
8		1.00	1.00	1.00	0.92	0.83
10		1.00	1.00	1.00	0.96	0.92
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Parallel to Edge or Er

SIMPSON

Strong-Tie

Shear Loa	d Parallel	to Edge or	End			
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4
_	E	21⁄2	23⁄4	31⁄2	41⁄2	51⁄2
c _{act} (in.)	C _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.58	0.77	0.48	0.46	0.44
1.25		0.58				
2		0.69				
3		0.85				
4		1.00	0.77	0.48	0.46	0.44
6		1.00	0.83	0.61	0.60	0.58
8		1.00	0.89	0.74	0.73	0.72
10		1.00	0.94	0.87	0.87	0.86
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End

1.E = embedment depth (inches).

2. c_{act} = actual end or edge distance at which anchor is installed (inches).

3. c_{cr} = critical end or edge distance for 100% load (inches).

4. c_{min} = minimum end or edge distance for reduced load (inches).

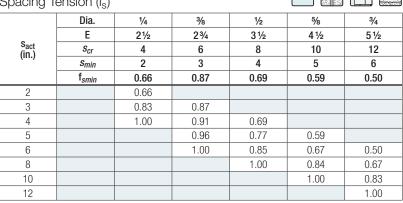
5. f_c = adjustment factor for allowable load at actual end or edge distance.

6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.

7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.

8. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})].$

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)


How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)

	Dia.	1/4	3⁄8	1/2	5⁄8	3⁄4
_	E	21/2	23⁄4	31⁄2	4 1/2	5½
c _{act} (in.)	C _{Cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.89	0.79	0.58	0.38
1.25		0.71				
2		0.79				
3		0.89				
4		1.00	0.89	0.79	0.58	0.38
6		1.00	0.92	0.84	0.69	0.54
8		1.00	0.95	0.90	0.79	0.69
10		1.00	0.97	0.95	0.90	0.85
12		1.00	1.00	1.00	1.00	1.00

Spacing Tension (f_s)

Spacing Shear (f.)

Spacing S	snear (t _s)					
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
_	E	21⁄2	23⁄4	3 1⁄2	4 1/2	5 1⁄2
s _{act} (in.)	S _C	4	6	8	10	12
()	S _{min}	2	3	4	5	6
	f _{smin}	0.87	0.62	0.62	0.62	0.62
2		0.87				
3		0.93	0.62			
4		1.00	0.75	0.62		
5			0.87	0.72	0.62	
6			1.00	0.81	0.70	0.62
8				1.00	0.85	0.75
10					1.00	0.87
12						1.00

1. E = embedment depth (inches).

2. s_{act} = actual spacing distance at which anchors are installed (inches).

3. s_{cr} = critical spacing distance for 100% load (inches).

4. s_{min} = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance.

6. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

8. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

SIMPSO

Strong-Tie

IBC

Stainless-Steel Titen HD® Heavy-Duty Screw Anchor

The Titen HD stainless-steel screw anchor for concrete and masonry is ideal for when the job calls for fast and efficient installation in multiple types of environments. The Titen HD stainless steel is a state-of-the-art anchor solution that combines the long-lasting corrosion resistance of Type 300 Series stainless steel with the undercutting ability of heat-treated carbon-steel cutting threads.

Innovative — The serrated carbon-steel threads on the tip of the stainless-steel Titen HD are vital because they undercut the concrete as the anchor is driven into the hole, making way for the rest of the threads to interlock with the concrete. In order for these threads to be durable enough to cut into the concrete, they are formed from carbon steel that is then hardened and brazed onto the tip of the anchor.

Corrosion Resistant — For dry, interior applications, carbon-steel corrosion is not a risk, but in any kind of exterior, coastal or chemical environment stainless steel provides the best solution for corrosion protection.

Features:

Mechanical Anchors

- Ideal for exterior or corrosive environments
- · Installs with an impact wrench or with a hand tool
- Tested per ACI355.2, AC193 and AC106

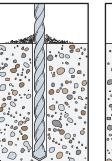
Codes: IAPMO UES ER-493 (concrete); ICC-ES ESR-1056 (masonry); City of LA Supplement within ER-493 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (masonry); FL16230 (concrete)

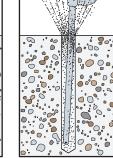
Material: Type 316 and Type 304 stainless steel. See pp. 235–236 or visit **strongtie.com/info** for more corrosion information.

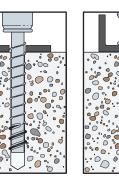
Installation

- **Caution:** Holes in steel fixtures to be mounted should match the diameter
- specified in the table below if steel is thicker than 12 gauge.
- Caution: Use a Titen HD screw anchor one time only installing the anchor multiple times may result in excessive thread wear and reduce load capacity. Do not use impact wrenches to install into hollow CMU.
- Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.
- Drill a hole in the base material using a carbide drill bit (complying with ANSI B212.15) with the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- 3. Tighten the anchor into the base material until the hex-washer head or the countersunk head contacts the fixture.

Additional Installation Information


Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1⁄4	3⁄8	3% to 7⁄16	1⁄8
3⁄8	9⁄16	½ to %16	1⁄4
1/2	3⁄4	5% to 11/16	1/2
5⁄8	¹⁵ ⁄16	³ ⁄4 t0 ¹³ ⁄16	1/2
3⁄4	1 1⁄8	7⁄8 t0 ¹⁵ ∕16	1/2


Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.


Innovative Carbon-Steel Lead Threads

Installation Sequence

005

SIMPSON

Strong-I

Cracked

Concrete

Stainless-Steel Titen HD Hex-Washer Head Style Screw Anchor

> US Patents 8,747,042 B2 and 9,517,519

Stainless-Steel Titen HD® Heavy-Duty Screw Anchor

SIMPSON

Strong-Tie

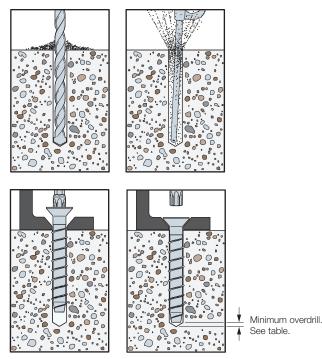
Stainless-Steel Countersunk Head Style

The countersunk head style is for applications that require a flush-mount profile. Countersinking also leaves a cleaner surface appearance for exposed through-set applications. The anchor head's 6-lobe drive eases installation and is less prone to stripping than traditional recessed anchor heads.

Features

- Available in many standard lengths in 1/4" and 3/8" diameters
- · Countersunk head allows screw anchor applications incompatible with a hex head
- Countersunk version includes (1) driver bit in each box

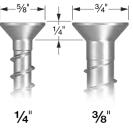
Codes: IAPMO UES ER-493 (concrete); ICC-ES ESR-1056 (masonry); City of LA Supplement within ER-493 (concrete); City of LA Supplement within ESR-1056 (masonry); Florida FL15730 (masonry); FL16230 (concrete)


Material: Type 316 stainless steel with carbon-steel lead threads

Additional Installation Information

Titen HD Diameter (in.)	Bit Size	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1⁄4	T30	3% to 7⁄16	1⁄8
3⁄8	T50	½ to %16	1⁄4

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.


Installation Sequence

Stainless-Steel **Titen HD** Countersunk **Head Style Screw Anchor**

Titen HD Countersunk Installation

Stainless-Steel Titen HD® Heavy-Duty Screw Anchor

Stainless-Steel Titen HD Anchor Product Data - Hex Washer Head

Size	Model No.	Model No.	Thread	Drill Bit	Wrench	Qua	antity
(in.)	(Type 316)	(Туре 304)	Length (in.)	Diameter (in.)	Size (in.)	Box	Carton
1⁄4 x 2	THDC25200H6SS [†]	—	17⁄8	1⁄4	3⁄8	50	250
1⁄4 x 23⁄8	THDC25238H6SS		21⁄4	1⁄4	3⁄8	50	250
1⁄4 x 3	THDC25300H6SS		27⁄8	1⁄4	3⁄8	50	250
1⁄4 x 4	THDC25400H6SS		31/8	1⁄4	3⁄8	50	250
3∕8 X 3	THD37300H6SS	THD37300H4SS	21/2	3⁄8	9⁄16	50	200
3∕8 x 4	THD37400H6SS	THD37400H4SS	31⁄2	3⁄8	9⁄16	50	200
3∕8 X 5	THD37500H6SS	THD37500H4SS	41⁄2	3⁄8	9⁄16	50	100
3∕8 X 6	THD37600H6SS	THD37600H4SS	51⁄2	3⁄8	9⁄16	50	100
1⁄2 x 3	THD50300H6SS ⁺	THD50300H4SS [†]	21⁄2	1/2	3⁄4	25	100
1⁄2 x 4	THD50400H6SS	THD50400H4SS	31⁄2	1/2	3⁄4	20	80
½ x 5	THD50500H6SS	THD50500H4SS	41⁄2	1/2	3⁄4	20	80
1⁄2 X 6	THD50600H6SS	THD50600H4SS	51⁄2	1/2	3⁄4	20	80
½ x 6½	THD50612H6SS	THD50612H4SS	6	1⁄2	3⁄4	20	40
½ x 8	THD50800H6SS	THD50800H4SS	67⁄8	1/2	3⁄4	20	40
5∕8 x 4	THDB62400H6SS ⁺	THDB62400H4SS [†]	31⁄2	5⁄8	15/16	10	40
5∕8 x 5	THDB62500H6SS	THDB62500H4SS	41⁄2	5⁄8	15/16	10	40
5∕8 X 6	THDB62600H6SS	THDB62600H4SS	51⁄2	5⁄8	15/16	10	40
5% x 61∕₂	THDB62612H6SS	THDB62612H4SS	6	5⁄8	15/16	10	40
5% x 8	THDB62800H6SS	THDB62800H4SS	71⁄16	5⁄8	15/16	10	20
3∕4 x 4	THD75400H6SS ⁺	THD75400H4SS ⁺	31⁄2	3⁄4	1 1/8	10	40
3⁄4 X 5	THD75500H6SS ⁺	THD75500H4SS [†]	41⁄2	3⁄4	1 1/8	5	20
3⁄4 x 6	THD75600H6SS	THD75600H4SS	51⁄2	3⁄4	1 1/8	5	20
3⁄4 x 7	THD75700H6SS	THD75700H4SS	61⁄2	3⁄4	1 1/8	5	10
3⁄4 x 8 1⁄2	THD75812H6SS	THD75812H4SS	73⁄16	3⁄4	1 1/8	5	10

† Does not meet minimum embedment in code report.

1. Anchor length is measured from under head to bottom of anchor.

Stainless-Steel Titen HD Anchor Product Data - Countersunk

Size	Model No.	Thread	Drill Bit Diameter	Bit	Qua	ntity
(in.)	(Type 316)	Length (in.)	(in.)	Size	Вох	Carton
1⁄4 x 23⁄8	THDC25238CS6SS ⁺	2	1⁄4	T30	25	250
1⁄4 x 3	THDC25300CS6SS	25⁄8	1⁄4	T30	25	250
1⁄4 x 4	THDC25400CS6SS	35%	1⁄4	T30	25	250
3∕8 x 21⁄2	THD37212CS6SS ⁺	2	3⁄8	T50	25	125
3∕8 x 3	THD37300CS6SS	21⁄2	3⁄8	T50	25	125
3∕8 x 4	THD37400CS6SS	31⁄2	3⁄8	T50	25	125

[†] These models do not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft.-lb. using a torque wrench, driver drill or cordless ¼" impact driver with a maximum permitted torque rating of 100 ft.-lb.

1. Anchor length is measured from top of head to bottom of anchor.

Stainless-Steel Titen HD Installation Information¹

	Ormshall	11-2-				Non	ninal An	chor Di	ameter	(in.)			
Characteristic	Symbol	Units	1,	/4	3,	/8		1⁄2		5,	/8	3,	/4
	Ins	tallation I	nformat	tion									
Nominal Diameter	da	in.	1	/4	3⁄8			1⁄2		5⁄8		3⁄4	
Drill Bit Diameter	d _{bit}	in.	1	/4	3	3/8		1⁄2		ŧ	8	3	8/4
Minimum Baseplate Clearance Hole Diameter ²	d _c	in.	3	%	1	/2		5⁄8			3/4	7	/8
Maximum Installation Torque ³	T _{inst,max}	ftlbf	N	/A	4	.0		70		8	5	15	50
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	25	1	50		345		34	45	38	30
Minimum Hole Depth	h _{hole}	in.	21⁄4	31⁄8	2¾	3½	3	3⁄4	4½	4 1⁄2	6	6	6¾
Nominal Embedment Depth	h _{nom}	in.	21⁄8	3	21⁄2	31⁄4	3	1⁄4	4	4	5½	5½	6¼
Effective Embedment Depth	h _{ef}	in.	1.27	2.01	1.40	2.04	1.	86	2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	C _{ac}	in.	3	3	41⁄2	5½	(6	5¾	6	6%	6¾	73⁄8
Minimum Edge Distance	C _{min}	in.	1½	1½	1¾	13⁄4	1¾	21⁄4	1¾	1¾	1¾	13⁄4	13⁄4
Minimum Spacing	S _{min}	in.	1½	1½	3	3	4	3	3	3	3	3	3
Minimum Concrete Thickness	h _{min}	in.	3½	43⁄8	4	5	Į	ō	6¼	6	81⁄2	8¾	10
		Anchor	Data										
Yield Strength	f _{ya}	psi	88,	000	98,	400		91,200		83,	200	92,	000
Tensile Strength	f _{uta}	psi	110,000 123,000			114,000)	104	,000	115	,000		
Minimum Tensile and Shear Stress Area	A _{se}	in.2	0.0	430	0.099 0.1832		0.276		6 0.414				
Axial Stiffness in Service Load Range — Uncracked Concrete	β_{uncr}	lb./in.	139	,300	807,700		269,085		111,040		102,035		
Axial Stiffness in Service Load Range — Cracked Concrete	β _{cr}	lb./in.	103	,500	113	,540	93,675			94,400		70,	910

For SI: 1 in. = 25.4 mm, 1 ft.-lbf = 1.356 N-m, 1 psi = 6.89 kPa, 1 in.² = 645 mm², 1 lb./in. = 0.175 N/mm.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17,

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The minimum hole size must comply with applicable code requirements for the connected element.

3. *T*_{inst,max} applies to installations using a calibrated torque wrench.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON

LW

Strong-I

IBC

SIMPSON Strong-Tie

Okaraskaristia	Cumhal	Unite				Nomin	al Ancho	r Diame	ter (in.)			
Characteristic	Symbol	Units	1	4	3,	/8	1	/2	5,	/8	3,	/4
Anchor Category	1, 2 or 3		:	3					1			
Nominal Embedment Depth	h _{nom}	in.	21⁄8	3	21⁄2	31⁄4	31⁄4	4	4	5½	51⁄2	6¼
Steel Strength in Tensio	n (ACI 318-	19 17.6.	1, ACI 31	8-14 17	4.1 or A	CI 318-11	Section	D.5.1)				
Tension Resistance of Steel	N _{sa}	lbf	4,7	'30) 12,177 20,885 28,723				723	47,	606	
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_					0.	75				
Concrete Breakout Strength i	n Tension (ACI 318	-19 17.6.	2, ACI 31	8-14 17	.4.2 or A0	CI 318 Se	ection D.	5.2)			
Effective Embedment Depth	h _{ef}	in.	1.27	2.01	1.40	2.04	1.86	2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	C _{ac}	in.	3	3	41⁄2	5½	6	5¾	6	63⁄8	6¾	73⁄8
Effectiveness Factor — Uncracked Concrete	<i>k</i> uncr	_	24	24	27	24	27	24	24	24	27	27
Effectiveness Factor — Cracked Concrete	k _{cr}	_	17	17	21	17	17	17	17	17	17	21
Modification Factor	$\Psi_{C,N}$	_						1				
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_	0.	45				0.	65			
Pullout Strength in Tensio	on (ACI 318	8-19 17.6	5.3, ACI 3	18-14 17	7.4.3 or A	ACI 318-1	1 Sectio	n D.5.3)				
Pullout Resistance Uncracked Concrete ($f_c = 2,500 \text{ psi}$)	N _{p,uncr}	lbf	1,725⁵	3,550 ⁸	N/A ⁴	N/A ⁴	N/A ⁴	N/A ⁴	3,8205	9,0807	N/A ⁴	N/A4
Pullout Resistance Cracked Concrete ($f_c = 2,500$ psi)	N _{p,cr}	lbf	695⁵	1,2255	1,675⁵	2,415 ⁵	1,9955	N/A ⁴	N/A ⁴	N/A ⁴	N/A ⁴	N/A4
Strength Reduction Factor — Pullout Failure ⁶	ϕ_p		0.	45	0.65							
Tension Strength for Seismic Appli	cations (AC	318-19	17.10.3	, ACI 318	-14 17.2	.3.3 or A	CI 318-1	1 Section	n D.3.3.3)		
Nominal Pullout Strength for Seismic Loads ($f'_c = 2,500$ psi)	N _{p,eq}	lbf	695⁵	1,2255	1,6755	2,4155	1,9955	N/A ⁴	N/A ⁴	N/A ⁴	N/A4	N/A4
Strength Reduction Factor for Pullout Failure ⁶	ϕ_{eq}		0.45 0.65									

For **SI**: 1 in. = 25.4 mm, 1 ft.-lbf = 1.356 N-m, 1 psi = 6.89 kPa, 1 in.² = 645 mm², 1 lb./in. = 0.175 N/mm.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4(b), as applicable.

3. The tabulated values of φ_{cb} applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified, the φ_{cb} factors described in ACI 318-19 Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.

4. N/A denotes that pullout resistance does not govern and does not need to be considered.

5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (fr_c/2,500)^{0.5.}

- 6. The tabulated values of ϕ_p or ϕ_{eq} applies when both the load combinations of ACI 318-19 Section 5.3, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.
- 7. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2,500)^{0.4}.

8. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f⁺_c/2,500)^{0.3}.

Stainless-Steel Titen HD Shear Strength Design Data¹

Characteristic Symbol Units Nominal Anchor Diameter (in.)												
Characteristic	Symbol	Units	1,	/4	3	%	1	1/2	5	8	3	/4
Anchor Category	1, 2 or 3	_	;	3					1			
Nominal Embedment Depth	h _{nom}	in.	21⁄8	3	21/2 31/4 31/4			4	4	5½	51⁄2	6¼
Steel Strength in Sh	ear (ACI 31	8-19 17	.7.1, ACI 3	318-14 1	7.5.1 or <i>l</i>	ACI 318-1	1 Sectio	n D.6.1)				
Shear Resistance of Steel	V _{sa}	lbf	2,2	285	3,790	4,780	6,024	7,633	10,422	10,649	13,710	19,161
Strength Reduction Factor — Steel Failure ²	- Steel Failure ² ϕ_{sa} — 0.65											
Concrete Breakout Strengt	h in Shear	(ACI 318	-19 17.7.	2, ACI 31	8-14 17.	5.2 or AC	318-11	Section	D.6.2)			
Nominal Diameter	da	in.	0.2	250	0.3	375	0.5	500 0.		0.625 0.		'50
Load Bearing Length of Anchor in Shear	I _e	in.	1.27	2.01	1.40	2.04	1.86	2.50	2.31	3.59	3.49	4.13
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_		1			0.	70	1	1	1	1
Concrete Pryout Strength	in Shear (A	ACI 318-	19 17.7.3	, ACI 318	-14 17.5	.3 or ACI	318-11 S	Section D	.6.3)			
Coefficient for Pryout Strength	k _{cp}	_			1.0			2.0	1.0		2.0	
Strength Reduction Factor — Concrete Pryout Failure ³	ϕ_{cp}	_					0.	70	1	1		
Shear Strength for Seismic Applications (ACI 318-19 17.10.3, ACI 318-14 17.2.3.3 or ACI 318-11 Section D.3.3.3)												
Shear Resistance — Single Anchor for Seismic Loads (f' $_{\rm C}$ = 2,500 psi)	V _{sa,eq}	lbf	1,370	1,600	3,790	4,780	5,345	6,773	9,367	9,367	10,969	10,969
Strength Reduction Factor — Steel Failure ²	ϕ_{eq}	_					0.	65				

For SI: 1 in. = 25.4mm, 1 lbf = 4.45N.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318 14 Chapter 17 or ACI 318 11 Appagain D, as applicable

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The tabulated value of \$\phi_{sa}\$ and \$\phi_{eq}\$ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 or ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \$\phi_{sa}\$ and \$\phi_{eq}\$ must be determined in accordance with ACI 318-11 D.4.4(b).

3. The tabulated values of ϕ_{cb} and ϕ_{cp} apply when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 or ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 Section 1703.3, or ACI 318-11 D.4.3(c) for Supplementary reinforcement are not present (Condition B) are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement is verified, the ϕ_{cb} and ϕ_{cp} factors described in ACI 318-19 Table 17.5.3(b), ACI 318-14 T.3.3(c), or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} shall be determined in accordance with ACI 318-11 D.4.5(c) for Condition B.

SIMPSO

Strong-

IBC

Stainless-Steel Titen HD Screw Anchor Setting Information for Installation on the Top of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

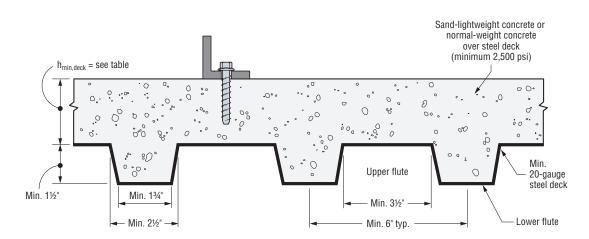
IBC		~ *

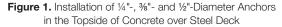
SIMPSON

Strong-Tie

Design Information	Cumbol	Unito	Nominal Anchor Diameter (in.)					
Design Information	Symbol	Units	1⁄4	3⁄8	1/2			
Nominal Embedment Depth	h _{nom}	in.	21⁄8	21⁄2	31⁄4			
Effective Embedment Depth	h _{ef}	in.	1.27	1.40	1.86			
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21⁄2	31⁄4	3¾			
Critical Edge Distance	C _{ac,deck,top}	in.	3	41⁄2	71⁄2			
Minimum Edge Distance	C _{min,deck,top}	in.	1 1⁄2	13⁄4	13⁄4			
Minimum Spacing	S _{min, deck, top}	in.	1 1⁄2	3	3			

For **SI**: 1 in. = 25.4 mm, 1 lbf = 4.45 N.


1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figure 1, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg}, respectively, must be calculated in accordance with ACI 318-19 Section 17.7.2, ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, h_{min,deck}, in the determination of A_{vc}.


2. Design capacity shall be based on calculations according to values in the tables featured on pp. 84-85.

3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2" (see Figure 1).

4. Steel deck thickness shall be minimum 20 gauge.

5. Minimum concrete thickness (hmin,deck) refers to concrete thickness above upper flute (see Figure 1).

Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU

Size	Drill Bit	Minimum Embedment	Critical Edge	Minimum Edge	Critical Spacing	Values for 8" Medium-Weight or Normal-Weight Grout-Filled CMU				
in.	Diameter	Depth	Distance C _{crit}	Distance C _{min}	Distance	Tensio	n Load	Shear	r Load	
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	
Anchor Installed in the Face of the CMU Wall (See Figure 1)										
1⁄4 (6.4)	1⁄4	2½ (64)	4 (102)	1 ¼ (32)	4 (102)	1,325 (5.9)	265 (1.2)	1,400 (6.2)	280 (1.3)	
3⁄8 (9.5)	3⁄8	2¾ (70)	12 (305)	4 (102)	8 (203)	2,125 (9.5)	425 (1.9)	2,850 (12.7)	570 (2.5)	
1⁄2 (12.7)	1⁄2	31⁄2 (89)	12 (305)	4 (102)	8 (203)	3,325 (14.8)	665 (3.0)	4,950 (22.0)	990 (4.4)	
5%8 (15.9)	5⁄8	41⁄2 (114)	12 (305)	4 (102)	8 (203)	3,850 (17.1)	770 (3.4)	4,925 (21.9)	985 (4.4)	
3⁄4 (19.1)	3⁄4	5½ (140)	12 (305)	4 (102)	8 (203)	5,200 (23.1)	1,040 (4.6)	4,450 (19.8)	890 (4.0)	

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values for 8"-wide, medium-weight and normal-weight concrete masonry units.

For %"- to ¾"-diameter anchors, anchors may be installed in lightweight masonry units.

3. The masonry units must be fully grouted.

4. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.

5. Embedment depth is measured from the outside face of the concrete masonry unit.

6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 89-90.

8. Although the 1/4" stainless steel Titen HD is not part of the evaluation report, we still tested the 1/4" screw per the appropriate AC.

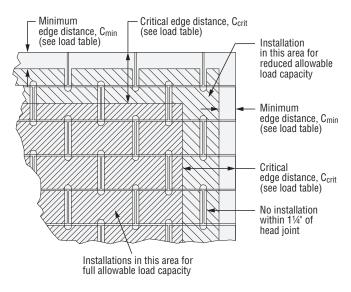


Figure 1. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU SIMPSON

Strong-

SIMPSON Strong-Tie

IBC 📫 📫 🖽

Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

		Minimum	Critial	Critical			U Loads Based Strength			
Size in. (mm)			Edge Distance	Spacing Distance in.	Tension Load		Shear	r Load		
(1111)		(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)		
	Anchor Installed in Face Shell (See Figure 2)									
3% (9.5)	3⁄8	2½ (64)	12 (305)	8 (203)	925 (4.1)	185 (0.8)	2,250 (10.0)	450 (2.0)		
1⁄2 (12.7)	1/2	2½ (64)	12 (305)	8 (203)	1,025 (4.6)	205 (0.9)	2,325 (10.3)	465 (2.1)		
5%8 (15.9)	5⁄8	2½ (64)	12 (305)	8 (203)	550 (2.4)	110 (0.5)	2,025 (9.0)	405 (1.8)		
3⁄4 (19.1)	3⁄4	2½ (64)	12 (305)	8 (203)	775 (3.4)	155 (0.7)	1,975 (8.8)	395 (1.8)		

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.

3. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.

4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 11/4" through 11/4" thick face shell.

 Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

6. Do not use impact wrenches to install in hollow CMU.

7. Set drill to rotation-only mode when drilling into hollow CMU.

8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 91.

9. Anchors must be installed a minimum of 11/2" from vertical head joints and T-joints.

Refer to Figure 2 for permitted and prohibited anchor installation locations.

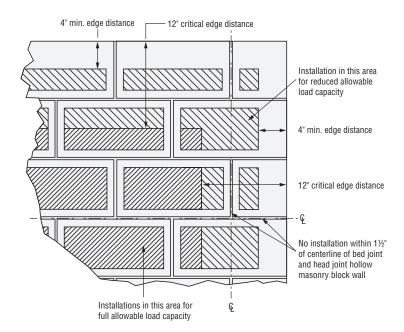


Figure 2. Stainless-Steel Titen HD Screw Anchor Installed in the Face of Hollow CMU Wall Construction

SIMPSON Strong-Tie

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{acl}) or spacing (s_{acl}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
	E	21/2	2¾	31⁄2	41⁄2	5½
c _{act} (in.)	C _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.84	0.80	0.81	1.00	1.00
1.25		0.84				
2		0.88				
3		0.94				
4		1.00	0.80	0.81	1.00	1.00
6		1.00	0.85	0.86	1.00	1.00
8		1.00	0.90	0.91	1.00	1.00
10		1.00	0.95	0.95	1.00	1.00
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Parallel to Edge or En

Shear Loa	d Parallel	to Edge or	End			
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4
_	E	21⁄2	23⁄4	31⁄2	41⁄2	5½
c _{act} (in.)	C _{Cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.89	0.88	0.56	0.65	0.84
1.25		0.89				
2		0.92				
3		0.96				
4		1.00	0.88	0.56	0.65	0.84
6		1.00	0.91	0.67	0.74	0.88
8		1.00	0.94	0.78	0.83	0.92
10		1.00	0.97	0.89	0.91	0.96
12		1.00	1.00	1.00	1.00	1.00
		-			·	-

See footnotes below.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

(Directed T	owards Ed	ge or End)				
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4
_	E	21⁄2	23⁄4	3 1⁄2	4 1⁄2	5 ½
c _{act} (in.)	C _{Cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.33	0.93	0.48	0.66	0.69
1.25		0.33				
2		0.51				
3		0.76				
4		1.00	0.93	0.48	0.66	0.69
6		1.00	0.95	0.61	0.75	0.77
8		1.00	0.97	0.74	0.83	0.85
10		1.00	0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00	1.00

1.E = embedment depth (inches).

2. c_{act} = actual end or edge distance at which anchor is installed (inches).

3. c_{cr} = critical end or edge distance for 100% load (inches).

4. cmin = minimum end or edge distance for reduced load (inches).

5. $f_{\ensuremath{\mathcal{C}}}$ = adjustment factor for allowable load at actual end or edge distance.

6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.

7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

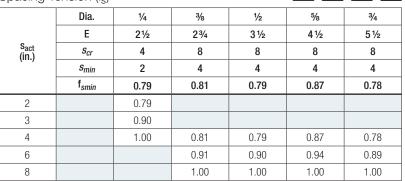
Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c)

Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)



SIMPSON

Strong-Tie

	way norm					
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
	E	21⁄2	23⁄4	3 1⁄2	4 1⁄2	5½
C _{act} (in.)	C _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.33	0.93	0.48	0.66	0.69
1.25		0.33				
2		0.51				
3		0.76				
4		1.00	0.93	0.48	0.66	0.69
6		1.00	0.95	0.61	0.75	0.77
8		1.00	0.97	0.74	0.83	0.85
10		1.00	0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00	1.00

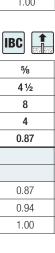
Spacing Tension (fs)

Spacing S	Shear (f _s)					
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
	E	21⁄2	2¾	3 1/2	4 1⁄2	5 ½
s _{act} (in.)	S _{cr}	4	6	8	10	12
()	S _{min}	2	3	4	5	6
	f _{smin}	0.78	1.00	0.86	0.90	0.94
2		0.78				
3		0.89				
4		1.00	1.00	0.86	0.90	0.94
6			1.00	0.93	0.95	0.97
8			1.00	1.00	1.00	1.00

1. E = embedment depth (inches).

2. s_{act} = actual spacing distance at which anchors are installed (inches).

 $3.s_{cr}$ = critical spacing distance for 100% load (inches).


4. s_{min} = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance.

6. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.

7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

8. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

90

SIMPSO Strong-Tie

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Hollow CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

Edge Distance Tension (f_c)

	Dia.	3⁄8	1⁄2	5⁄8	3⁄4	IBC		
	E	21/2	21/2	21/2	21⁄2			
(in.)	C _{cr}	12	12	12	12			
()	C _{min}	4	4	4	4	22 22		
	f _{cmin}	1.00	1.00	1.00	1.00			
4		1.00	1.00	1.00	1.00			
6		1.00	1.00	1.00	1.00			
8		1.00	1.00	1.00	1.00			
10		1.00	1.00	1.00	1.00			
12		1.00	1.00	1.00	1.00			

1. E = embedment depth (inches).

2. cact = actual end or edge distance at which anchor is installed (inches). 3. c_{cr} = critical end or edge distance for 100% load (inches).

c_{min} = minimum end or edge distance for reduced load (inches).

5. f_c = adjustment factor for allowable load at actual end or edge distance.

6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.

7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance. 8. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

Spacing Tension (f_s) One Anchor per Cell

Dia.	3⁄8	1⁄2	5⁄8	3⁄4	IB
E	21⁄2	21/2	2 1/2	2 1/2	
C _{cr}	8	8	8	8	
C _{min}	4	4	4	4	87
f _{cmin}	0.72	0.87	0.89	0.70	
	0.72	0.87	0.89	0.70	
	0.86	0.94	0.95	0.85	n-
	1.00	1.00	1.00	1.00	14
	E C _{cr} C _{min}	E 2 ½ C _{cr} 8 C _{min} 4 f _{cmin} 0.72 0.72 0.86	E 2 ½ 2 ½ C _{cr} 8 8 C _{min} 4 4 f _{cmin} 0.72 0.87 0.72 0.86 0.94	E 2½ 2½ 2½ C _{cr} 8 8 8 C _{min} 4 4 4 f _{cmin} 0.72 0.87 0.89 0.72 0.87 0.89 0.86 0.94 0.95	E 21/2 21/2 21/2 21/2 21/2 C _{cr} 8 8 8 8 8 8 C _{min} 4 4 4 4 4 4 f _{cmin} 0.72 0.87 0.89 0.70 0.72 0.87 0.89 0.70 0.86 0.94 0.95 0.85

See notes below.

Spacing Shear (f_s) One Anchor per Cell

	Dia.	3⁄8	1/2	5⁄8	3⁄4	IBC
	E	21⁄2	2 1/2	2 1/2	2 1/2	
s _{act} (in.)	S _{cr}	8	8	8	8	-
()	S _{min}	4	4	4	4	251 252
	f _{smin}	0.81	1.00	0.71	0.74	(=====
4		0.81	1.00	0.71	0.74	
6		0.91	1.00	0.86	0.87	
8		1.00	1.00	1.00	1.00	14-11

1. E = embedment depth (inches).

2. s_{act} = actual spacing distance at which anchors are installed (inches).

 $3. s_{cr}$ = critical spacing distance for 100% load (inches).

4. s_{min} = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance.

6. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

8. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c)

	Dia.	3⁄8	1⁄2	5⁄8	3⁄4	IBC	
	E	2 1/2	2 1/2	21/2	21/2		
C _{act} (in.)	C _{Cr}	12	12	12	12	-	
()	C _{min}	4	4	4	4	22 22	
	f _{cmin}	0.78	0.63	0.55	0.51	(<i>maga</i>	
4		0.78	0.63	0.55	0.51		
6		0.84	0.72	0.66	0.63		
8		0.89	0.82	0.78	0.76		
10		0.95	0.91	0.89	0.88		
12		1.00	1.00	1.00	1.00		

Mechanical Anchors

Spacing	Tension (f _s)
Two Anch	nors ner Cell

Dia.	3⁄8	1⁄2	5⁄8	3⁄4	IBC			
E	21⁄2	21⁄2	21⁄2	21/2				
C _{cr}	8	8	8	8				
C _{min}	4	4	4	4	201 202			
f _{cmin}	1.00	1.00	1.00	0.78				
	1.00	1.00	1.00	0.78				
	1.00	1.00	1.00	0.89				
	1.00	1.00	1.00	1.00				
	Dia. E C _{cr}	Dia. $\frac{\%}{100}$ E $2\frac{1}{2}$ C_{cr} 8 C_{min} 4 f_{cmin} 1.00 1.00 1.00	$3/6$ $1/2$ E $21/2$ $21/2$ C_{cr} 8 8 C_{min} 4 4 f_{cmin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Dia. $\frac{3}{8}$ $\frac{1}{2}$ $\frac{5}{8}$ E $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ C_{cr} 8 8 8 C_{min} 4 4 4 f_{cmin} 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Dia. $\frac{3}{6}$ $\frac{1}{2}$ $\frac{5}{6}$ $\frac{3}{4}$ E $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ c_{cr} 8 8 8 8 8 8 c_{min} 4 1.00 1.00 1.00 0.78 1.00 1.00 1.00 0.89 1.00 0.89 1.00 0.89 1.00 1.00 0.89 1.00 1.00 0.89 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1			

See notes below.

Spacing Shear (f_s) Two Anchors per Cell

Dia.	3⁄8	1/2	5⁄8	3⁄4	IBC			
E	2 1/2	21/2	2 1/2	21/2				
S _{Cr}	8	8	8	8	•			
S _{min}	4	4	4	4	23 23			
f _{smin}	0.76	1.00	0.75	0.75	(<u></u>			
	0.76	1.00	0.75	0.75				
	0.88	1.00	0.88	0.88				
	1.00	1.00	1.00	1.00	I++1			
	Dia. E S _{Cr} S _{min}	Dia. % E 2 ½ S _{CT} 8 S _{min} 4 f _{smin} 0.76 0.76 0.88	$\begin{tabular}{ c c c c c c } \hline Dia. & \frac{3}{8} & \frac{1}{2} \\ \hline E & 2\frac{1}{2} & 2\frac{1}{2} \\ \hline S_{Cr} & 8 & 8 \\ \hline S_{min} & 4 & 4 \\ \hline f_{smin} & 0.76 & 1.00 \\ \hline 0.76 & 1.00 \\ \hline 0.88 & 1.00 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c } \hline Dia. & \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Titen HD[®] Rod Coupler

The Titen HD rod coupler is designed to be used in conjunction with a single or multi-story rod tiedown system. This anchor provides a fast and simple way to attach threaded rod to a concrete stem wall or thickened slab footing. Unlike adhesive anchors, the installation requires no special tools, cure time or secondary setting process; just drill a hole and drive the anchor.

Features

Mechanical Anchors

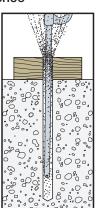
- Now included in ESR-2713 for wind and seismic loading.
- The serrated cutting teeth and patented thread design enable the Titen HD rod coupler to be installed quickly and easily. Less installation time translates to lower installed cost.
- The specialized heat treating process creates tip hardness to facilitate cutting while the body remains ductile.
- No special setting tools are required. The Titen HD rod coupler installs with regular or hammer drill, ANSI size bits and standard sockets.
- Compatible with threaded rods in 3%" and 1/2" diameters.
- Use in dry interior environments only.

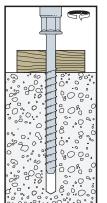
Codes: ICC-ES ESR-2713 (concrete); City of LA Supplement within ESR-2713 (concrete); FL15730 (concrete)

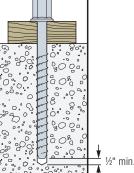
Material: Carbon steel

Coating: Zinc plated

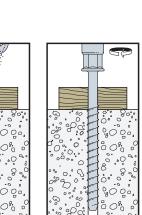
Installation

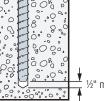

- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with base material and will reduce the anchor's load capacity. Use a Titen HD Rod Coupler one time only. Installing the anchor multiple times may result in excessive thread wear and reduce load capacity.
- 1. Drill a hole using the specified diameter carbide bit into the base material to a depth of at least 1/2" deeper than the required embedment.
- 2. Blow the hole clean of dust and debris using compressed air. Overhead application need not be blown clean.
- 3. Tighten the anchor with appropriate size socket until the head sits flush against base material.


Titen HD Rod Coupler Product Data


Size	Model	Accepts Rod Diameter	Drill Bit Diameter	Wrench Size	Qua	ntity
(in.)	No.	(in.)	(in.)	(in.)	Box	Carton
3∕8 X 63⁄4	THD37634RC	3⁄8	3⁄8	9⁄16	25	50
1⁄2 X 93⁄4	THD50934RC	1/2	1⁄2	3⁄4	20	40

Installation Sequence





Titen HD Rod Coupler

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON Strong-Tie

SIMPSON Strong-Tie

Titen HD[®] Rod Coupler

Titen HD Rod Coupler Installation Information and Additional Data¹

Characteristic	Symbol	Units	Mod	el No.				
Undractensuc	Symbol	UTIILS	THD37634RC	THD50934RC				
Installation Information								
Nominal Diameter	da	in.	3/8	1/2				
Drill Bit Diameter	d _{bit}	in.	3/8	1/2				
Internal Thread Diameter	d _{rh}	_	3⁄8	1/2				
Maximum Installation Torque ²	T _{inst,max}	ftlbf	50	65				
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	150	340				
Minimum Hole Depth	h _{hole}	in.	31⁄2	41⁄2				
Nominal Embedment Depth	h _{nom}	in.	31⁄4	4				
Effective Embedment Depth	h _{ef}	in.	2.40	2.99				
Critical Edge Distance	C _{ac}	in.	3%	41/2				
Minimum Edge Distance	C _{min}	in.	1	3⁄4				
Minimum Spacing	S _{min}	in.		3				
Minimum Concrete Thickness	h _{min}	in.	5	61⁄4				
	A	Inchor Data						
Yield Strength	f _{ya}	psi	97	.000				
Tensile Strength	f _{uta}	psi	110	,000				
Minimum Tensile Stress Area	A _{se}	in.2	0.099	0.183				
Axial Stiffness in Service Load Range — Uncracked Concrete	β _{uncr}	lb./in.	672,000					
Axial Stiffness in Service Load Range — Cracked Concrete	β _{cr}	lb./in.	345,000					

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17,

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable. 2. *T_{inst,max}* applies to installations using a calibrated torque wrench.

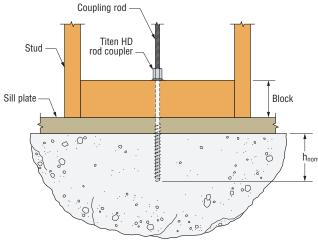


Figure 1. Typical Titen HD Rod Coupler Installation Through Blocking and Sill Plate

Titen HD Rod Coupler Block Height Requirement

Model No.	Shank Length (in.)	Nominal Embedment Depth (in.)	Sill Plate Thickness	Block Height (in.)
THD37634RC	6¾	31⁄4	2x	2
1003703400	094	J 74	Зx	1
THD50934RC	03/	А	2x	41⁄4
1000093460	9¾	4	Зx	31⁄4

SIMPSON Strong-Tie

Titen HD® Rod Coupler

Titen HD Rod Coupler Tension Strength De	esign Data¹		IB	
Characteristic	Symbol	Units	Mode	el No.
	Symbol	UIIIIS	THD37634RC	THD50934RC
Anchor Category	1, 2 or 3	_		1
Nominal Embedment Depth	h _{nom}	in.	31⁄4	4
Steel Strength in Tension (ACI	318-19 17.6.1, ACI 31	8-14 17.4.1 or ACI 31	8-11 Section D.5.1)	
Tension Resistance of Steel	N _{sa}	lbf	10,890	20,130
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	—	0.	65
Concrete Breakout Strength in Tens	ion (ACI 318-19 17.6.	2, ACI 318-14 17.4.2 c	or ACI 318 Section D.5.2)
Effective Embedment Depth	h _{ef}	in.	2.4	2.99
Critical Edge Distance	C _{ac}	in.	35⁄8	41⁄2
Effectiveness Factor — Uncracked Concrete	k _{uncr}	—	2	24
Effectiveness Factor — Cracked Concrete	k _{cr}	—	1	7
Modification factor	$\Psi_{c,N}$	—		1
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	—	0.	65
Pullout Strength in Tension (ACI	318-19 17.6.3, ACI 3	18-14 17.4.3 or ACI 3	18-11 Section D.5.3)	
Pullout Resistance Uncracked Concrete ($f_c = 2,500 \text{ psi}$)	N _{p,uncr}	lbf	N/A ³	N/A ³
Pullout Resistance Cracked Concrete ($f_c = 2,500 \text{ psi}$)	N _{p,cr}	lbf	2,7004	N/A ³
Strength Reduction Factor — Pullout Failure ²	$\phi_ ho$	—	0.	65
Tension Strength for Seismic Applications	(ACI 318-19 17.10.3,	ACI 318-14 17.2.3.3	or ACI 318-11 Section E).3.3.3)
Nominal Pullout Strength for Seismic Loads ($f_c = 2,500 \text{ psi}$)	N _{p,eq}	lbf	2,7004	N/A ³
Strength Reduction Factor for Pullout Failure ²	ϕ_{eq}	_	0.	65

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

3. N/A denotes that pullout resistance does not govern and does not need to be considered.

4. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (fr_/2,500)^{0.5}.

SIMPSON
Strong-Tie

Mechanical Anchors

Notes

95

Strong-Bolt[®] 2 Wedge Anchor — Zinc-Plated Carbon Steel

Code listed for cracked and uncracked concrete, and masonry applications, the Strong-Bolt 2 wedge-type expansion anchor is an optimal choice for high-performance even in seismic and high-wind conditions. Dual undercutting embossments on each clip segment enable secondary expansion should a crack form and intersect the anchor location; this feature significantly increases the ability of Strong-Bolt 2 to carry load if the hole expands.

Features

Mechanical Anchors

- Chamfered top designed to prevent mushrooming during installation
- Qualified for static and seismic loading conditions (seismic design categories A through F)
- Suitable for horizontal, vertical and overhead applications
- Qualified for minimum concrete thickness of 31/4", and lightweight concrete-over-steel deck
- Standard (ANSI) fractional sizes: fits standard fixtures and installs with common drill bit and tool sizes
- Tested per ACI355.2 and AC193

Material: Carbon steel

Coating: Zinc plated

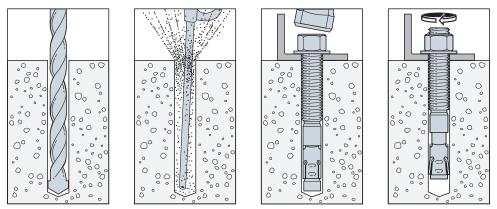
Codes: ICC-ES ESR-3037 (concrete); IAPMO UES ER-240 (carbon steel in CMU); City of LA Supplement within ESR-3037 (concrete); City of LA Supplement within ER-240 (carbon steel in CMU); Florida FL15730 (concrete); FL16230 (masonry); UL File Ex3605; FM 3043342 and 3047639; Mulitiple DOT listings; meets the requirements of Federal Specifications A-A-1923A, Type 4

Installation

- Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor.
- Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.
- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- 2. Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.

Strong-Bolt 2 Wedge Anchor

Head Stamp


The head is stamped with the length identification letter, bracketed top and bottom by horizontal lines.

Strong-Bolt[®] 2 Wedge Anchor — Zinc-Plated Carbon Steel

SIMPSON

Strong-Tie

Installation Sequence

Material Specifications

Anchor Body	Nut	Washer	Clip
Carbon Steel	Carbon Steel,	Carbon Steel	Carbon Steel,
	ASTM A 563, Grade A	ASTM F844	ASTM A 568

Strong-Bolt 2 Anchor Installation Data

Strong-Bolt 2 Diameter (in.)	1⁄4	3⁄8	1⁄2	5⁄/8	3/4	1
Drill Bit Size (in.)	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4	1
Min. Fixture Hole (in.)	5⁄16	7⁄16	9⁄16	11/16	7⁄8	1 1⁄8
Wrench Size (in.)	7⁄16	9⁄16	3⁄4	¹⁵ ⁄16	1 1⁄8	1½
Concrete Installation Torque (ftlbf) Carbon Steel	4	30	60	90	150	230

Length Identification Head Marks on Strong-Bolt 2 Wedge Anchors (corresponds to length of anchor - inches)

Mark	Units	A	В	С	D	E	F	G	н	I	J	к	L	М	N	0	Р	Q	R	S	т	U	v	w	x	Y	z
From	in.	1½	2	2½	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18
Up To But Not Including	in.	2	2½	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18	19

Strong-Bolt[®] 2 Wedge Anchor — Zinc-Plated Carbon Steel

Strong-Bolt 2 Anchor Product Data - Zinc-Plated Carbon Steel

Size Zinc-Plated Carbon Steel Model No.		Drill Bit Diameter	Thread Length	Quar	itity
(in.)		(in.)	(in.)	Вох	Carton
1⁄4 x 13⁄4	STB2-25134 [†]	1⁄4	1 5⁄16	100	500
1⁄4 x 21⁄4	STB2-25214	1⁄4	1 7⁄16	100	500
1⁄4 x 31⁄4	STB2-25314	1/4	27⁄16	100	500
3∕8 x 21⁄4	STB2-37214R50	3⁄8	1	50	250
3⁄8 X 23⁄4	STB2-37234	3⁄8	1 5⁄16	50	250
3∕8 x 3	STB2-37300	3⁄8	1%16	50	250
¾ X 3½	STB2-37312	3⁄8	21/16	50	250
¾ x 3¾	STB2-37334	3⁄8	25⁄16	50	250
3∕8 x 5	STB2-37500	3⁄8	3%16	50	200
3∕8 x 7	STB2-37700	3⁄8	5%16	50	200
½ x 2¾	STB2-50234R25 ⁺	1/2	1 1⁄4	25	125
1⁄2 x 3¾	STB2-50334	1/2	21/16	25	100
1⁄2 x 41⁄4	STB2-50414	1/2	2%16	25	100
½ x 4¾	STB2-50434	1/2	31/16	25	100
½ x 5½	STB2-50512	1/2	3 13/16	25	100
½ x 7	STB2-50700	1/2	55⁄16	25	100
1⁄2 x 81⁄2	STB2-50812	1/2	6	25	100
½ x 10	STB2-50100	1/2	6	25	100
½ x 12	STB2-501200R10	1/2	6	10	20
5∕8 x 31⁄2	STB2-62312R20 ⁺	5⁄8	1 5/8	20	80
5∕8 x 41⁄2	STB2-62412	5⁄8	27/16	20	80
5∕% x 5	STB2-62500	5⁄8	2 ¹⁵ ⁄16	20	80
5% x 6	STB2-62600	5⁄8	3 ¹⁵ ⁄16	20	80
5∕8 x 7	STB2-62700	5⁄8	4 ¹⁵ ⁄16	20	80
5∕8 X 81⁄2	STB2-62812	5⁄8	4 15/16	20	80
5∕% x 10	STB2-62100	5⁄8	6	20	40
5∕8 x 12	STB2-621200R10	5⁄8	6	10	20
3⁄4 x 43⁄4	STB2-75434R10 ⁺	3⁄4	25⁄8	10	40
¾ x 5½	STB2-75512	3⁄4	33⁄16	10	40
¾ x 6¼	STB2-75614	3⁄4	315/16	10	40
¾ x 7	STB2-75700	3⁄4	411/16	10	40
¾ x 8½	STB2-75812	3⁄4	6	10	20
¾ x 10	STB2-75100	3⁄4	6	10	20
¾ x 12	STB2-751200R5	3⁄4	6	10	20
1 x 7	STB2-100700	1	31⁄2	5	20
1 x 10	STB2-1001000	1	31/2	5	10
1 x 13	STB2-1001300	1	31/2	5	10

C.A.2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON

Strong-Tie

† Does not meet minimum embedment in code report.

SIMPSO

Strong-I

				·				N	ominal	Anchor Di	ameter	; d _a (in	.)			·		
Characteristic	Symbol	Units	1⁄44	3/	8 ⁵		1/2				5/8				3⁄4 ⁵		1	5
						Insta	llation	Informa	ation				-			-		-
Nominal Diameter	da	in.	1⁄4	3	/8		1/2				5/8				3⁄4			1
Drill Bit Diameter	d	in.	1⁄4	3	/8		1/2				5/8				3⁄4			1
Baseplate Clearance Hole Diameter ²	d _c	in.	5⁄16	7/	16		9/16	6			11/1	6			7⁄8		1	1⁄8
Installation Torque	T _{inst}	ft-lbf	4	3	0		60)			90				150		23	30
Nominal Embedment Depth	h _{nom}	in.	1¾	17⁄8	27⁄8	21⁄46	2	3⁄4	37⁄8	2¾ ⁶	3	3⁄8	51⁄8	33/86	41⁄8	5¾	51⁄4	9¾
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1½	21⁄2	1 3⁄4	2	1⁄4	33%	21⁄8	2	3⁄4	4½	2%	3%	5	4½	9
Minimum Hole Depth	h _{hole}	in.	17⁄8	2	3	21⁄2		3	41⁄8	3	3	5⁄8	5%	3%	43%8	6	5½	10
Minimum Overall Anchor Length	lanch	in.	21⁄4	2¾	3½	2¾	3	3⁄4	5½	31⁄2	4	1⁄2	6	43⁄4	5½	7	7	13
Critical Edge Distance	C _{ac}	in.	21⁄2	6½	6	6	6	6	71⁄2	71⁄2	7	1⁄2	9	6	6	8	18	13½
Minimum	C _{min}	in.	13⁄4	(5	6	6	4	4	6½	6½	6½	6½	41⁄4	41⁄4	41⁄4		8
Edge Distance	for s ≥	in.	_	_	_	6	6	4	4	_	_	5	5	10	10	10	-	_
Minimum Chaosing	S _{min}	in.	21⁄4	÷	3	2¾	23⁄4	2¾	2¾	5	5	2¾	2¾	3½	3½	31⁄2		8
Minimum Spacing	for $c \ge$	in.	_	_	_	12	12	12	12	_	_	8	8	6	6	6	-	
Minimum Concrete Thickness	h _{min}	in	31⁄4	31⁄4	41⁄2	4	4	5½	6	5½	5½	6	71⁄8	6	6	8¾	9	13½
						A	ddition	al Data	1					1				
Yield Strength	f _{ya}	psi	56,000	92,	000				85,	000				7	0,000		60,	000
Tensile Strength	f _{uta}	psi	70,000	115,000								1.	10,000		78,	000		
Minimum Tensile and Shear Stress Area	A _{se}	in.2	0.0318	0.0514 0.105					0.16	6		().270		0.4	172		
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	73,700 ³	34,820 63,570 ³ 63,570 9				91,370 ³		91,370)	118,840 ³	118	,840	299	,600		

Zinc-Plated Carbon-Steel Strong-Bolt 2 Installation Information and Additional Data¹

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. The tabulated value of β is for installations in uncracked concrete only.

4. The 1/4"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck,

where concrete thickness above upper flute meets the minimum thickness specified in this table. 5. The %"- through 1"-diameter (9.5 mm through 25.4 mm) anchors may be installed in top of cracked and uncracked normal-weight and

sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table for %"- through 1"-diameter anchors and in the table on p. 102 for %"- and ½"- diameter anchors.

6. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

Zinc-Plated Carbon-Steel Strong-Bolt 2 Tension Strength Design Data¹

SIMPSON Strong-Tie

IBC

Ohavastavistis	Cumhal	Unite						Nominal	Anchor	Diamete	er, d _a (in.)					
Characteristic	Symbol	Units	1⁄47	3/	6 ⁸		1⁄28			5⁄8 ⁸			3⁄48		1	
Anchor Category	1, 2 or 3								1							2
Nominal Embedment Depth	h _{nom}	in.	1¾	1 7⁄8	21⁄8	21⁄49	2¾	37⁄8	2¾ ⁹	3¾	51⁄8	3¾9	41⁄8	5¾	51⁄4	9¾
	Steel	Strengt	h in Ten	sion (ACI	318-19	17.6.1,	ACI 318-	14 17.4.	1 or ACI	318-11	Section [0.5.1)				
Steel Strength in Tension	N _{sa}	lb.	2,225	5,6	600		12,100			19,070			29,700		36,	815
Strength Reduction Factor — Steel Failure ^{2,3}	ϕ_{sa}	_						0.	75						0.	65
Co	ncrete Bre	akout S	Strength	in Tensi	on (ACI 3	318-19 1	7.6.2, A	CI 318-14	4 17.4.2	or ACI 3	18-11 Se	ection D.	5.2)			
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1 1⁄2	21⁄2	1 3⁄4	21⁄4	3%	21⁄8	2¾	4 1/2	2%	3%	5	41⁄2	9
Critical Edge Distance	Cac	in.	21⁄2	6½	6	6	6	71⁄2	71⁄2	71⁄2	9	6	6	8	18	131/2
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_			2	4			27	2	24	27		2	24	
Effectiveness Factor — Cracked Concrete	k _{cr}	_	6	1	7	10	1	7	10	1	7	10		1	7	
Modification Factor	$\Psi_{c,N}$	_	6	³ 1.00 - ¹⁰ 1.00 - ¹⁰ 1.00 - ¹⁰ 1.00							1.00					
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_						0.	65						0.	55
	Pullout	Strengt	h in Ten	sion (ACI	318-19	17.6.3,	ACI 318-	14 17.4.	3.1 or A0	CI 318-1	1 Sectior	ı D.5.3)				
Pullout Strength, Cracked Concrete ($f_c = 2,500 \text{ psi}$)	N _{p,cr}	lb.	6	1,3005	2,7755	10	N/A ⁴	4,9855	10	N/A ⁴	6,8955	10	N/A ⁴	8,5005	7,7005	11,18
Pullout Strength, Uncracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,uncr}	lb.	N/A ⁴	N/A ⁴	3,3405	N/A ⁴	3,615⁵	5,255⁵	N/A ⁴	N/A ⁴	9,0255	N/A ⁴	7,1155	8,8705	8,3605	9,690
Strength Reduction Factor — Pullout Failure ³	ϕ_p	_						0.	65						0.	55
Tensile	e Strength	for Sei	smic Ap	plication	s (ACI 31	18-19 17	7.10.3, A	CI 318-1	4 17.2.3	.3 or ACI	318-11	Section	D3.3.3)			
Nominal Pullout Strength for Seismic Loads ($f'_c = 2,500$ psi)	N _{p.eq}	lb.	6	1,3005	2,7755	10	N/A ⁴	4,9855	10	N/A ⁴	6,8955	10	N/A ⁴	8,5005	7,7005	11,18
Strength Reduction Factor — Pullout Failure ³	ϕ_{eq}	_						0.	65						0.	55

in ACI 318-19 2.3, ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

3. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

4. N/A (not applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c/2,500 psi)^{0.5}.

6. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.

 The ¼"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 99.

8. The %"- through 1"-diameter (9.5 mm through 25.4 mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 99 and in the table on p. 102 for the %"- and ½"-diameter anchors.

9. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

10. Anchor installation in cracked concrete is beyond the scope of this table for this embedment depth.

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

SIMPSO

Strong-I

Ob a walata wia ti a	Ormshall						N	ominal A	Anchor D	liametei	r, d _a (in.)					
Characteristic	Symbol	Units	1⁄45	3/	86		1⁄26			5⁄8 ⁶			3⁄4 ⁶		1	6
Anchor Category	1, 2 or 3	_						1							2	2
Nominal Embedment Depth	h _{nom}	in.	1¾	17⁄8	21⁄8	21⁄47	2¾	31⁄8	2¾7	3¾	51⁄8	3¾7	41⁄8	5¾	5¼	9¾
	Steel St	trength in	Shear (A	CI 318-	19 17.7	1, ACI 3	18-14 1	7.5.1 or	ACI 318-	-11 Sec	tion D.6	.1)				
Steel Strength in Shear	V _{sa}	lb.	965	1,8	300	5,285	7,2	235	2,980	11,(035	10,220	14,	480	15,0	020
Strength Reduction Factor — Steel Failure ^{2,3}	ϕ_{sa}			1		1	1	0.6	5				1	· · · · · · · · · · · · · · · · · · ·	0.0	60
Co	ncrete Brea	kout Stre	ngth in Sl	hear (AC	318-1	9 17.7.2	, ACI 31	8-14 17	.5.2 or A	CI 318-	11 Sect	ion D.6.	2)			
Outside Diameter	da	in.	0.25	0.3	375		0.500			0.625			0.750		1.(00
Load-Bearing Length of Anchor in Shear	le	in.	1.500	1.500	2.500	1.750	2.250	3.375	2.125	2.750	4.500	2.625	3.375	5.000	4.500	8.00
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}								0.7	0						
C	oncrete Pry	out Stren	gth in She	ear (ACI	318-19	17.7.3,	ACI 318	-14 17.5	5.3 or AC	318-1	1 Sectio	on D.6.3)				
Coefficient for Pryout Strength	k _{cp}	—	1.(D	2.0	1.0	1.0	2.0	1.0				2.0			
Effective Embedment Depth	h _{ef}	in.	1½	1½	21⁄2	1¾	21⁄4	3¾	21⁄8	2¾	41⁄2	25⁄8	3%	5	41⁄2	9
Strength Reduction Factor — Concrete Pryout Failure ³	ϕ_{cp}								0.7	0						
Steel Stren	gth in Shea	r for Seis	mic Appli	cations	(ACI 31	8-19 17.	10.3, A0	CI 315-1	4 17.2.3	.3 or AC	318-1	1 Sectio	n D.3.3.	3)		
Shear Strength of Single Anchor for Seismic Loads ($f'_c = 2,500 \text{ psi}$)	V _{sa.eq}	lb.	4	1,8	300	8	6,5	510	8	9,9	30	8	11,	775	15,0	020
Strength Reduction Factor — Steel Failure ^{2,3}	ϕ_{eq}	_						0.6	5						0.0	60

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

2. The ¼"-, ½"-, ½"-, ½"- and ¾"-diameter carbon steel Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318-19 2.3, ACI 318-14 2.3 or ACI 318-11 D.1, as applicable. The 1"-diameter carbon steel Strong-Bolt 2 anchor is a brittle steel element as defined in ACI 318-19 2.3, ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

3. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

4. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.

5. The ¼"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 99.

6. The %"- through 1"-diameter (9.5 mm through 25.4 mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 102.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8. Anchor installation in cracked concrete is beyond the scope of this table for this embedment depth.

Zinc-Plated Carbon-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

IBC 🖙

Nominal Anchor Diameter (in.) **Design Information** Symbol Units Nominal Embedment Depth in. 1 1 1/8 2¾ 31⁄8 h_{nom} Effective Embedment Depth h_{ef} in. 3% 11/2 21⁄4 Minimum Concrete Thickness⁵ in. 21/2 31⁄4 31⁄4 43⁄16 h_{min,deck} Critical Edge Distance in. 4¾ 4 4 6 Cac, deck, top Minimum Edge Distance in. 4¾ 41⁄2 4¾ 12 Cmin,deck,top 7 Minimum Spacing in. 6½ 8 31⁄2 Smin, deck, top

For SI: 1 inch = 25.4 mm; 1 lbf = 4.45N


1. Installation must comply with the table on p. 99 and Figure 1 below.

2. Design capacity shall be based on calculations according to values in the tables on pp. 100 and 101.

3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2".

4. Steel deck thickness shall be a minimum 20 gauge.

5. Minimum concrete thickness (hmin,deck) refers to concrete thickness above upper flute.

Zinc-Plated Carbon-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

						Nominal A	nchor Dia	meter (in.)			
Characteristic	Symbol	Units				C	arbon Ste	el			
Gharactenstic	буший	Units			L	ower Flut	e			Uppei	r Flute
			3,	/8	1,	/2	5,	/8	3⁄4	3⁄8	1⁄2
Nominal Embedment Depth	h _{nom}	in.	2	3%	2¾	41⁄2	3%	5%	41⁄8	2	2¾
Effective Embedment Depth	h _{ef}	in.	1%	3	21⁄4	4	2¾	5	3%	1%	21⁄4
Installation Torque	T _{inst}	ftlbf	3	80	6	0	9	0	150	30	60
Pullout Strength, concrete on steel deck (cracked) ^{3,4}	N _{p,deck,cr}	lb.	1,040 ⁷	2,615 ⁷	2,040 ⁷	3,6457	2,615 ⁷	4,9907	2,815 ⁷	1,340 ⁷	3,785 ⁷
Pullout Strength, concrete on steel deck (uncracked) ^{3,4}	N _{p,deck,uncr}	lb.	1,765 ⁷	3,150 ⁷	2,580 ⁷	3,840 ⁷	3,6857	6,565 ⁷	3,800 ⁷	2,2757	4,795 ⁷
Pullout Strength, concrete on steel deck (seismic) ^{3,4}	N _{p,deck,eq}	lb.	1,040 ⁷	2,615 ⁷	2,040 ⁷	3,6457	2,615 ⁷	4,990 ⁷	2,815 ⁷	1,340 ⁷	3,785 ⁷
Steel Strength in Shear, concrete on steel deck5	V _{sa,deck}	lb.	1,595	3,490	2,135	4,580	2,640	7,000	4,535	3,545	5,920
Steel Strength in Shear, concrete on steel deck (seismic) $^{\scriptscriptstyle 5}$	V _{sa,deck,eq}	lb.	1,595	3,490	1,920	4,120	2,375	6,300	3,690	3,545	5,330

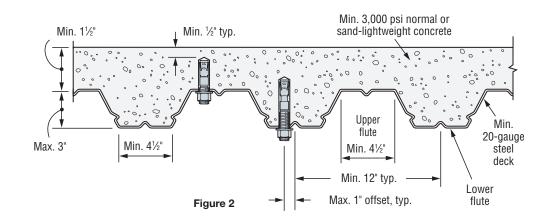
1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-19 Chapter 19, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

2. The steel deck profile must comply with the configuration in Figure 2 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.

3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies N_{p,deck,or} shall be substituted for N_{p,or}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p.

5. In accordance with ACI 318-19 Section 17.7.1.2(c), ACI 318-14 Section 17.5.1.2(c) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}.


6. The minimum anchor spacing along the flute must be the greater of 3.0h_{ef} or 1.5 times the flute width.

7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.

8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.

9. Minimum distance to edge of panel is 2h_{ef}.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSO

Strong

IBC

Zinc-Plated Carbon-Steel Strong-Bolt 2 Anchor Tension and Shear Strength Design Data for the Soffit of Concrete over Steel Deck, Floor and Roof Assemblies^{1,2,6,8,9}

IBC		

SIMPS

Strong

				Carbon St	eel Nominal	Anchor Dia	meter (in.)	
Characteristic	Symbol	Units			Installed in	Lower Flute		
			3,	/8	1,	⁄2	5,	/8
Nominal Embedment Depth	h _{nom}	in.	2	3%	2¾	41⁄2	3%	5%
Effective Embedment Depth	h _{ef}	in.	1%	3	21⁄4	4	2¾	5
Minimum Hole Depth	h _{hole}	in.	21⁄8	31⁄2	3	43⁄4	3%	5%
Minimum Concrete Thickness	h _{min,deck}	in.	2	2	2	31⁄4	2	31⁄4
Installation Torque	T _{inst}	ftlbf	3	0	6	0	g	0
Pullout Strength, concrete on steel deck (cracked) ^{3,4,7}	N _{p,deck,cr}	lb.	1,295	2,705	2,585	5,850	3,015	5,120
Pullout Strength, concrete on steel deck (uncracked) ^{3,4,7}	N _{p,deck,uncr}	lb.	2,195	3,260	3,270	6,165	4,250	6,735
Pullout Strength, concrete on steel deck (seismic) ^{3,4,7}	N _{p,deck,eq}	lb.	1,295	2,705	2,585	5,850	3,015	5,120
Steel Strength in Shear, concrete on steel deck5	V _{sa,deck}	lb.	1,535	3,420	2,785	5,950	3,395	6,745
Steel Strength in Shear, concrete on steel deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,535	3,420	2,505	5,350	3,055	6,070

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

2. The steel deck profile must comply with the configuration in Figure 3 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 50 with minimum yield strength of 50,000 psi. Concrete compressive strength shall be 3,000 psi minimum.

3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p.

5. In accordance with ACI 318-19 Section 17.7.1.2(c), ACI 318-14 Section 17.5.1.2(c) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}.

6. The minimum anchor spacing along the flute must be the greater of 3.0 h_{ef} or 1.5 times the flute width.

7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f'_c/3,000 \text{ psi})^{0.5}$.

Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, fⁱ_c, of 3,000 psi.
 Minimum distance to edge of panel is 2h_{ef}.

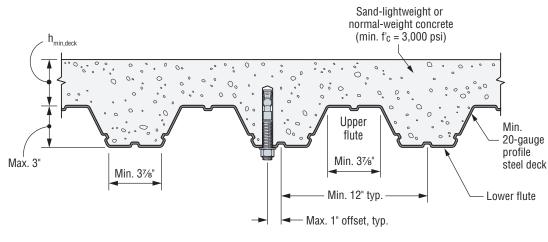
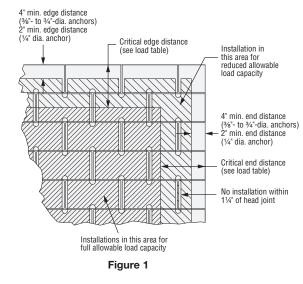


Figure 3


Strong-Bolt® 2 Design Information - Masonry

Zinc-Plated Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

Size	Drill Bit	Min. Embed.	Install. Torque	Critical Edge Dist.	Critical End Dist.	Critical Spacing	Tensio	Tension Load Shear Load		Load
in.	Diameter	Depth	ftib.	in.	in.	in.	Ultimate	Allowable	Ultimate	Allowable
(mm)	(in.)	in. (mm)	(N-m)	(mm)	(mm)	(mm)	Ib. (kN)	lb. (kN)	Ib. (kN)	Ib. (kN)
	Anchor Installed in the Face of the CMU Wall (See Figure 1)									
1/4	1⁄4	1 ¾	4	12	12	8	1,150	230	1,500	300
(6.4)		(45)	(5.4)	(305)	(305)	(203)	(5.1)	(1.0)	(6.7)	(1.3)
3%8	3⁄8	25⁄8	20	12	12	8	2,185	435	3,875	775
(9.5)		(67)	(27.1)	(305)	(305)	(203)	(9.7)	(1.9)	(17.2)	(3.4)
½	1/2	31⁄2	35	12	12	8	2,645	530	5,055	1,010
(12.7)		(89)	(47.5)	(305)	(305)	(203)	(11.8)	(2.4)	(22.5)	(4.5)
5%8	5⁄8	4 %	55	20	20	8	4,460	890	8,815	1,765
(15.9)		(111)	(74.6)	(508)	(508)	(203)	(19.8)	(4.0)	(39.2)	(7.9)
3⁄4	3⁄4	51⁄4	100	20	20	8	5,240	1,050	12,450	2,490
(19.1)		(133)	(135.6)	(508)	(508)	(203)	(23.3)	(4.7)	(55.4)	(11.1)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.

- 2. Listed loads may be applied to installations on the face of the CMU wall at least 11/4" away from head joints.
- 3. Values for 8"-wide concrete masonry units (CMU) with a minimum
- specified compressive strength of masonry, f⁺_m, at 28 days is 1,500 psi.
 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- 5. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{1}{2}$).
- 6. Refer to allowable load adjustment factors for edge distance and spacing on p. 106.

Zinc-Plated Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

Size in.	Drill Bit Diameter	Min. Embed. Depth.	Install. Torque	Min. Edge Dist.	Critical End Dist.			Tension Load				
(mm)	in.	(mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)	
	Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 2)											
½ (12.7)	1⁄2	3½ (89)	35 (47.5)	1¾ (45)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)
5⁄8 (15.9)	5⁄8	4 % (111)	55 (74.6)	1¾ (45)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.

2. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m, at 28 days is 1,500 psi.

3. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{1}{2}$).

4. Refer to allowable load adjustment factors for edge distance and spacing on p. 106.

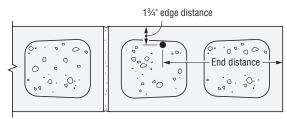


Figure 2

SIMPSO

Strong-

IBC

Strong-Bolt® 2 Design Information - Masonry

Zinc-Plated Carbon-Steel Strong-Bolt 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear
- load application. 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge or End Distance Tension (f_c)

	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4	IBC		
	Ε	1¾	2%	31⁄2	4%	51⁄4			
c _{act} (in.)	C _{cr}	12	12	12	20	20			
(111.)	C _{min}	2	4	4	4	4	201 202		
	f _{cmin}	1.00	1.00	1.00	1.00	0.97			
2		1.00							
4		1.00	1.00	1.00	1.00	0.97			
6		1.00	1.00	1.00	1.00	0.97	(/)		
8		1.00	1.00	1.00	1.00	0.98			
10		1.00	1.00	1.00	1.00	0.98			
12		1.00	1.00	1.00	1.00	0.99			
14					1.00	0.99			
16					1.00	0.99			
18					1.00	1.00			
20					1.00	1.00			

Spacing Tension (f_s)

	0 -	- 10	/				
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4	IBC
	E	1¾	2%	31⁄2	43%	51⁄4	
s _{act} (in.)	Scr	8	8	8	8	8	
(111.)	S _{min}	4	4	4	4	4	<u> 188</u>
	f _{smin}	1.00	1.00	0.93	0.86	0.80	
4		1.00	1.00	0.93	0.86	0.80	
6		1.00	1.00	0.97	0.93	0.90	
8		1.00	1.00	1.00	1.00	1.00	14-1

- 5. The load adjustment factor ($f_{c} \text{ or } f_{s}$) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.

SIMPSON

Strong-Tie

7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Shear (f_c)

Lago		Distai					ſ
	Dia.	1⁄4	3⁄8	1/2	5⁄8	3⁄4	
	E	13⁄4	25⁄8	31⁄2	43%8	51⁄4	
C _{act} (in.)	C _{cr}	12	12	12	20	20	
()	C _{min}	2	4	4	4	4	
	f _{cmin}	0.88	0.71	0.60	0.36	0.28	[
2		0.88					Ιl
4		0.90	0.71	0.60	0.36	0.28	ſ
6		0.93	0.78	0.70	0.44	0.37	
8		0.95	0.86	0.80	0.52	0.46	
10		0.98	0.93	0.90	0.60	0.55	1
12		1.00	1.00	1.00	0.68	0.64	
14					0.76	0.73	1
16					0.84	0.82	
18					0.92	0.91	
20					1.00	1.00	

Spacing Shear (f_s)

Opuon	ig one						IDO
	Dia.	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4	IBC
	Ε	1¾	25⁄8	31⁄2	43⁄8	51⁄4	
s _{act} (in.)	S _{cr}	8	8	8	8	8	
(111.)	S _{min}	4	4	4	4	4	82 83
	f _{smin}	1.00	1.00	1.00	1.00	1.00	
4		1.00	1.00	1.00	1.00	1.00	
6		1.00	1.00	1.00	1.00	1.00	fi f
8		1.00	1.00	1.00	1.00	1.00	14

Load Adjustment Factors for Carbon-Steel Strong-Bolt 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

End Distance

Tensio	n (f _c)			
	Dia.	1⁄2	5⁄8	IBC
	Ε	31⁄2	43⁄8	
s _{act} (in.)	C _{cr}	12	12	
()	C _{min}	4	4	
	f _{cmin}	1.00	1.00	
4		1.00	1.00	
6		1.00	1.00	
8		1.00	1.00	/ ≁→ĭ
10		1.00	1.00	
12		1.00	1.00	1

Spacir	ng Tens	sion (f _{s.})	
s _{act} (in.)	Dia.	1⁄2	5⁄8	IBC
	Ε	31⁄2	4 ³ / ₈	
	S _{cr}	8	8	
()	S _{min}	4	4	
	f _{cmin}	0.93	0.86	
4		0.93	0.86	
6		0.97	0.93	
8		1.00	1.00	<i>I</i> ↔ \

End Distance Shear

ndicula	r to Ec	lge (f _c)	
Dia.	1⁄2	5⁄8	IBC
Ε	31⁄2	43⁄8	
Ccr	12	12	-
C _{min}	4	4	<u> </u>
f _{cmin}	0.90	0.83	
	0.90	0.83	
	0.93	0.87	
	0.95	0.92	(A H
	0.98	0.96	
	1.00	1.00	
	Dia. E C _{cr} C _{min}	Dia. ½ E 3½ C _{cr} 12 C _{min} 4 f _{cmin} 0.90 0.93 0.95 0.98 0.98	E 3½ 4¾ C _{CT} 12 12 C _{min} 4 4 f _{cmin} 0.90 0.83 0.90 0.83 0.87 0.95 0.92 0.98 0.96

Spacing Shear Perpendicular or Parallel to Edge (f_s)

	UTAI		Luye	('s)	
		Dia.	1⁄2	5⁄8	IBC
		Ε	31⁄2	43%8	
	s _{act} (in.)	S _{cr}	8	8	
	()	S _{min}	4	4	
		f _{cmin}	1.00	1.00	
	4		1.00	1.00	
	6		1.00	1.00	
	8		1.00	1.00	<i>Ĩ</i> ₩₩

End Distance

Shear Parallel to Edge (t _c)								
	Dia.	1⁄2	5⁄8	IBC				
	Ε	31⁄2	43%8					
c _{act} (in.)	C _{cr}	12	12	•				
()	C _{min}	4	4	<u> 19</u>				
	f _{cmin}	0.53	0.50					
4		0.53	0.50					
6		0.65	0.63					
8		0.77	0.75	(A H				
10		0.88	0.88	1				
12		1.00	1.00					

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

For footnotes, please see p. 105.

106

107

Strong-Bolt® 2 Wedge Anchor — Mechanically Galvanized

Strong-Bolt 2 wedge-type expansion anchor in a mechanically galvanized finish can be used where a high-load-resisting anchor is needed for exterior applications. It has the same dual undercutting embossments on each clip segment as the zinc-electroplated version. Suitable for horizontal, vertical and overhead applications, the STB2-MG anchor is tested in uncracked concrete in accordance with AC193 and also in uncracked masonry in accordance with AC01.

Features

- Chamfered top designed to prevent mushrooming during installation
- Suitable for horizontal, vertical and overhead applications
- Tested for minimum concrete thickness of 31/4"
- Standard (ANSI) fractional sizes: fits standard fixtures and installs with common drill bit and tool sizes
- Tested per ACI355.2 and AC193

Material: Carbon steel

Coating: Mechanically galvanized

Installation

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

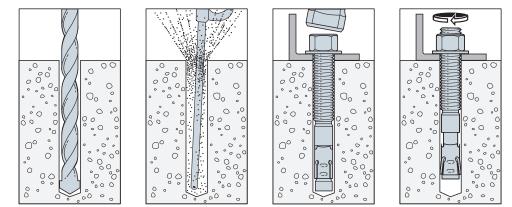
Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor.

Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.

- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.

Available Fall 2023 Please refer to strongtie.com for updated engineering/ load value tables.

Head Stamp The head is stamped with the length identification letter, bracketed top and bottom by horizontal lines.


Strong-Bolt 2 Wedge Anchor — Mechanically Galvanized

Strong-Bolt[®] 2 Wedge Anchor — Mechanically Galvanized

SIMPSON Strong-Tie

Installation Sequence

Material Specifications

Anchor Body	Nut	Washer	Clip
Mechanically	Carbon Steel,	Carbon Steel	Carbon Steel,
Galvanized	ASTM A 563, Grade A	ASTM F844	ASTM A 568

Strong-Bolt 2 Anchor Installation Data

Strong-Bolt 2 Diameter (in.)	1/4	3⁄8	1⁄2	5⁄/8	3⁄4
Drill Bit Size (in.)	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Min. Fixture Hole (in.)	5⁄16	7⁄16	9⁄16	11/16	7/8
Wrench Size (in.)	7⁄16	9⁄16	3⁄4	15/16	11⁄8

Length Identification Head Marks on Strong-Bolt 2 Wedge Anchors (corresponds to length of anchor — inches)

Mark	Units	A	В	С	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	S	Т	U	v	w	x	Y	Z
From	in.	1½	2	21⁄2	3	3½	4	41⁄2	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18
Up To But Not Including	in.	2	21⁄2	3	3½	4	41⁄2	5	5½	6	6½	7	7½	8	8½	9	91⁄2	10	11	12	13	14	15	16	17	18	19

Strong-Bolt® 2 Wedge Anchor — Mechanically Galvanized

SIMPSON Strong-Tie

Strong-Bolt 2 Anchor Product Data - Mechanically Galvanized

	Size	Mechanically	Drill Bit	Thread	Qua	ntity
	(in.)	Galvanized Model No.	Diameter (in.)	Length (in.)	Box	Carton
	1⁄4 x 31⁄4	STB2-25314MG	1⁄4	27⁄16	100	500
@	3∕8 x 3	STB2-37300MG	3⁄8	1 %16	50	250
1	3⁄8 X 3¾	STB2-37334MG	3⁄8	25⁄16	50	250
	3∕8 x 5	STB2-37500MG	3⁄8	3%16	50	200
	3∕8 x 7	STB2-37700MG	3⁄8	5%16	50	200
B	1⁄2 x 23⁄4	STB2-50234MG	1/2	1 1⁄4	25	125
@	1⁄2 x 3¾	STB2-50334MG	1/2	21/16	25	100
ø	1⁄2 x 41⁄4	STB2-50414MG	1/2	2%16	25	100
@	1⁄2 x 51⁄2	STB2-50512MG	1/2	313/16	25	100
9	1⁄2 x 7	STB2-50700MG	1/2	55⁄16	25	100
ø	1⁄2 x 81⁄2	STB2-50812MG	1/2	6	25	100
@	1⁄2 x 10	STB2-50100MG	1/2	6	25	100
ø	5∕8 x 31⁄2	STB2-62312MG	5⁄8	1%	20	80
ø	5∕8 x 41⁄2	STB2-62412MG	5⁄8	27⁄16	20	80
1	5∕8 x 5	STB2-62500MG	5/8	215/16	20	80
1	5∕8 X 6	STB2-62600MG	5/8	315/16	20	80
	5⁄8 x 7	STB2-62700MG	5/8	4 ¹⁵ ⁄16	20	80
I	5∕8 X 81⁄2	STB2-62812MG	5/8	4 ¹⁵ ⁄16	20	80
ø	5% x 10	STB2-62100MG	5/8	6	10	20
1	5∕% x 12	STB2-62120MG	5/8	6	10	20
	3⁄4 x 43⁄4	STB2-75434MG	3⁄4	2%	10	40
	¾ x 5½	STB2-75512MG	3⁄4	3¾16	10	40
	3⁄4 x 61⁄4	STB2-75614MG	3⁄4	315/16	10	40
	3⁄4 x 7	STB2-75700MG	3⁄4	411/16	10	40
	3⁄4 x 81⁄2	STB2-75812MG	3⁄4	6	10	20
	¾ x 10	STB2-75100MG	3⁄4	6	10	20
	3⁄4 x 12	STB2-751200MG	3⁄4	6	5	10

Strong-Bolt[®] 2 Wedge Anchor — Stainless Steel

Code listed for cracked and uncracked concrete, and masonry applications, the Strong-Bolt 2 wedge-type expansion anchor is an optimal choice for high-performance even in seismic and high-wind conditions. Dual undercutting embossments on each clip segment enable secondary expansion should a crack form and intersect the anchor location; this feature significantly increases the ability of Strong-Bolt 2 to carry load if the hole expands.

Features

- Chamfered top designed to prevent mushrooming during installation
- Qualified for static and seismic loading conditions (seismic design categories A through F)
- Suitable for horizontal, vertical and overhead applications
- Qualified for minimum concrete thickness of 3¼", and lightweight concrete-over-steel deck
- Standard (ANSI) fractional sizes: fits standard fixtures and installs with common drill bit and tool sizes
- Tested per ACI355.2 and AC193

Material: Stainless steel (Type 304; Type 316). See pp. 235–236 or visit **strongtie.com/info** for more corrosion information.

Codes: ICC-ES ESR-3037 (concrete); City of LA Supplement within ESR-3037 (concrete); Florida FL15730 (concrete); UL File Ex3605; FM 3043342 and 3047639; Mulitiple DOT listings

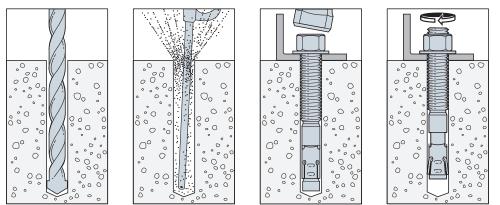
Installation

Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor.

Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.

- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.

Strong-Bolt 2 Wedge Anchor — Stainless Steel


Strong-Tie

The head is stamped with the length identification letter, bracketed top and bottom by horizontal lines.

Strong-Bolt® 2 Wedge Anchor — Stainless Steel

SIMPSON Strong-Tie

Installation Sequence

Material Specifications

Anchor Body	Nut	Washer	Clip
Type 304	Type 304	Type 304	Type 304 or 316
Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Type 316	Type 316	Type 316	Type 316
Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel

Strong-Bolt 2 Anchor Installation Data

Strong-Bolt 2 Diameter (in.)	1⁄4	3⁄8	1⁄2	5⁄/8	3⁄4
Drill Bit Size (in.)	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Min. Fixture Hole (in.)	5⁄16	7⁄16	9⁄16	11/16	7⁄8
Wrench Size (in.)	7⁄16	9⁄16	3⁄4	^{15/} 16	1 1⁄8
Concrete Installation Torque (ftlbf) Stainless Steel	4	30	65	80	150

Length Identification Head Marks on Strong-Bolt 2 Wedge Anchors (corresponds to length of anchor - inches)

N	Mark	Units	A	В	С	D	E	F	G	н		J	к	L	М	N	0	Р	Q	R	S	т	U	v	w	x	Y	z
F	-rom	in.	1½	2	21⁄2	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18
Up Not li	To But ncluding	in.	2	21⁄2	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	91⁄2	10	11	12	13	14	15	16	17	18	19

Strong-Bolt[®] 2 Wedge Anchor — Stainless Steel

Strong-Bolt 2 Anchor Product Data — Stainless Steel

Size	Type 304 Stainless Steel	Type 316 Stainless Steel	Drill Bit Diameter	Thread Length	Quantity			
(in.)	Model No.	Model No.	(in.)	(in.)	Вох	Carton		
1⁄4 x 1 3⁄4	STB2-251344SS ⁺	STB2-251346SS ⁺	1⁄4	1 5⁄16	100	500		
1⁄4 x 21⁄4	STB2-252144SS	STB2-252146SS	1⁄4	1 7⁄16	100	500		
1⁄4 x 31⁄4	STB2-253144SS	STB2-253146SS	1⁄4	27⁄16	100	500		
3∕8 x 21⁄4	STB2-372144SSR50	STB2-372146SSR50	3/8	1	50	250		
3∕8 x 23⁄4	STB2-372344SS	STB2-372346SS	3/8	1 5⁄16	50	250		
3∕8 x 3	STB2-373004SS	STB2-373006SS	3⁄8	1 %16	50	250		
3∕8 x 31⁄2	STB2-373124SS	STB2-373126SS	3⁄8	21/16	50	250		
¾ x 3¾	STB2-373344SS	STB2-373346SS	3/8	25⁄16	50	250		
3∕8 x 5	STB2-375004SS	STB2-375006SS	3/8	3%16	50	200		
3∕8 X 7	STB2-377004SS	STB2-377006SS	3⁄8	5%16	50	200		
1⁄2 x 23⁄4	STB2-502344SSR25 ⁺	STB2-502346SSR25 ⁺	1/2	1 1⁄4	25	125		
1⁄2 x 3¾	STB2-503344SS	STB2-503346SS	1/2	21/16	25	125		
1⁄2 x 41⁄4	STB2-504144SS	STB2-504146SS	1/2	2%16	25	100		
½ x 4¾	STB2-504344SS	STB2-504346SS	1/2	31⁄16	25	100		
½ x 5½	STB2-505124SS	STB2-505126SS	1/2	313/16	25	100		
½ x 7	STB2-507004SS	STB2-507006SS	1/2	55⁄16	25	100		
½ x 8½	STB2-508124SS	STB2-508126SS	1/2	6	25	50		
½ x 10	STB2-501004SS	STB2-501006SS	1/2	6	25	50		
5∕8 x 31⁄2	STB2-623124SSR20 ⁺	STB2-623126SSR20 ⁺	5⁄8	1 5/8	20	80		
5∕8 x 41⁄2	STB2-624124SS	STB2-624126SS	5⁄8	27/16	20	80		
5∕8 x 5	STB2-625004SS	STB2-625006SS	5⁄8	2 ¹⁵ ⁄16	20	80		
5∕8 X 6	STB2-626004SS	STB2-626006SS	5⁄8	315/16	20	80		
5∕8 x 7	STB2-627004SS	STB2-627006SS	5⁄8	4 ¹⁵ ⁄16	20	80		
5∕8 X 81⁄2	STB2-628124SS	STB2-628126SS	5⁄8	6	20	40		
5% x 10	STB2-621004SS	STB2-621006SS	5⁄8	6	10	20		
¾ x 4¾	STB2-754344SSR10 ⁺	STB2-754346SSR10 ⁺	3⁄4	21/2	10	40		
¾ x 5½	STB2-755124SS	STB2-755126SS	3⁄4	3¾16	10	40		
³⁄4 x 6¹⁄4	STB2-756144SS	STB2-756146SS	3⁄4	315/16	10	40		
3⁄4 x 7	STB2-757004SS	STB2-757006SS	3⁄4	4 ¹¹ /16	10	40		
¾ x 8½	STB2-758124SS	STB2-758126SS	3⁄4	6	10	20		

SIMPSON

Strong-Tie

† Does not meet minimum embedment in code report.

Stainless-Steel Strong-Bolt 2 Installation Information and Additional Data¹

SIMPSO

Strong-I

	-															
Characteristic	Symbol	Units					Nom	inal An	chor Diar	neter, d _a (in	.)					
	Symbol	UIIIIS	1⁄44	3	8 ⁵		1⁄25				5⁄8 5			3⁄4 5		
					Ir	istallation Ir	nformati	on								
Nominal Diameter	da	in.	1⁄4	3	/8		1/2				5⁄8		3⁄4			
Drill Bit Diameter	d	in.	1⁄4	3	/8		1/2				5⁄8		3/4			
Baseplate Clearance Hole Diameter ²	d _c	in.	5⁄16	7/	7/16 9/16						11/16			7⁄8		
Installation Torque	Tinst	ft-lbf	4	4 30 65 80							150					
Nominal Embedment Depth	h _{nom}	in.	1 3⁄4	1%	27⁄8	21⁄46	2¾		37⁄8	2¾ ⁶	3%	51⁄8	33/86	41⁄8	5¾	
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1 ½	21⁄2	13⁄4	21⁄4	:	3%	21⁄8	2¾	41⁄2	25⁄8	3%	5	
Minimum Hole Depth	h _{hole}	in.	1 7⁄8	2	3	21⁄2	3		11/8	3	3%	5%	35⁄8	43⁄8	6	
Minimum Overall Anchor Length	lanch	in.	21⁄4	2¾	3½	2¾	23/4 33/4 51/2		31⁄2	41⁄2	6	43⁄4	5½	7		
Critical Edge Distance	C _{ac}	in.	21⁄2	6½	81⁄2	41⁄2	41⁄2		7	7 1⁄2	7 1⁄2	9	8	8	8	
Minimum	C _{min}	in.	1¾	(6	6½	6½	5	4	4		4	6	6		
Edge Distance	for s ≥	in.	_	1	0	_	_	_	8	8		8	_			
Minimum Cracing	S _{min}	in.	21⁄4	;	3	8	8	5½	4	61⁄4	6	1⁄4	6½	6	1⁄2	
Minimum Spacing	for c ≥	in.	_	1	0	_	_	_	8	5½	5	1/2	_	_	_	
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄4	41⁄2	41⁄2	41⁄2		6	5½	5½	71⁄8	6¾	6¾	8¾	
	-		L	1		Additiona	al Data								1	
Yield Strength	f _{ya}	psi	96,000	80,	000		92,0	00		8	32,000		(68,000		
Tensile Strength	f _{uta}	psi	120,000	100	,000		115,0	00	_	1	08,000		9	95,000		
Minimum Tensile and Shear Stress Area	A _{se}	in.2	0.0255	0.0	514		0.10	5			0.166			0.270		
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	54,430 ³	29,	150	54,900 ³		54,900)	61,270 ³	61,	270) 154,290 ³ 154,2			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. The tabulated value of β is for installtions in uncracked concrete only.

4. The 1/4"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

5. The %"- through %"-diameter (9.5 mm through 19.1 mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table and in the table on p. 116 for the %"- and 1/2"-diameter anchors.

6. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

Strong-Bolt® 2 Design Information - Concrete

Characteristic	Symbol	Units				N	Iominal /	Anchor D	iameter,	d _a (in.)				
Gharacteristic	Symbol	Units	1⁄49	3/8	3 ¹⁰		1 ⁄2 ¹⁰			5⁄8 ¹⁰			³ ⁄4 ¹⁰	
Anchor Category	1, 2 or 3	—						1				,		
Nominal Embedment Depth	h _{nom}	in.	1¾	1 7⁄8	21⁄8	21⁄411	2¾	37⁄8	2¾11	3%	51⁄8	33⁄811	41⁄8	5¾
St	eel Strengt	h in Tensi	ion (ACI 318	8-19 17.6	.1, ACI 3 ⁻	18-14 17	.4.1 or A	CI 318-1	1 Sectior	n D5.1)				
Steel Strength in Tension	N _{sa}	lb.	3,060	5,1	40		12,075			17,930			25,650	
Strength Reduction Factor — Steel Failure ^{2,3}	ϕ_{sa}	_						0.75	ō					
Concrete	Breakout S	Strength i	n Tension (/	ACI 318-1	9 17.6.2	, ACI 318	8-14 17.4	.2 or ACI	318-11	Section	D5.2)			
Effective Embedment Depth	h _{ef}	in.	1½	1 1⁄2	21⁄2	1 3⁄4	21⁄4	3%	21⁄8	2¾	41⁄2	2%	3%	5
Critical Edge Distance	C _{ac}	in.	21⁄2	6½	81⁄2	4 1/2	4 1⁄2	7	71⁄2	71⁄2	9	8	8	8
Effectiveness Factor — Uncracked Concrete	K _{uncr}	_	24											
Effectiveness Factor — Cracked Concrete	k _{cr}	_	8	12	17		12	17		12	17			
Modification Factor	$\Psi_{c,N}$	_	8	1.	00	12	1.	00	12	1.	00	12	1.	00
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_						0.65	ō					
Pul	lout Streng	th in Tens	sion (ACI 31	8-19 17.0	6.3, ACI 3	318-14 1	7.4.3 or /	ACI 318-	11 Sectio	n D5.3)				
Pullout Strength, Cracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,cr}	lb.	8	1,7206	3,1456	12	2,5605	4,3055	12	N/A ⁴	6,5457	12	N/A ⁴	8,23
Pullout Strength, Uncracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,uncr}	lb.	1,925 ⁷	N/A ⁴	4,7706	2,1805	3,2305	4,4955	2,3805	N/A ⁴	7,615⁵	6,770 ¹³	7,7257	9,62
Strength Reduction Factor — Pullout Failure ³	ϕ_p	_						0.65	5					
Tensile Stren	gth for Seis	smic Appl	ications (A	CI 318-19	17.10.3	, aci 318	-14 17.2	.3.3 or A	CI 318-1 ⁻	Section	n D.3.3.3))		
Nominal Pullout Strength for Seismic Loads ($f'_c = 2,500 \text{ psi}$)	N _{p.eq}	lb.	8	1,7206	2,830 ⁶	12	2,5605	4,3055	12	N/A ⁴	6,5457	12	N/A ⁴	8,23
Strength Reduction Factor — Pullout Failure ³	ϕ_{eq}	_						0.65	ō					

3. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

4. N/A (not applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_c/2,500 psi)^{0.5}.

6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_c/2,500 psi)^{0.3}.

7. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_c/2,500 psi)^{0.4} .

8. The ¼"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.

9. The ¼"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over

profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 113.

10. The %"- through %"-diameter (9.5 mm through 19.1 mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 113 and in the table on p. 116 for the %"- and ½"-diameter anchors.

11. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

12. Anchor installation in cracked concrete is beyond the scope of this table for this embedment depth.

13. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_c/2,500 psi)^{0.15}.

BC

SIMPSO

Characteristic	Cumbol	Units					Nomina	al Anchor	Diameter	, d _a (in.)				·
Unaracteristic	Symbol	Units	1⁄45	3/	8 ⁶		1⁄2 ⁶			5⁄8 ⁶		3⁄4 ⁶		
Anchor Category	1, 2 or 3	—							1					
Nominal Embedment Depth	h _{nom}	in.	1¾	1%	27⁄8	21⁄47	2¾	37⁄8	23⁄47	3%	51⁄8	3%7	41⁄8	5¾
	Steel	Strength	in Shear	(ACI 318-	19 17.7.1	, ACI 318-	14 17.5.1	or ACI 3	18-11 Sec	tion D.6.1	I)		1	1
Steel Strength in Shear	V _{sa}	lb.	1,605	3,0)85	3,665	7,2	245	6,7	745	10,760	12,765	15,	045
Strength Reduction Factor — Steel Failure ^{2,3}	ф _{sa}			1		1		0.	65		1			
Concrete Breakout Strength in Shear (ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 Section D.6.2)														
Outside Diameter	d _a	in.	0.250 0.375 0.500 0.625 0.750											
Load Bearing Length of Anchor in Shear	le	in.	1.500	1.500	2.500	1.75	2.250	3.375	2.125	2.750	4.500	2.625	3.375	5.000
Strength Reduction Factor — Concrete Breakout Failure ³	фcb							0.	70	1				
C	oncrete Pi	yout Stre	ength in S	hear (ACI	318-19 1	7.7.3, AC	318-14	17.5.3 or	ACI 318-1	1 Section	ı D.6.3)			
Coefficient for Pryout Strength	k _{cp}	—	1	.0	2.0	1	.0	2.0	1.0			2.0		
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	1½	21⁄2	13⁄4	21⁄4	3%	21⁄8	2¾	41⁄2	2%	3%	5
Strength Reduction Factor — Concrete Pryout Failure ³	ϕ_{cp}			1	1	1		0.	70	1	1			
Steel Strer	igth in She	ar for Se	ismic App	olications	(ACI 318-	19 17.10	3, ACI 31	8-14 17.2	2.3.3 or A0	CI 318-11	Section [).3.3.3)	·	
Shear Strength of Single Anchor for Seismic Loads ($f'_c = 2,500 \text{ psi}$)	V _{sa.eq}	lb.	4	3,0)85	8	6,1	100	8	6,745	10,760	8	13,	620
Strength Reduction Factor — Steel Failure ^{2,3}	ф _{sa}	_	- 0.65											

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

2. The stainless steel Strong-Bolt 2 anchors are ductile steel elements as defined in ACI 318-19 2.3, ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.

3. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

4. The ¼"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.

5. The 1/4"-diameter (6.4 mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 113.

6. The %"- through %"-diameter (9.5 mm through 19.1 mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 116.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8. Anchor installation in cracked concrete is beyond the scope of this table for this embedment depth.

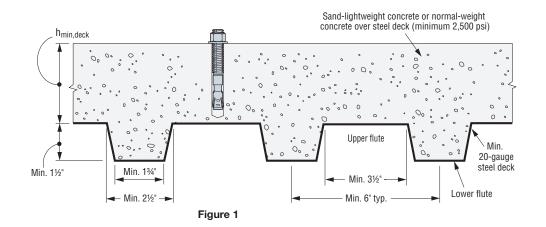
Stainless-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

SIMPSON

Strong-Tie

Desire lafore ation	Question	Unite	Nominal Anchor Diameter (in.)								
Design Information	Symbol	Units	3	8	1⁄2						
Nominal Embedment Depth	h _{nom}	in.	1	1 7⁄8							
Effective Embedment Depth	h _{ef}	in.	1	21⁄4							
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21⁄2	31⁄4	31⁄4						
Critical Edge Distance	Cac,deck,top	in.	4¾	4	4						
Minimum Edge Distance	Cmin, deck, top	in.	4	3/4	6						
Minimum Spacing	Smin,deck,top	in.	6	1/2	8						

For SI: 1 inch = 25.4 mm; 1 lbf = 4.45N


1. Installation must comply with the table on p. 113 and Figure 1 below.

2. Design capacity shall be based on calculations according to values in the tables on pp. 114 and 115.

3. Minimum flute depth (distance from top of flute to bottom of flute) is $1 \frac{1}{2}$ ".

4. Steel deck thickness shall be a minimum 20 gauge.

5. Minimum concrete thickness (hmin,deck) refers to concrete thickness above upper flute.

Stainless-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

			Stainless Steel												
Characteristic	Symbol	Units			Uppe	r Flute									
			3	/8	1	/2	5,	/8	3⁄4	3⁄8	1⁄2				
Nominal Embedment Depth	h _{nom}	in.	2	3%	2¾	41⁄2	3%	5%	41⁄8	2	2¾				
Effective Embedment Depth	h _{ef}	in.	1%	3	21⁄4	4	23⁄4	5	3%	1%	21⁄4				
Installation Torque	T _{inst}	ftlbf	3	60	6	5	8	0	150	30	65				
Pullout Strength, concrete on steel deck (cracked) ³	N _{p,deck,cr}	lb.	1,2308	2,605 ⁸	1,990 ⁷	2,5507	1,750 ⁹	4,020 ⁹	3,0307	1,550 ⁸	2,0557				
Pullout Strength, concrete on steel deck (uncracked) ³	N _{p,deck,uncr}	lb.	1,580 ⁸	3,950 ⁸	2,4757	2,6607	2,470 ⁷	5,000 ⁷	4,275 ⁹	1,990 ⁸	2,560 ⁷				
Pullout Strength, concrete on steel deck (seismic) ⁵	N _{p,deck,eq}	lb.	1,230 ⁸	2,3458	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,020 ⁹	3,0307	1,550 ⁸	2,055 ⁷				
Steel Strength in Shear, concrete on steel deck ⁴	V _{sa,deck}	lb.	2,285	3,085	3,430	4,680	3,235	5,430	6,135	3,085	5,955				
Steel Strength in Shear, concrete on steel deck (seismic) ⁵	V _{sa,deck,eq}	lb.	2,285	3,085	2,400	3,275	3,235	5,430	5,520	3,085	4,170				

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

 The steel deck profile must comply with the configuration in Figure 2 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.

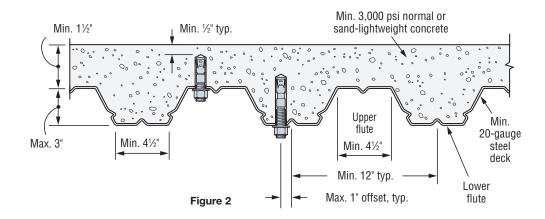
 For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p.

5. In accordance with ACI 318-19 Section 17.7.1.2(c), ACI 318-14 Section 17.5.1.2(c) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa}, deck, eq shall be substituted for V_{sa}.

6. The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width.

7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.


8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f¹_c / 3,000 psi)^{0.3}.

9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_C / 3,000 ps)^{0.4}.

The shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.

11. Minimum distance to edge of panel is 2h_{ef}.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSO

Strong-

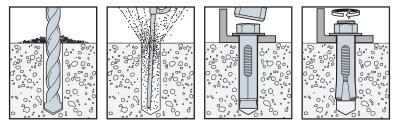
IBC

Sleeve-All[®] Sleeve Anchor

Sleeve-All expanding anchors are pre-assembled, expanding sleeve anchors for use in all types of solid base materials. This anchor is available in acorn, hex, rod coupler or flat head style for a wide range of applications.

Codes: FM 3017082, 3026805 and 3029959 (carbon steel %" – ½" diameter); Underwriters Laboratories File Ex3605 (%" – ¾" diameter); Mulitiple DOT listings; meets the requirements of Federal Specification A-A-1922A

Material: Carbon steel or Type 304 stainless steel


Coating: Carbon steel anchors are zinc plated

Installation

- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed.
- Drill the hole to the specified embedment depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling.
- 3. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 4. Tighten to required installation torque.

Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

Installation Sequence

Material Specifications

Anchor Component	Zinc-Plated Carbon Steel	Stainless Steel
Anchor Body	Material meets minimum 50,000 psi tensile	Type 304
Sleeve	SAE J403, Grade 1008 cold-rolled steel	Type 304
Nut	Commercial Grade, meets requirements of ASTM A563 Grade A	Type 304
Washer	SAE J403, Grade 1008/1010 cold-rolled steel	Type 304

Sleeve-All Anchor Installation Data

Sleeve-All Diameter (in.)	1⁄4	5⁄16	3⁄8	1⁄2	5⁄8	3⁄4
Installation Torque (ftlb.)	5	8	15	25	50	90
Drill Bit Size (in.)	1⁄4	5⁄16	3⁄8	1/2	5⁄8	3⁄4
Wrench Size ¹ (in.)	3⁄8	7⁄16	1⁄2	9⁄16	3⁄4	^{15/} 16
Wrench Size for Coupler Nut	t (in.)		1⁄2	5⁄8	3⁄4	

1. Applies to acorn- and hex-head configurations only.

Hex

Acorn

Rod Coupler

Flat Head (Phillips drive)

Sleeve-All® Sleeve Anchor

Sleeve-All Anchor Product Data — Zinc-Plated Carbon Steel

Size	Model	Head	Bolt Diameter –	Max. Fixture	Qua	intity
(in.)	No.	Style	Threads per Inch	Thickness (in.)	Вох	Carton
1⁄4 x 1 3⁄8	SL25138A	Acorn Head	³ ⁄16-24	1⁄4	100	500
1⁄4 x 21⁄4	SL25214A	Acomineau	9/16—24	1 1/8	100	500
5⁄16 X 1 1⁄2	SL31112H		1/ 00	3⁄8	100	500
5⁄16 X 21⁄2	SL31212H		1⁄4–20	1 1⁄16	50	250
3⁄8 X 17⁄8	SL37178H			3⁄8	50	250
3⁄8 X 3	SL37300H	1	5⁄16—18	11/2	50	200
3⁄8 X 4	SL37400H			21⁄4	50	200
1⁄2 X 21⁄4	SL50214H			1/2	50	200
½ x 3	SL50300H		3/ 10	3⁄4	25	100
½ x 4	SL50400H	Hex Head	3∕8−16	1 3⁄4	25	100
½ x 6	SL50600H	Hex Head		33%	20	80
5⁄8 X 21⁄4	SL62214H			1/2	25	100
5∕8 x 3	SL62300H		1/ 10	3⁄4	20	80
5⁄8 X 4 1⁄4	SL62414H	1	1⁄2–13	11/2	10	40
5∕8 x 6	SL62600H			31⁄4	10	40
3⁄4 x 21⁄2	SL75212H			1/2	10	40
3⁄4 x 41⁄4	SL75414H		5%-11	7/8	10	40
3⁄4 x 61∕4	SL75614H			27⁄8	5	20
1⁄4 x 2	SL25200PF		a/ . a.t	7⁄8	100	500
1⁄4 x 3	SL25300PF	1	3⁄16—24	17⁄8	50	250
5∕16 X 21⁄2	SL31212PF	1	1/ 00	1 1⁄16	50	250
5∕16 X З1⁄2	SL31312PF	Phillips	1⁄4-20	21/16	50	250
3∕8 x 23⁄4	SL37234PF	Flat Head		11⁄4	50	200
3∕8 x 4	SL37400PF	1	5/ 10	21/2	50	200
3∕8 x 5	SL37500PF	1	5∕16—18	31/2	50	200
3∕8 X 6	SL37600PF	1		41/2	50	200

Sleeve-All Anchor Product Data — Stainless Steel

Size	Model	Head	Bolt Diameter –	Max. Fixture	Quantity		
(in.)	No.	Style	Threads per Inch	Thickness (in.)	Box	Carton	
3∕8 x 1 7⁄8	SL37178HSS		5⁄16—18	3⁄8	50	250	
3∕8 x 3	SL37300HSS	Hey Head	916-10	1 1⁄2	50	200	
½ x 3	SL50300HSS	Hex Head	3/ 10	3⁄4	25	100	
½ x 4	SL50400HSS		³⁄8−16	1¾	25	100	

Sleeve-All Anchor (with rod coupler) Product Data - Zinc-Plated Carbon Steel

Size	Model	Accepts Rod Diameter	Wrench	Qua	ntity
(in.)	No.	(in.)	Size	Вох	Carton
3∕8 x 1 7⁄8	SL37178C	3⁄8	1/2	50	200
1/2 x 21/4	SL50214C	1/2	5⁄8	25	100
5% x 21⁄4	SL62214C	5⁄8	3⁄4	20	80

Length Identification Head Marks on Sleeve-All Anchors (corresponds to length of anchor — inches)

Mark	Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	۷	W	Х	Y	Z
From	1½	2	21⁄2	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18
Up To But Not Including	2	21⁄2	3	3½	4	41⁄2	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18	19

Sleeve-All[®] Design Information — Concrete and Masonry

		Outstand	Critical			Tensio	on Load				Shear Load		Install
Size in. (mm)	Embed. Depth in.	Critical Edge Dist. in.	Spacing Dist. in.	f' _c ≥ 2,	000 psi (13. Concrete	8 MPa)	$f'_{c} \geq 4,$	000 psi (27. Concrete	6 MPa)	f' _c ≥ 2,	000 psi (13. Concrete	8 MPa)	Install. Torque ftlb. (N-m)
(11111)	(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allow. Ib. (kN)	(11-11)
1⁄4	1 ½	2½	4½ (114)	880	94	220	1,320	189	330	1,440	90	360	5
(6.4)	(29)	(64)		(3.9)	(0.4)	(1.0)	(5.9)	(0.8)	(1.5)	(6.4)	(0.4)	(1.6)	(7)
^{5/} 16	1	3½	5¾	930	201	230	1,095	118	275	1,480	264	370	8
	(25)	(79)	(146)	(4.1)	(0.9)	(1.0)	(4.9)	(0.5)	(1.2)	(6.6)	(1.2)	(1.6)	(11)
(7.9)	17/16	3½	5¾	1,120	113	280	1,320	350	330	2,160	113	540	8
	(37)	(79)	(146)	(5.0)	(0.5)	(1.2)	(5.9)	(1.6)	(1.5)	(9.6)	(0.5)	(2.4)	(11)
3%8	1 ½	3¾	6	1,600	294	400	2,680	450	670	3,080	223	770 (3.4)	15
(9.5)	(38)	(95)	(152)	(7.1)	(1.3)	(1.8)	(11.9)	(2.0)	(3.0)	(13.7)	(1.0)		(20)
1/2	1¾	5	9	2,900	369	725	3,480	529	870	4,250	659	1,060	25
	(45)	(127)	(229)	(12.9)	(1.6)	(3.2)	(15.5)	(2.4)	(3.9)	(18.9)	(2.9)	(4.7)	(34)
(12.7)	21⁄4 (57)	5 (127)	9 (229)	3,160 (14.1)	254 (1.1)	790 (3.5)	4,760 (21.2)	485 (2.2)	1,190 (5.3)	5,000 (22.2)	473 (2.1)	1,250 (5.6)	25 (34)
5/8	1¾	61⁄4	11	3,200	588	800	3,825	243	955	4,625	747	1,155	50
	(45)	(159)	(279)	(14.2)	(2.6)	(3.6)	(17.0)	(1.1)	(4.2)	(20.6)	(3.3)	(5.1)	(68)
(15.9)	2¾	61⁄4	11	4,200	681	1,050	6,160	1,772	1,540	8,520	713	2,130	50
	(70)	(159)	(279)	(18.7)	(3.0)	(4.7)	(27.4)	(7.9)	(6.9)	(37.9)	(3.2)	(9.5)	(68)
3/4	2 (51)	7½ (191)	13½ (343)	3,200 (14.2)	588 (2.6)	800 (3.6)	4,465 (19.9)	1,017 (4.5)	1,115 (5.0)	5,080 (22.6)	771 (3.4)	1,270 (5.6)	90 (122)
(19.1)	3% (86)	7½ (191)	13½ (343)	6,400 (28.5)	665 (3.0)	1,600 (7.1)	9,520 (42.3)	674 (3.0)	2,380 (10.6)	10,040 (44.7)	955 (4.2)	2,510 (11.2)	90 (122)

1. The tabulated allowable loads are based on a safety factor of 4.0.

2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for spacing and edge distance on p. 122.

4. Drill bit diameter used in base material corresponds to nominal anchor diameter.

5. Allowable tension loads may be linearly interpolated between concrete strengths listed.

6. The minimum concrete thickness is 1 $\!\!\!\!\!\!^{1}\!\!\!\!^{2}$ times the embedment depth.

Min. Edge

Allowable Tension and Shear Loads for %" Sleeve-All in Grout-Filled CMU (Anchor Installed in Horizontal Mortar Joint or Face Shell)

Min. End

Grout-Filled II)	CIVIU		IBC		
Tensio	n Load	Shear	r Load	Install. Torque	
Ultimate	Allow.	Illtimate	Allow	ftlb.	

in. (mm)	Depth in. (mm)	Dist. in. (mm)	Dist. in. (mm)	Spacing in. (mm)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Allow. Ib. (kN)	
3% (9.5)	1 ½ (38)	16 (406)	16 (406)	24 (610)	2,000 (8.9)	400 (1.8)	2,300 (10.2)	460 (2.0)	

Min.

See footnotes on p. 121.

Size

Embed.

Mechanical Anchors

(N-m)

15 (20)

SIMPSON

Strong-1

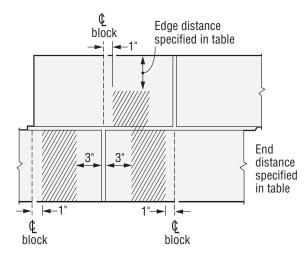
Sleeve-All[®] Design Information — Concrete and Masonry

Allowable Tension and Shear Loads for Sleeve-All in Grout-Filled CMU

SIMPSON

Strong-]

Size	Embed.	Min. Edge Dist.	Min. End Dist.	Min.	Tensio	n Load	Shear	Load	Install.
in. (mm)	Depth in. (mm)	in. (mm)	in. (mm)	Spacing in. (mm)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Torque ftlb. (N-m)
				Anchor Ins	stalled in a Single	Face Shell			·
3%8	1 ½	12	12	24	1,746	350	2,871	575	15
(9.5)	(38)	(305)	(305)	(610)	(7.8)	(1.6)	(12.8)	(2.6)	(20)
½	21⁄4	12	12	24	3,384	675	5,670	1,135	25
(12.7)	(57)	(305)	(305)	(610)	(15.1)	(3.0)	(25.2)	(5.0)	(34)
5%	2¾	12	12	24	3,970	795	8,171	1,635	50
(15.9)	(70)	(305)	(305)	(610)	(17.7)	(3.5)	(36.3)	(7.3)	(68)
3⁄4	3 %	12	12	24	6,395	1,280	12,386	2,475	90
(19.1)	(86)	(305)	(305)	(610)	(28.4)	(5.7)	(55.1)	(11.0)	(122)
		1		Anchor Ir	nstalled in Mortar	"T" Joint			
3⁄8	1 ½	8	8	24	1,927	385	3,436	685	15
(9.5)	(38)	(203)	(203)	(610)	(8.6)	(1.7)	(15.3)	(3.0)	(20)
½	21⁄4	8	8	24	3,849	770 (3.4)	5,856	1,170	25
(12.7)	(57)	(203)	(203)	(610)	(17.1)		(26.0)	(5.2)	(34)
5%	23⁄4	8	8	24	4,625	925	7,040	1,410	50
(15.9)	(70)	(203)	(203)	(610)	(20.6)	(4.1)	(31.3)	(6.3)	(68)
3⁄4	3%	8	8	24	5,483	1,095	7,869	1,575	90
(19.1)	(86)	(203)	(203)	(610)	(24.4)	(4.9)	(35.0)	(7.0)	(122)


1. The tabulated allowable loads are based on a safety factor of 5.0.

2. Listed loads may be applied to installations through a face shell with the following placement guidelines: a. Minimum 3" from vertical mortar joint.b. Minimum 1" from vertical cell centerline.

3. Values for 6"- and 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.

4. Embedment depth is measured from the outside face of the concrete masonry unit.

5. Drill bit diameter used in base material corresponds to nominal anchor diameter.

Face Shell Installation Allowable anchor placement in grout-filled CMU shown by shaded areas.

Sleeve-All[®] Design Information — Concrete

Allowable Load-Adjustment Factors for Sleeve-All Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

1. The following tables are for reduced edge distance and spacing.

- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

Mechanical Anchors

Edge	Size	1⁄4	5⁄16	3⁄8	1⁄2	5⁄8	3⁄4
Dist.	C _{cr}	21⁄2	31⁄8	3¾	5	6¼	7½
Cact	C _{min}	11⁄4	1%16	11%	21⁄2	31⁄8	3¾
(in.)	f _{cmin}	0.60	0.60	0.60	0.60	0.60	0.60
11⁄4		0.60					
11⁄2		0.68					
1 %16		0.70	0.60				
11⁄8		0.80	0.68	0.60			
2		0.84	0.71	0.63			
21⁄2		1.00	0.84	0.73	0.60		
3			0.97	0.84	0.68		
31⁄8			1.00	0.87	0.70	0.60	
31⁄2				0.95	0.76	0.65	
3¾				1.00	0.80	0.68	0.60
4					0.84	0.71	0.63
41⁄2					0.92	0.78	0.68
5					1.00	0.84	0.73
51⁄2						0.90	0.79
6						0.97	0.84
6¼						1.00	0.87
61⁄2							0.89
7							0.95
71⁄2							1.00

See footnotes below.

Edge Distance Shear (f_c)

Edge	Size	1⁄4	5⁄16	3⁄8	1/2	5⁄8	3⁄4
Dist.	C _{Cr}	21⁄2	31⁄8	3¾	5	6¼	71⁄2
Cact	C _{min}	11⁄4	1%16	11%	21/2	31/8	3¾
(in.)	f _{cmin}	0.30	0.30	0.30	0.30	0.30	0.30
11⁄4		0.30					
11⁄2		0.44					
1 %16		0.48	0.30				
11⁄8		0.65	0.44	0.30			
2		0.72	0.50	0.35			
21⁄2		1.00	0.72	0.53	0.30		
3			0.94	0.72	0.44		
31⁄8			1.00	0.77	0.48	0.30	
31⁄2				0.91	0.58	0.38	
3¾				1.00	0.65	0.44	0.30
4					0.72	0.50	0.35
41⁄2					0.86	0.61	0.44
5					1.00	0.72	0.53
51⁄2						0.83	0.63
6						0.94	0.72
6¼						1.00	0.77
6½							0.81
7							0.91
71/2							1.00

1. cact = actual edge distance at which anchor is installed (inches).

2. c_{cr} = critical edge distance for 100% load (inches).

3. c_{min} = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{cccr} = adjustment factor for allowable load at critical edge distance. f_{cccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

 $7. f_{c} = f_{cmin} + \left[(1 - f_{smin}) \left(c_{act} - c_{min} \right) / \left(c_{cr} - c_{min} \right) \right].$

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	1⁄4	5⁄16	3⁄8	1/2	5⁄8	3⁄4
s _{act}	S _{Cr}	41⁄2	5¾	6	9	11	131⁄2
(in.)	S _{min}	21⁄4	21/8	3	41⁄2	5½	63⁄4
	f _{smin}	0.50	0.50	0.50	0.50	0.50	0.50
21⁄4		0.50					
21⁄2		0.56					
21⁄8		0.64	0.50				
3		0.67	0.52	0.50			
31⁄2		0.78	0.61	0.58			
4		0.89	0.70	0.67			
41⁄2		1.00	0.78	0.75	0.50		
5			0.87	0.83	0.56		
51⁄2			0.96	0.92	0.61	0.50	
5¾			1.00	0.96	0.64	0.52	
6				1.00	0.67	0.55	
6½					0.72	0.59	
6¾					0.75	0.61	0.50
7					0.78	0.64	0.52
8					0.89	0.73	0.59
9					1.00	0.82	0.67
10						0.91	0.74
11						1.00	0.81
12							0.89
13							0.96
13½							1.00

1.E = Embedment depth (inches).

2. s_{act} = actual spacing distance at which anchors are installed (inches).

3. s_{cr} = critical spacing distance for 100% load (inches).

4. s_{min} = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance. 6. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

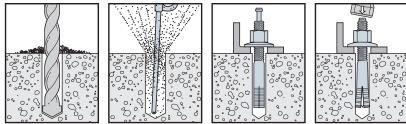
7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

8. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

Easy-Set Pin-Drive Expansion Anchor

The Easy-Set is a pin-drive expansion anchor for medium- and heavy-duty fastening applications into concrete. Integrated nut and washer help keep track of parts.

Material: Carbon steel


Coating: Yellow zinc plated

Installation

Caution: Oversized holes in the base material will make it difficult to set
the anchor and will reduce the anchor's load capacity.

- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus ¼" to allow for pin extension and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling.
- 2. Adjust the nut for required embedment. Place the anchor through the fixture and into the hole.
- 3. Hammer the center pin until the bottom of the head is flush with top of anchor.

Installation Sequence

EZAC Product Data

Size	Model	Thread	Qua	ntity
(in.)	No.	Length (in.)	Box	Carton
3∕8 x 23∕8	EZAC37238	1	50	250
3∕8 x 31⁄2	EZAC37312	11⁄8	50	250
3∕8 x 43⁄4	EZAC37434	1 1⁄2	50	200
1⁄2 x 23⁄4	EZAC50234	1	25	125
1⁄2 X 31⁄2	EZAC50312	1 1/8	25	125
1⁄2 x 43⁄4	EZAC50434	1 1⁄2	25	100
½ x 6	EZAC50600	2	25	100
5% x 4	EZAC62400	1%	15	60
5∕8 x 43⁄4	EZAC62434	1%	15	60
5∕8 x 6	EZAC62600	2	15	60

Easy-Set (EZAC)

Easy-Set Anchor Installation Data

Easy-Set Diameter (in.)	3⁄8	1⁄2	5⁄8
Drill Bit Size (in.)	3⁄8	1⁄2	5⁄8
Min. Fixture Hole Size (in.)	7⁄16	9⁄16	11/16
Wrench Size (in.)	9⁄16	3⁄4	^{15/} 16

EZAC Allowable Tension and Shear Loads in Normal-Weight Concrete

	Embed.		Critical Edge	Critical	Tension Load	Shear Load	
Size in.	Depth in.	Drill Bit Dia. in.	Dist. in.	Spacing Dist. in.	f' _c ≥ 2,000 psi (13.8 MPa) Concrete		
	(mm)		(mm)	(mm)	Allowab	le lb. (kN)	
3⁄8	1 ¾ (44)	3⁄8	2¾ (70)	51⁄4 (133)	630 (2.8)	645 (2.9)	2
1⁄2	2½ (64)	1⁄2	3¾ (86)	6¾ (171)	1,005 (4.5)	1,230 (5.5)	3
5⁄8	3 (76)	5⁄8	41⁄4 (108)	9 (229)	1,515 (6.7)	1,325 (5.9)	

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2.100% of the allowable load is permitted at critical spacing
- and critical edge distance. Allowable loads at lesser spacings and edge distance have not been determined.
- 3. The minimum concrete thickness is 1 ½ times the embedment depth.
- 4. Tension and shear loads for the EZAC anchor may be combined using the straight-line interaction equation (n = 1).

*See p. 14 for an explanation of the load table icons.

Mechanical Anchors

Tie-Wire Wedge Anchor

The Simpson Strong-Tie tie-wire anchor is a wedge-style expansion anchor for use in normal-weight concrete or in concrete over steel deck. With a tri-segmented, dual-embossed clip, the tie-wire anchor is ideal for the installation of acoustic ceiling grid and is easily set with the claw of a hammer.

Features

- 1/4" eyelet for easy threading of wire
- Sets with claw of hammer
- Tri-segmented clip each segment adjusts independently to hole irregularities
- Dual embossments on each clip segment enable the clip to undercut into the concrete, increasing follow-up expansion
- Wedge-style expansion anchor for use in normal weight concrete or concrete over steel deck

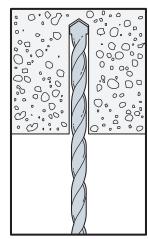
Material: Carbon steel

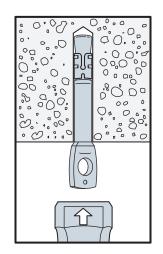
Coating: Zinc plated

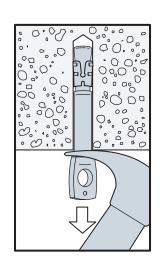
Installation

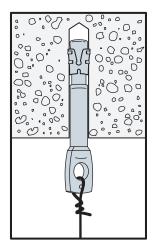
- 1. Drill a hole at least 11/4" deep using a 1/4"-diameter carbide tipped bit.
- 2. Drive the anchor into the hole until the bottom of the head is flush with the base material.
- 3. Set the anchor by prying/pulling the head with the claw end of the hammer.

Size	Model	Drill Bit	Eyelet Hole Size	Qua	ntity
(in.)	No.	Diameter (in.)	(in.)	Box	Carton
1⁄4 x 1 1⁄4	TW25114	1⁄4	1⁄4	100	500




SIMPSON


Strong-Tie


Tie-Wire

Installation Sequence

Tie-Wire Wedge Anchor

Allowable Tension and Shear Loads for Tie-Wire Anchor in Normal-Weight Concrete

		Embed	Critical	Critical	Tensio	n Load	Shear	r Load
Size in.	Drill Bit Diameter	Depth in.	End Dist.	Spacing in.	f ¹ _c ≥ 2,500 psi (17.2 MPa) Ultimate Ib. (kN) Ib. (kN)		f' _c ≥ 2,500 p	si (17.2 MPa)
(mm)	in.	(mm)	(mm)	(mm)			Ultimate Ib. (kN)	Allowable Ib. (kN)
1/4 (6.4)	1⁄4	11⁄4 (32)	2½ (64)	5 (127)	1,155 (5.1)	290 (1.3)	380 (1.7)	95 (0.4)

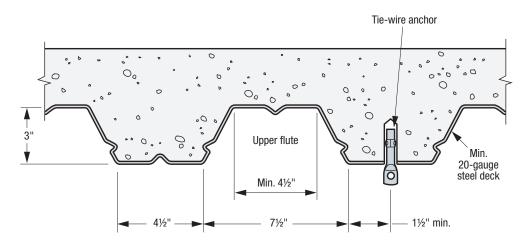
1. The allowable loads listed are based on a safety factor of 4.0.

2. The minimum concrete thickness is 11/2 times the embedment depth.

Allowable Tension and Shear Loads for Tie-Wire Anchor in the Soffit of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck

		Embed	Critical	Critical	Tensio	n Load	Shear	Load
Size in.	Drill Bit Diameter	Depth in.	End Dist. ⁵	Spacing in.	f' _c ≥ 3,000 psi (20.7 MPa)		f' _c ≥ 3,000 p	si (20.7 MPa)
(mm)	in.	(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable Ib. (kN)
^{1/4} (6.4)	1⁄4	1 ¼ (32)	2½ (64)	5 (127)	1,155 (5.1)	290 (1.3)	460 (2.0)	115 (0.5)

1. The allowable loads listed are based on a safety factor of 4.0.


2. The minimum concrete thickness is 11/2 times the embedment depth.

3. Steel deck must be minimum 20-gauge thick with minimum yield strength of 33 ksi.

4. Anchors installed in the bottom flute of the steel deck must have a minimum edge distance of 11/2" away

from inclined edge of the bottom flute. See the figure below.

5. Critical end distance is defined as the distance from the end of the slab in the direction of the flute.

Installation in the Soffit of Concrete over Steel Deck

SIMPSON

Strong-I

The Titen Turbo screw anchor features an innovative Torque Reduction Channel to trap drilling dust where it can't obstruct thread action, significantly reducing binding, stripping, and snapping without compromising strength. The patented reverse thread design enables smooth driving with less torque while providing superior holding power. The Torque Reduction Channel also allows more space for dust to help prevent anchors from bottoming out in smaller-diameter screw holes. The Titen Turbo screw anchors feature a serrated leading edge to cut into concrete or masonry, and a pointed tip for fast, easy installation in wood-to-concrete and wood-to-wood anchoring applications.

Features

- Patented Torque Reduction Channel that displaces dust where it can't obstruct the thread action, reducing the likelihood of binding in the hole
- Available with either a hex head or, for a flush profile, a 6-lobe-drive countersunk flat head or trim head
- 6-lobe drive provides positive bit engagement resulting in easy installations and long bit life
- 6-lobe bit included in packaging for countersunk flat head and trim-head version
- Superior tension load performance
- Matched-tolerance bit not required; use a standard ANSI drill bit for installation
- Serrated screw point for fast starts when fastening wood
- Designed for installation with an impact driver or cordless drill. Installation using the Titen Turbo Installation Tool is recommended.
- Use in dry interior environments only
- Code listed in accordance with ICC-ES AC193 for uncracked concrete and ICC-ES AC106 for masonry applications without cleaning dust from predrilled holes

Codes: IAPMO UES ER-712 (uncracked concrete)

(City of LA Supplement within ER-712); IAPMO UES ER-716 (masonry) (City of LA Supplement within ER-716); FL16230 (concrete and masonry)

Material: Carbon steel

Coating: Zinc plating with baked-on ceramic coating

- Caution: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Steps must be taken to prevent inadvertent sustained loads above the listed allowable loads. Overtightening and bending moments can initiate cracks detrimental to the hardened screw's performance. Use the Simpson Strong-Tie Titen installation tool kit as it has a bit that is designed to reduce the potential for overtightening the screw.
 - Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.

Installation Sequence

Versatile Applications

Sliding door track installation

Window frames

Furring strips

Screw

US Patent

11.002.305

Titen Turbo Flat Head Screw US Patent 11.002.305

Titen Turbo
 Trim-Head
 Screw
 US Patent
 11.002.305

6-lobe drive

Titen Turbo[™] Concrete and Masonry Screw Anchor

Size	Llood Style	Model	Drill Bit Diameter	Qua	ntity
(in.)	Head Style	No.	(in.)	Pack	Carton
³ ⁄16 X 1 ¹ ⁄4		TNT18114H	- 	100	1,600
3⁄16 X 1 3⁄4	1⁄4" hex -	TNT18134H		100	500
³ ⁄16 X 2 ¹ ⁄4		TNT18214H		100	500
³ ⁄16 X 2 ³ ⁄4		TNT18234H		100	500
³ ⁄16 X 3 ¹ ⁄4		TNT18314H		100	400
³ ⁄16 X 3¾		TNT18334H		100	400
³ ⁄16 X 1 ¹ ⁄4		TNT18114TF		100	1,600
³ ⁄16 Х 1 ¾		TNT18134TF		100	500
³ ⁄16 X 2 ¹ ⁄4	T25	TNT18214TF	- ⁵ /32	100	500
³ ⁄16 X 2 ³ ⁄4	6-lobe flat	TNT18234TF		100	500
³ ⁄16 X 3 ¹ ⁄4		TNT18314TF		100	400
3⁄16 X 3¾		TNT18334TF		100	400

Blue Titen Turbo Product Data (3/16" diameter)

Blue Titen Turbo	Product Data	(1/4" diameter)

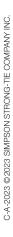
C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Size	Llood Stulo	Model	Drill Bit Diameter	Qua	antity
(in.)	Head Style	No.	(in.)	Pack	Carton
1⁄4 x 1 1⁄4		TNT25114H		100	1,600
1⁄4 x 1 ³⁄4		TNT25134H		100	500
1⁄4 x 2 1⁄4		TNT25214H		100	500
1⁄4 x 23⁄4		TNT25234H		100	500
1⁄4 x 3 1⁄4	5∕16" hex	TNT25314H	3∕16	100	400
1⁄4 x 33⁄4		TNT25334H		100	400
1⁄4 x 4		TNT25400H		100	400
1⁄4 x 5		TNT25500H		100	400
1⁄4 x 6		TNT25600H		100	400
1⁄4 x 1 1⁄4		TNT25114TF		100	1,600
1⁄4 x 1 ³⁄4		TNT25134TF		100	500
1⁄4 x 21⁄4		TNT25214TF		100	500
1⁄4 x 2³⁄4	T30 6-lobe flat	TNT25234TF	3⁄16	100	500
1⁄4 x 3 1⁄4		TNT25314TF		100	400
1⁄4 X 33⁄4		TNT25334TF		100	400
1⁄4 x 4		TNT25400TF		100	400

White Titen Turbo Product Data (6-Lobe Flat Head)

Size	Head Style	Model	Drill Bit Diameter	Qua	ntity
(in.)		No.	(in.)	Pack	Carton
³ ⁄16 Х 1 ¼		TNTW18114TF	_	100	1,600
³ ⁄16 Х 1 ¾		TNTW18134TF		100	500
³ ⁄16 X 2 ¹ ⁄4	T25	TNTW18214TF	- / ·	100	500
³∕16 X 2¾	6-lobe flat	TNTW18234TF	5/32	100	500
³ ⁄16 X З ¼	1	TNTW18314TF		100	400
³ ⁄16 Х З¾		TNTW18334TF		100	400
1⁄4 x 1 1⁄4		TNTW25114TF		100	1,600
1⁄4 x 1 3⁄4	1	TNTW25134TF		100	500
1⁄4 x 21⁄4	Т30	TNTW25214TF	3/	100	500
1⁄4 x 23⁄4	6-lobe flat	TNTW25234TF	3⁄16	100	500
1⁄4 x 31⁄4	1	TNTW25314TF		100	400
1⁄4 x 33⁄4	1	TNTW25334TF		100	400

Silver Titen Turbo Product Data (6-Lobe Flat Head)


Size (in.)	Head Style	Model No.	Drill Bit Diameter (in.)	Quantity
3⁄16 X 1 3⁄4		TNTS18134TFB		1,000
³ ⁄16 X 2¾	T25 6-lobe flat	TNTS18234TFB	5/32	1,000
³ ⁄16 Х З¾		TNTS18334TFB		1,000
1⁄4 x 2³⁄4	Т30	TNTS25234TFB	3/	1,000
1⁄4 x 31⁄4	6-lobe flat	TNTS25314TFB	3⁄16	1,000

White Titen Turbo Trim Head Product Data (6-Lobe)

	Size	Model	Drill Bit Diameter	tit Diameter (in.) Bit Size -	Quantity	
	(in.)	No.	(in.)		Вох	Carton
	1⁄4 x 23⁄4	TNTW25234TTR	3⁄16	T25	100	500
	1⁄4 x 31⁄4	TNTW25314TTR			100	400
ø	1⁄4 x 23⁄4	TNTW25234TTRB			1,000	—
	1⁄4 x 31⁄4	TNTW25314TTRB			1,000	_

Bronze Titen Turbo Trim Head Product Data (6-Lobe)

Size	Model	Drill Bit Diameter	BILSIZE	Qua	ntity
(in.)	No.	(in.)		Вох	Carton
1⁄4 x 23⁄4	TNTB25234TTR		T25	100	500
1⁄4 x 31⁄4	TNTB25314TTR	34-		100	400
1⁄4 x 23⁄4	TNTB25234TTRB	3∕16		1,000	—
1⁄4 x 31⁄4	TNTB25314TTRB			1,000	_

SIMPSON

128

Mechanical Anchors

Strong-Tie

Titen Turbo Screw Anchor – Installation Tool

Six-piece kit includes:

- 6-lobe bit socket
- T25 and T30 bits
- ¼" and ½6" hex sockets
- Canvas storage bag

Titen Turbo Installation Tool

Model	Quantity			
No.	Clamshell	Carton		
TNTINSTALLKIT	1	4		

Titen Turbo Screw Anchor Installation Kit

Titen Turbo Screw Anchor — Drill Bits

Size	Model	Use	With	Qua	ntity
(in.)	No.	Screw	Length	Box	Carton
5⁄32 X 3 1⁄2	MDB15312	³∕16" diameter	To 1 3⁄4	12	48
5⁄32 X 4 1⁄2	MDB15412		To 3 1⁄4		
5∕32 X 5 1⁄2	MDB15512		To 4		
³ ⁄16 X 3 ½	MDB18312	1⁄4" diameter	To 1 ¾	12	48
³ ⁄16 X 4 ½	MDB18412		To 3 1⁄4		
³ ⁄16 X 5 ½	MDB18512		To 4		

Titen Turbo Screw Anchor — SDS-plus® Drill Bits

Size (in.)	Model No.	For Screw Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)
5∕32 X 6	MDPL01506H	3/16	3 1/8	6
5⁄32 X 7	MDPL01507H	9/16	4 1⁄8	7
³∕16 X 5	MDPL01805H		23⁄8	5
³ ⁄16 Х б	MDPL01806H	1⁄4	3 1/8	6
³∕16 X 7	MDPL01807H		4 1⁄8	7

Titen drivers are sold individually.

Titen Turbo Screw Drill Bit/Driver - Bulk Packs*

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	For Screw Diameter (in.)	Model No.
5/32	41⁄8	7	3⁄16	MDPL01507H-R25
3⁄16	41⁄8	7	1⁄4	MDPL01807H-R25

*SDS-plus shank.

SDS-plus Drill Bit

Titen Turbo Installation Information and Additional Data¹

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)				
			3∕16	1⁄4			
Installation Information							
Drill Bit Diameter	d	in.	5/32	3⁄16			
Minimum Baseplate Clearance Hole Diameter	d _c	in.	1⁄4	5⁄16			
Minimum Hole Depth	h _{hole}	in.	21⁄4	21⁄4			
Embedment Depth	h _{nom}	in.	1 3⁄4	13⁄4			
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C _{ac}	in.	3	3			
Minimum Edge Distance	C _{min}	in.	13⁄4	13⁄4			
Minimum Spacing	S _{min}	in.	1	2			
Minimum Concrete Thickness	h _{min}	in.	31⁄4	31⁄4			
	Additional Da	ata					
Yield Strength	f _{ya}	psi	100,000				
Tensile Strength	f _{uta}	psi	125	,000			
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0131	0.0211			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

SIMPSON

Strong-Tie

LW

Titen Turbo[™] Concrete and Masonry Screw Anchor

SIMPSON

Strong-Tie

LW

Titen Turbo Tension Strength Design Data¹

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)				
			³ ⁄16	1⁄4			
Anchor Category	1, 2 or 3	—	1	l			
Embedment Depth	h _{nom}	in.	1 3⁄4	1¾			
Steel Strength in Tension							
Tension Resistance of Steel	N _{sa}	lb.	1,640	2,640			
Strength Reduction Factor — Steel Failure ²	ф _{sa}	_	0.65				
Cond	crete Breakout Strength	in Tension					
Effective Embedment Depth	h _{ef}	in.	1.25	1.20			
Critical Edge Distance	C _{ac}	in.	3	3			
Effectiveness Factor — Uncracked Concrete	k _{uncr}	—	2	4			
Modification Factor	$\Psi_{c,N}$	_	1.	0			
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}		0.65				
Pullout Strength in Tension							
Pullout Resistance Uncracked Concrete (f' $_{\rm C}$ = 2,500 psi) $^{\rm 5}$	N _{p,uncr}	lb.	1,515	1,515			
Strength Reduction Factor — Pullout Failure ⁴	$\phi_{ ho}$	_	0.0	65			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

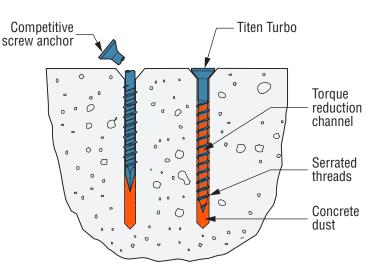
2. The tabulated value of φ_{sa} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

4. The tabulated value of φ_p applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2500)^{0.23} for ¼" screw anchors. No increase in the characteristic pullout resistance for greater compressive strengths is permitted for ¾" screw anchors.

Titen Turbo Shear Strength Design Data Into Concrete¹


Characteristic	Cumbol	Units	Nominal Anchor Diameter (in.)				
Characteristic	Symbol	Units	³ ⁄16	1⁄4			
Anchor Category	1, 2 or 3	—		1			
Embedment Depth	h _{nom}	in.	1 3⁄4	13⁄4			
Steel Strength in Shear							
Shear Resistance of Steel	V _{sa}	lb.	475	720			
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_	0.602				
	Concrete Breakout St	rength in Shear					
Outside Diameter	d _a	in.	0.129	0.164			
Load Bearing Length of Anchor in Shear	l _e	in.	1.25	1.20			
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_	0.703				
Concrete Pryout Strength in Shear							
Coefficient for Pryout Strength	k _{cp}		1	.0			
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_	0.1	70 ³			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The tabulated value of
\$\phi_{S2}\$ applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of
\$\phi\$ must be determined in accordance with ACI 318-11 Section D.4.4.

3. The tabulated values of ϕ_{CD} and ϕ_{CD} apply when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012 and 2009 IBC, ACI 318-19, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3, ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

Torque Reduction Channel to trap drilling dust where it can't obstruct thread action.

Patented Torque Reduction Channel Displaces Dust for Trouble-Free Installation SIMPSON

Strong

IBC

Titen Turbo[™] Concrete and Masonry Screw Anchor

Allowable Tension Load for Titen Turbo Screw Anchor Installed in Face of Grouted CMU^{1,2,3}

Anchor Diameter	Embedment Depth		Minimum Dimensions (in.)		Allowable Load
(in.)	(in.)	Spacing	Edge	End	(lb.)⁴
3⁄16	2	3	37⁄8	37⁄8	267
3⁄16	2	3	1 1⁄2	37⁄8	267
1⁄4	2	4	31⁄8	37⁄8	393
1⁄4	2	4	1 1⁄2	37⁄8	343

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having

reached a minimum f'_m of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Face of Grouted $CMU^{1,2,3}$

Anchor Diameter	Embedment Depth	Min	Minimum Dimensions (in.)		Direction of Loading	Allowable Load
(in.)	(in.)	Spacing	Edge	End		(lb.) ⁴
3⁄16	2	3	31%8	31⁄8	Toward edge, parallel to wall end	218
3⁄16	2	3	1½	31⁄8	Toward wall end, parallel to wall edge	218
1⁄4	2	4	31%	31⁄8	Toward edge, parallel to wall end	342
1⁄4	2	4	1½	31⁄8	Toward wall end, parallel to wall edge	283

1. The tabulates values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls

having reached a minimum $\mathrm{f^{\prime}m}$ of 1,500 psi at time of installation.

2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.

3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Tension Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

IBC

IBC

Anchor Diameter	Embedment Depth		Allowable Load		
(in.)	(in.)	Spacing	Edge	End	(lb.) ⁴
3⁄16	1 1⁄4	3	37⁄8	37⁄8	117
1/4	1 1⁄4	4	37⁄8	37⁄8	117

1. The tabulates values are for screw anchors installed in minimum 8"-wide hollow masonry walls having reached a minimum

f'm of 1,500 psi at time of installation.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Allowable Shear Load for Titen Turbo Screw Anchor Installed in Hollow CMU Wall Faces^{1,2,3}

Anchor Diameter	Embedment Depth	Mi	nimum Dimensic (in.)	ons	Direction of	Allowable Load	
(in.)	(in.)	Spacing	Edge	End	Loading	(lb.)⁴	
3⁄16	1 1⁄4	3	31/8	37⁄8	Toward edge, parallel to wall end	164	
1⁄4	1 1⁄4	4	31%8	31%8	Toward edge, parallel to wall end	190	

1. The tabulates values are for screw anchors installed in minimum 8"-wide hollow masonry walls having reached a minimum

f'm of 1,500 psi at time of installation.

2. Embedment is the thickness of the face shell.

3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.

4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

Strong-Tie

Titen® Stainless-Steel Concrete and Masonry Screw

Stainless-steel Titen screws are ideal for attaching various types of components to concrete and masonry, such as fastening electrical boxes or light fixtures. They offer the versatility of our standard Titen screws with enhanced corrosion protection. Available in hex and Phillips flat head.

Features

Mechanical Anchors

- Suitable for concrete, brick, grout-filled CMU and hollow-block applications
- Suitable for some preservative-treated wood applications
- Titen drill bits included in each box
- Available in lengths from $1\frac{1}{4}$ "-4"

Codes: Florida FL2355 (concrete and masonry)

Material: Type 410 stainless steel

Coating: Zinc plated with a protective overcoat

Installation

- Caution: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Steps must be taken to prevent inadvertent sustained loads above the listed allowable loads. Overtightening and bending moments can initiate cracks detrimental to the hardened screw's performance.
- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.
- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/2" to allow the thread tapping dust to settle and blow it clean using compressed air. Overhead installations need not be blown clean. Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling and tapping.
- 2. Position fixture, insert screw and tighten using drill fitted with a hex socket or Phillips bit.

The 410 stainless-steel Titen screw with top coat provides "medium" corrosion protection. Refer to p. 236 for more information. Recommendations are based on testing and experience at the time of publication and may change. Simpson Strong-Tie cannot provide estimated on-service life of screws.

Titen Stainless-Steel Phillips Flat Head Screw (PFSS) Titen Stainless-Steel Hex-Head Screw (HSS)

Stainless-Steel Titen Product Data

Size	Head	Model	Drill Bit Diameter	Qua	ntity
(in.)	Style	No.	(in.)	Box	Carton
1⁄4 x 1 1⁄4		TTN25114HSS		100	1600
1⁄4 x 1 3⁄4		TTN25134HSS		100	500
1⁄4 x 2 1⁄4		TTN25214HSS		100	500
1⁄4 x 2 3⁄4	Hex Head	TTN25234HSS	3⁄16	100	500
1⁄4 x 3 1⁄4	- noau	TTN25314HSS		100	400
1⁄4 x 3 3⁄4]	TTN25334HSS		100	400
1⁄4 x 4]	TTN25400HSS		100	400
1⁄4 x 1 1⁄4		TTN25114PFSS		100	1600
1⁄4 X 1 3⁄4]	TTN25134PFSS		100	500
1⁄4 x 2 1⁄4		TTN25214PFSS		100	500
1⁄4 x 2 3⁄4	Phillips Flat Head	TTN25234PFSS	3⁄16	100	500
1⁄4 x 3 1⁄4		TTN25314PFSS		100	400
1⁄4 x 3 3⁄4		TTN25334PFSS		100	400
1⁄4 x 4	1	TTN25400PFSS	1	100	400

One drill bit is included in each box.

Installation Sequence

11/2" max.

SIMPSON

Titen® Stainless-Steel Concrete and Masonry Screw

SIMPSON

Strong-Tie

						Tensio	on Load		Shear	Load
Dia. in. (mm)	Drill Bit Dia. in.	Embed. Depth in.	Critical Spacing in.	Critical Edge Dist. in.	e (13.8 MPa)		f ⁱ _c ≥ 4,000 psi (27.6 MPa) Concrete		f' _c ≥ 2,000 psi (13.8 MPa) Concrete	
(1111)		(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Allow. Ib. (kN)
1⁄4 (6.4)	3⁄16	1 (25.4)	3 (76.2)	1 ½ (38.1)	600 (2.7)	150 (0.7)	935 (4.2)	235 (1.0)	760 (3.4)	190 (0.8)
1⁄4 (6.4)	3⁄16	1 ½ (38.1)	3 (76.2)	1 ½ (38.1)	1,040 (4.6)	260 (1.2)	1,760 (7.8)	440 (2.0)	810 (3.6)	200 (0.9)

1. Maximum anchor embedment is 1 $^{1\!/}_{2}"$ (38.1 mm).

Stainless-Steel Titen Allowable Tension and

2. Minimum concrete thickness is 1.5 x embedment.

Stainless-Steel Titen Allowable Tensionand Shear Loads in Face Shell of Hollow and Grout-Filled CMU

Dia.	Drill Bit	Embed.	Critical	Critical Edge	N	8" Lightweight, Normal-Weight CM		
in. (mm)	Dia. Depth Spacing Dist.	in Dist.		Tensio	n Load	Shear Load		
(1111)		(mm)	(mm) (mm)	(mm)	Ultimate Ib. (kN)	Allow. Ib. (kN)	Ultimate Ib. (kN)	Allow. Ib. (kN)
1⁄4 (6.4)	³ ⁄16	1 (25.4)	4 (101.6)	1 ½ (38.1)	550 (2.4)	110 (0.5)	495 (2.2)	100 (0.4)

1. The tabulated allowable loads are based on a safety factor of 5.0.

2. Maximum anchor embedment is 11/2" (38.1 mm).

Length Identification Head Marks on Stainless-Steel Titen Screw Anchors (corresponds to anchor length in inches)

Length ID N	Narking on Head		А	В	C	D	E	F	G	Н	I	J
Length	From	1	1½	2	21⁄2	3	3½	4	41⁄2	5	5½	6
of Anchor (in.)	Up To But Not Including	1½	2	2½	3	3½	4	4½	5	5½	6	6½

For SI: 1 inch = 25.4 mm.

Titen HD[®] Threaded Rod Hanger

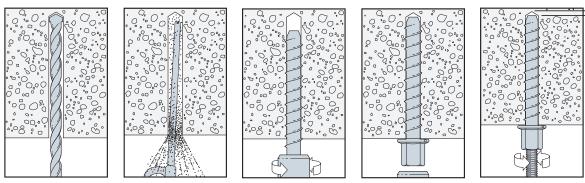
The Titen HD threaded rod hanger is a high-strength screw anchor designed to suspend threaded rod from concrete slabs, beams or concrete over steel in order to hang pipes, cable trays and other HVAC equipment. The anchor offers low installation torque with no secondary setting, and has been tested to offer industry-leading performance in cracked and uncracked concrete — even in seismic loading conditions.

Features

- Thread design undercuts to efficiently transfer the load to the base material
- Serrated cutting teeth and patented thread design enable quick and easy installation
- Specialized heat-treating process creates tip hardness to facilitate cutting while the anchor body remains ductile
- Designed to install using a rotary hammer or hammer drill with standard ANSI drill bits — no special tools required
- Installs with standard-sized sockets
- Use in dry interior environments only
- Code listed for cracked and uncracked concrete applications under the 2015, 2012 and 2009 IBC/IRC, per ICC-ES ESR-2713
- FM listed

Codes: ICC-ES ESR-2713;

City of LA Supplement within ESR-2713; Florida FL15730 (concrete and masonry); Factory Mutual 3031136 (THD50234RH) and 3061897 (THDB37158RH)


Material: Carbon steel

Coating: Zinc plated

Installation

- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with base material and will reduce the anchor's load capacity.
- **Caution:** Use a Titen HD rod hanger one time only. Installing the anchor multiple times may result in excessive thread wear and reduce load capacity.
- Drill a hole using the specified diameter carbide bit into the base material to the specified embedment depth plus minimum hole depth overdrill (see the product data table on the next page).
- 2. Blow the hole clean of dust and debris using compressed air.
- Install with a torque wrench, driver drill, hammer drill or cordless impact wrench.
- 4. Fully insert threaded rod.

Installation Sequence

SIMPSON

Strong-Tie

THD50234RH (%"-dia. shank)

 THDB37158RH
 THDB25158RH

 (¼"-dia. shank)
 (¼"-dia. shank)

Overdrill depth (see product data table on the next page)

136

Titen HD[®] Rod Hanger Design Information — Concrete

SIMPSON Strong-Tie

Titen HD Threaded Rod Hanger Product Data

	Size	Model	Accepts Rod Size	Drill Bit	Wrench	Min.	Hole Depth Overdrill	Quantity	
	(in.)	No.	(in.)	lin.)	Dia. Size Embed. (in.) (in.) (in.)		(in.)	Вох	Carton
Cracked	¼ x 1%	THDB25158RH	1⁄4-20	1⁄4	3⁄8	1%	1⁄8	100	500
FM APPRIVED Cracked	3∕8 x 15⁄8	THDB37158RH	¾-16	1⁄4	1/2	1%	1⁄8	50	200
FM APPRIVED Concrete	½ x 2¾	THD50234RH	1⁄2-13	3⁄8	11/16	21⁄2	1⁄4	50	100

Titen HD Threaded Rod Hanger Installation Information and Additional Data¹

			Mode	el No.
Characteristic	Symbol	Units	THDB25158RH THDB37158RH	THD50234RH
	Installation	n Information		
Rod Hanger Diameter	d _o	in.	1⁄4 or 3⁄8	1⁄2
Drill Bit Diameter	d _{bit}	in.	1⁄4	3⁄8
Maximum Installation Torque ²	T _{inst,max}	ftlb.	24	50
Maximum Impact Wrench Torque Rating ³	T _{impact,max}	ftlb.	125	150
Minimum Hole Depth	h _{hole}	in.	1¾	3
Embedment Depth	h _{nom}	in.	1 %	2¾
Effective Embedment Depth	h _{ef}	in.	1.19	1.77
Critical Edge Distance	C _{ac}	in.	3	211/16
Minimum Edge Distance	C _{min}	in.	1 1⁄2	1¾
Minimum Spacing	S _{min}	in.	1 1⁄2	3
Minimum Concrete Thickness	h _{min}	in.	31⁄4	41⁄4
	Anch	or Data		
Yield Strength	f _{ya}	psi	100,000	97,000
Tensile Strength	f _{uta}	psi	125,000	110,000
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.042	0.099
Axial Stiffness in Service Load Range — Uncracked Concrete	β _{uncr}	lb./in.	202,000	672,000
Axial Stiffness in Service Load Range — Cracked Concrete	β _{cr}	lb./in.	173,000	345,000

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17,

ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. T_{inst,max} is the maximum permitted installation torque for installations using a torque wrench.

3. T_{impact,max} is the maximum permitted torque rating for impact wrenches.

Titen HD[®] Rod Hanger Design Information — Concrete

Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in Concrete¹

			Mode	el No.						
Characteristic	Symbol	Units	THDB25158RH THDB37158RH	THD50234RH						
Anchor Category	1, 2 or 3	_		1						
Embedment Depth	h _{nom}	in.	1%	21⁄2						
Steel Strength in Tension (ACI	Steel Strength in Tension (ACI 318-19 17.6.1, ACI 318-14 17.4.1 or ACI 318-11 Section D.5.1)									
Tension Resistance of Steel	N _{sa}	lb.	5,195	10,890						
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_	0.65							
Concrete Breakout Strength in Tension (ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 Section D.5.2)										
Effective Embedment Depth	h _{ef}	in.	1.19	1.77						
Critical Edge Distance	C _{ac}	in.	3	211/16						
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_	30	24						
Effectiveness Factor — Cracked Concrete	k _{cr}	—	17							
Modification Factor	$\Psi_{c,N}$	_	1	.0						
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_	0.	65						
Pullout Strength in Tension (AC	I 318-19 17.6.3, ACI 318	-14 17.4.3 or ACI 318-1	1 Section D.5.3)							
Pullout Resistance — Uncracked Concrete ($f'_c = 2,500 \text{ psi}$)	N _{p,uncr}	lb.	N/A ⁴	2,0254						
Pullout Resistance — Cracked Concrete ($f'_c = 2,500$ psi)	N _{p,cr}	N _{p,cr} Ib. I		1,2354						
Strength Reduction Factor — Pullout Failure ²	rength Reduction Factor — Pullout Failure ² ϕ_p — 0.65									
Tension Strength for Seismic Application	s (ACI 318-19 17.10.3, A	Cl 318-14 17.2.3.3 or A	CI 318-11 Section D.3.3	.3)						
Nominal Pullout Strength for Seismic Loads ($f'_c = 2,500 \text{ psi}$)	N _{p,eq}	lb.	N/A ³	1,2354						
Strength Reduction Factor — Pullout Failure ²	ϕ_{eq}	_	0.	65						

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

3. As described in this report, N/A denotes that pullout resistance does not govern and does not need to be considered.

4. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (fr₀/2,500)^{0.5}.

SIMPSON

Strong-I

Titen HD[®] Rod Hanger Design Information — Concrete

Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in the Lower and Upper Flute of Normal-Weight or Sand-Lightweight Concrete Through Steel Deck^{1,2,5,6}

			Model No.						
		Units	Lowei	Upper Flute					
Characteristic	Symbol		Figure 2	Figure 1	Figure 2				
			THDB25158RH THDB37158RH	THD50234RH	THDB25158RH THDB37158RH				
Minimum Hole Depth	h _{hole}	in.	13⁄4	3	1 3⁄4				
Embedment Depth	h _{nom}	in.	15%	21⁄2	1 5⁄8				
Effective Embedment Depth	h _{ef}	in.	1.19	1.77	1.19				
Pullout Resistance – Cracked Concrete ^{2,3,4}	N _{p,deck,cr}	lbf	420	870	655				
Pullout Resistance – Uncracked Concrete ^{2,3,4}	N _{p,deck,uncr}	lbf	995	1,430	1,555				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

 Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{crspecified}/3,000 psi)^{0.5}.

3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies,

as shown in Figure 1 or Figure 2, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318-19 Section 17.6.3.2.1, ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight-concrete-over-steel-deck floor and roof assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}.

5. Minimum distance to edge of panel is 2h_{ef}.

6. The minimum anchor spacing along the flute must be the greater of $3h_{ef}$ or 1.5 times the flute width.

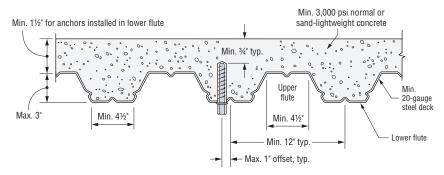


Figure 1. THD50234RH Installation in Concrete over Steel Deck

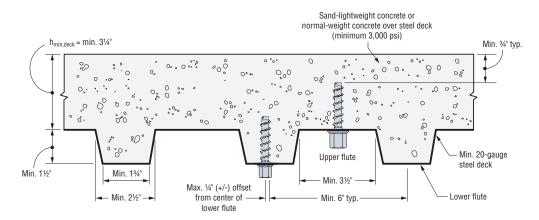


Figure 2. THDB25158RH and THDB37158RH Installation in Concrete over Steel Deck

SIMPSO

Strong

IBC

Steel Rod Hanger Threaded Rod Anchor System

The Simpson Strong-Tie steel rod hanger is a one-piece fastening system for suspending ¼" and %" threaded rod. Vertical rod hangers are designed to suspend threaded rod in overhead applications from steel joists and beams. Horizontal rod hangers are available for applications requiring installation into the side of joists, columns and overhead members. Both rod hangers provide attachment points for use in pipe hanging, fire protection, electrical conduit and cable-tray applications. Recommended for use in dry, interior, non-corrosive environments only.

Features

Mechanical Anchors

- Threaded anchors for rod-hanging applications in steel members
- Suitable to be installed horizontally or vertically in overhead applications
- Self-drilling tip, no predrilling required
- Custom-matched nut driver sets anchor to optimal depth (sold separately)

Codes: FM 3058980; UL File Ex3605

Material: Carbon steel

Coating: Zinc plated

Steel Rod Hangers

Rod Size				Steel	Qua	ntity	
(in.)	Size	No.	Point	Application	Thickness Range	Box	Carton
1⁄4–20	1⁄4"—20 x 1" with nut	RSH25100N	#3		20 ga. — 12 ga.		
1⁄4-20	#12–20 x 1 ½"	RSH25112-5	#5	Herimontol	20 ga. – ¼"	05	050
3%−16	1⁄4"–20 x 1" with nut	RSH37100N	#3	Horizontal	20 ga. – 12 ga.	25	250
3∕8—16	#12–20 x 1 ½" with nut	RSH37112N-5	#5		20 ga. – ¼"		
1⁄4—20	1⁄4"–20 x 1"	RSV25100	#3		20 ga. – 12 ga.		
³⁄8−16	1⁄4"—20 x 1" with nut	RSV37100N	#3		20 ga. – 12 ga.		
‰−16	1⁄4"-20 x 1 1⁄2"	RSV37112	#3	Marshi a a 1	20 ga. – 14 ga.	05	050
3∕8—16	1⁄4"–20 x 1 1⁄2" with nut	RSV37112N	#3	Vertical	20 ga. – 14 ga.	25	250
3∕8−16	#12–20 x 1 ½" with nut	RSV37112N-5	#5		20 ga. – ¼"		
‰−16	1⁄4"–20 x 2"	RSV37200	#3		20 ga. – 14 ga.		

Nut Driver

Custom-matched nut driver sets the rod hangers to optimal depth every time.

Model	Description	Qua	ntity	
No.	Description	Box	Carton	
RND62	Nut driver	10	60	

RSH Horizontal Steel Rod Hangers

RSV Vertical Steel Rod Hangers

Steel Rod Hanger Threaded Rod Anchor System

Ultimate and Allowable Loads for Vertical Steel Rod Hangers

			Loads in Various Steel Thicknesses											UL	FM			
					43 mil	(18 ga.)	54 mil (16 ga.)		68 mil (14 ga.)) 97 mil (12 ga.)) ³ ⁄16''		1⁄4"		Listed Steel	Listed Steel
No.	(in.)	(in.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Thickness Range	Thickness Range
RSV25100	1⁄4–20	1⁄4 x 1	355	130	575	190	880	325	1,110	410	2,050	760	—	_	—	_	—	—
RSV37100N3	‰−16	1⁄4 x 1	1,370	505	1,980	730	3,405	1,260	3,890	1,440	3,900	1,440	_	_	—	_	20 ga. – 12 ga.	16 ga. – 12 ga.
RSV37112	‰—16	1⁄4 x 1 1⁄2	355	130	575	190	880	325	1,110	410	—	—	—	_		—	—	—
RSV37112N3	‰−16	1⁄4 x 1 1⁄2	1,370	505	1,980	730	3,405	1,260	3,890	1,440	—	—	_	_	—	_	20 ga. – 14 ga.	16 ga. – 14 ga.
RSV37200	‰−16	1⁄4 x 2	355	130	575	190	880	325	1,110	410	_	—	_	_		_	—	_
RSV37112N-53	‰−16	#12-20 x 1 ½	1,370	505	1,980	730	2,185	730	2,185	730	2,560	940	3,290	1,095	3,290	1,095	20 ga. – 1⁄4"	16 ga. – ¼"

Footnotes below apply to both tables.

Ultimate and Allowable Loads for Horizontal Steel Rod Hangers

				Loads in Various Steel Thicknesses													UL	FM
Model	Rod Size		33 mil	(20 ga.)	43 mil	(18 ga.)	54 mil	(16 ga.)	68 mil	(14 ga.)	97 mil	(12 ga.)	3⁄1	16 ^{''}	1/.	4''	Listed Steel	Listed Steel
No.	(in.) (in.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Ult. (lb.)	Allow. (lb.)	Thickness Range	Thickness Range	
RSH25112-5	1⁄4–20	#12–20 x 1½	420	155	685	255	835	310	930	310	1,240	425	1,270	425	1,350	500	—	—
RSH25100N3	1⁄4–20	1⁄4 x 1	1,150	385	1,235	455	1,235	455	1,235	455	1,480	545	—	_	_	—	—	—
RSH37100N3	‰—16	1⁄4 x 1	1,575	525	1,865	665	1,865	665	1,865	665	1,865	665	_	_		_	18 ga. – 12 ga.	16 ga. – 12 ga.
RSH37112N-53	‰−16	#12–20 x 1½	1,490	550	1,490	550	1,490	550	1,490	550	1,490	550	1,490	550	1,490	550	18 ga. – ¼"	16 ga. – ¼"

1. Allowable loads are based on a factor of safety calculated in accordance with AISI S100 Section F1.

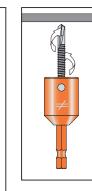
2. Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.

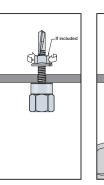
3. Model requires installation with supplied retaining nut.

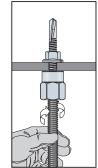
4. Values are based on steel members with the following minimum yield and tensile strengths:

- 43 mil (18 ga.) and 33 mil (20 ga.): F_{y} = 33 ksi and F_{u} = 45 ksi

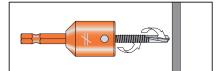
+ 54 mil (16 ga.) to 97 mil (12 ga.): F_y = 50 ksi and F_u = 65 ksi

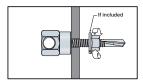

5. Minimum edge distance must be 1" and minimum spacing must be 2".

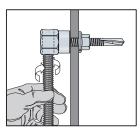

Acceptability of base material deflection due to imposed loads must be investigated separately.


Vertical Installation

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.







Horizontal Installation

Strong-T

Wood Rod Hanger Threaded Rod Anchor System

The wood rod hanger from Simpson Strong-Tie is a one-piece fastening system for suspending ¼" or %" threaded rod. Vertical rod hangers are designed to suspend threaded rod in overhead applications from wood members. Horizontal rod hangers are available for applications requiring installation into the side of joists, columns and overhead members. Both rod hangers provide attachment points for use in pipe hanging, fire protection, electrical conduit and cable-tray applications. Recommended for use in dry, interior, non-corrosive environments only.

Features

- Threaded anchors for rod-hanging applications in wood
- Suitable for installation horizontally or vertically in overhead applications
- No predrilling required
- Type-17 point provides for fast starts

Codes: FM 3058980;

UL File Ex3605

Material: Carbon steel

Coating: Zinc plated

RWH Horizontal Wood Rod Hanger

RWV

Vertical Wood

Rod Hanger

Type-17 point for use in wood

Wood Rod Hangers

Rod Size	Size	Model	Application	Point	Quantity		
(in.)	(in.)	No.	Аррисации	Style	Box	Carton	
1⁄4–20	1⁄4 x 2	RWV25200					
³⁄8−16	1⁄4 x 1	RWV37100	Vertical	Tupo 17	25	250	
³⁄8−16	1⁄4 x 2	RWV37200		Type 17		250	
3∕8−16	⁵⁄16 X 21⁄2	RWV37212					
1⁄4–20	1⁄4 x 1	RWH25100					
3∕8−16	1⁄4 x 2	RWH37200	Horizontal	Type 17	25	250	
3⁄8−16	⁵ ∕16 X 21⁄2	RWH37212					

Wood Rod Hanger Design Information - Wood

Tension Wood Rod Hanger Allowable Loads

Model	Nodel Rod Size Size		Minimum Edge	Minimum End	Minimum Spacing	Allow	able Tension L (lb.)	Pipe Size (in.)		
No. (in.)		(in.)	Distance (in.)	Distance (in.)	(in.)	DF	SP	SPF	UL Approval	FM Approval
RWV25200	1⁄4–20	1⁄4 x 2	3⁄4	2¾	2¾	375	435	310	—	—
RWV37100	³ %–16	1⁄4 x 1				155	190	105	—	—
RWV37200	³⁄8−16	1⁄4 x 2				375	435	310	3	—
RWV37212	3∕8−16	5∕16 X 2 1⁄2		31⁄4	3¼	605	590	495	4	4

1. Load values are based on full shank penetration into the wood member.

2. Allowable loads may be increased by CD = 1.6 for wind or earthquake.

3. Allowable loads are based on a factor of safety of 5.0.

4. Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.

5. Allowable loads are based on Douglas Fir-Larch (DF), Southern Pine (SP) and Spruce-Pine-Fir (SPF) wood members

having a minimum specific gravity of 0.50, 0.55 and 0.42, respectively.

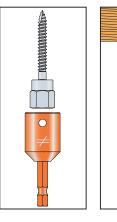
Shear Wood Rod Hanger Allowable Loads

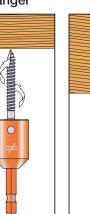
Model	Rod Size	Size	Minimum Edge	Minimum End	Minimum	Allo	Pipe Size (in.)		
No.	(in.)	(in.)	Distance (in.)	Distance (in.)	Spacing (in.)	DF	SP	SPF	UL Approval
RWH25100	1⁄4–20	1⁄4 x 1	1	23⁄4	2¾	110	135	85	_
RWH37200	3∕8−16	1⁄4 x 2	01/			240	225	330	3
RWH37212	³‰−16	₅√16 X 21⁄2	21/2	31⁄4	31⁄4	230	265	240	3

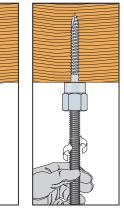
1. Load values are based on full shank penetration into the wood member.

2. Allowable loads may not be increased for short-term loading.

3. Allowable loads are based on a factor of safety of 5.0.

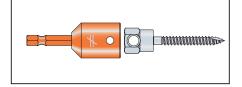

4. Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.

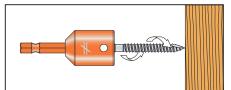

Installation Sequence

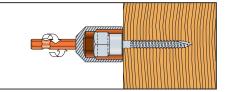

- 1. Attach RND62 nut driver to a drill.
- 2. Insert rod hanger into the RND62 nut driver.
- Using rotation-only mode, drive rod hanger until it contacts the surface. Do not over-tighten. RND62 nut driver will disengage the rod hanger at the appropriate depth to prevent over-driving.
- 4. Insert threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

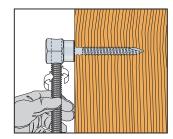
Vertical Wood Rod Hanger

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.






Horizontal Wood Rod Hanger


5. Allowable loads are based on Douglas Fir–Larch (DF), Southern Pine (SP) and Spruce-Pine-Fir (SPF) wood members having a minimum

specific gravity of 0.50, 0.55 and 0.42, respectively.

•

SIMPSO

Strong-

Drop-In Internally Threaded Anchor (DIAB)

SIMPSON Strong-Tie

Expansion shell anchors for use in solid base materials

Simpson Strong-Tie introduces a redesigned Drop-In Anchor (DIAB) that provides easier installation into base materials. Improved geometry in the preassembled expansion plug improves setting capability so the anchor installs with 40% fewer hammer strikes than previous versions. These displacement-controlled expansion anchors are easily set by driving the plug toward the bottom of the anchor using either the hand- or power-setting tools. DIAB anchors feature a positive-set marking indicator at the top of the anchor — helping you see more clearly when proper installation has taken place.

Use a Simpson Strong-Tie fixed-depth stop bit to take the guesswork out of drilling to the correct depth. The fluted design of the tip draws debris away from the hole during drilling, allowing for a cleaner installation.

Key features

- · Positive set marking system indicates when anchor is properly set
- Lipped drop-in version available for flush installation
- · Hand- and power-setting tools available for fast, easy and economical installation
- Fixed-depth stop bit helps you drill to the correct depth every time
- Available in coil-thread version for 1/2" and 3/4" coil-thread rod

Codes: FM 3053987; UL File Ex3605; Multiple DOT listings; Meets the requirements of Federal Specification A-A-55614, Type 1

Material: Carbon steel

Coating: Zinc plated

Drop-In

Lipped Drop-In

Coil-Thread Drop-In

Fixed-Depth Drill Bits for DIAB

Model No.	Drill Bit Diameter (in.)	Drill Depth (in.)	Drop-In Anchor (in.)
MDPL037DIA	3⁄8	1 1⁄16	1⁄4
MDPL050DIA	1/2	1 11/16	3⁄8
MDPL062DIA	5⁄8	21⁄16	1/2

Drill Bit

Anchor being set with hand setting tool.

Anchor being set with SDS setting tool.

Positive set indicator.

Drop-In Internally Threaded Anchor (DIAB)

Drop-In Anchor

Rod Size	Model	Model Drill Bit Bolt Body No		Thread	Quantity		
(in.)	No.	lin.)	(per in.)	(in.)	Length (in.)	Box	Carton
1⁄4	DIAB25	3⁄8	20	1	3⁄8	100	500
3⁄8	DIAB37	1⁄2	16	1 %16	5⁄8	50	250
1/2	DIAB50	5⁄8	13	2	3⁄4	50	200
5⁄8	DIAB62	7/8	11	21⁄2	1	25	100
3⁄4	DIAB75	1	10	31⁄8	1¼	20	80

Lipped Drop-In Anchor

Rod Size	Model	Model Drill Bit Bolt Body Dia. Threads Length		Thread Length	Quantity		
(in.)	No.	(in.)	(per in.)			Box	Carton
1⁄4	DIABL25	3⁄8	20	1	3⁄8	100	500
3⁄8	DIABL37	1/2	16	1 %16	5⁄8	50	250
1/2	DIABL50	5⁄8	13	2	3⁄4	50	200

Coil-Thread Drop-In Anchor

Rod Size	Model	Drill Bit Dia.	Bolt	Body	Thread	Qua	ntity
(in.)	No.	(in.)	Threads (per in.)	Length (in.)	Length (in.)	Box	Carton
1/2	DIAB50C1	5⁄8	6	2	3⁄4	50	200
3⁄4	DIAB75C1	1	41⁄2	31⁄8	11⁄4	20	80

1. DIAB50C and DIAB75C accept 1/2" and 3/4" coil-thread rod, respectively.

Drop-In Anchor Hand-Setting Tool

Model No.	Description	Box Quantity	Carton Qty.
DIABST25	Setting tool for use with Drop-In models DIAB25, DIABL25	10	50
DIABST37	Setting tool for use with Drop-In models DIAB37, DIABL37	10	50
DIABST50	Setting tool for use with Drop-In models DIAB50, DIABL50, DIAB50C	10	50
DIABST62	Setting tool for use with Drop-In model DIAB62	5	25
DIABST75	Setting tool for use with Drop-In models DIAB75, DIAB75C	5	20

1. Setting tools sold separately. Tools may be ordered by the piece.

Drop-In Anchor Power-Setting Tool (SDS-plus®)

Model No.	Description	Box Quantity	Carton Qty.
DIABST25-SDS	Power-setting tool for use with Drop-In models DIAB25, DIABL25	10	50
DIABST37-SDS	Power-setting tool for use with Drop-In models DIAB37, DIABL37	10	50
DIABST50-SDS	Power-setting tool for use with Drop-In models DIAB50, DIABL50, DIAB50C	10	50

1. Setting tools sold separately. Tools may be ordered by the piece.

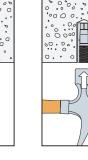
Drop-In

Lipped Drop-In

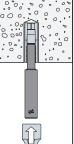
Coil-Thread Drop-In

Hand-Setting Tool

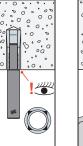
Power-Setting Tool

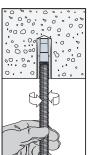


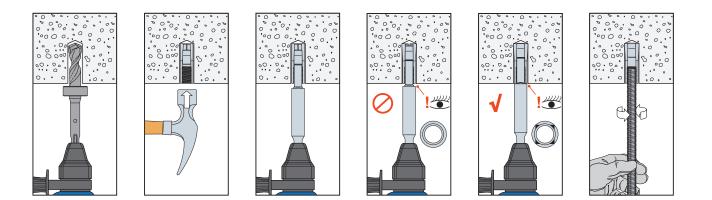
Drop-In Internally Threaded Anchor (DIAB)


DIAB Manual Installation


Caution: Oversized holes will reduce the anchors load capacity


- Drill a hole in the base material using the appropriate diameter carbide drill bit or fixed-depth bit as specified in the table. Drill the hole to the specified embedment. For fixed-depth bits, drill the hole until the shoulder of the bit contacts the surface of the base material. Then blow the hole clean of dust and debris using compressed air. Overhead installations need not be blown clean.
- 2. Insert the anchor into the hole. Tap with hammer until flush against the surface.
- 3. Using the designated Drop-In setting tool, drive expander plug towards the bottom of the anchor until the shoulder of the setting tool makes contact with the top of the anchor. When properly set, four indentations will be visible on the top of the anchor indicating full expansion.
- 4. Insert bolt or threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.





DIAB SDS Installation

Caution: Oversized holes will reduce the anchors load capacity

- Drill a hole in the base material using the appropriate diameter carbide drill bit or fixed-depth drill bit as specified in the table. Drill the hole to the specified embedment. For fixed-depth bits, drill the hole until the shoulder of the bit contacts the surface of the base material. Then blow the hole clean of dust and debris using compressed air. Overhead installations need not be blown clean.
- 2. Insert the anchor into the hole. Tap with hammer until flush against the surface.
- 3. Attach SDS Drop-In setting tool to a drill. Drive expander plug towards the bottom of the anchor using only hammer mode until the shoulder of the setting tool makes contact with the top of the anchor. When properly set, four indentations will be visible on the top of the anchor indicating full expansion.
- 4. Insert bolt or threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Drop-In (DIAB) Design Information — Concrete

DIAB Allowable Tension and Shear Loads in Normal-Weight Concrete

	Rod		Embed	Critical	Critical	f	° _c ≥ 2,500 ps	si (17.2 MPa	ı)	1	° _c ≥ 4,000 ps	si (27.6 MPa	ı)
Model	Size	Drill Bit Dia.	Depth	Edge Dist.	Spacing	Tensio	n Load	Shear Load		Tension Load		Shear Load	
No.	in. (mm)	in.	in. (mm)	in. (mm)	in. (mm)	Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)
DIAB25 DIABL25	1⁄4 (6.4)	3⁄8	1 (25)	3 (76)	4 (102)	1,565 (7.0)	390 (1.7)	1,840 (8.2)	460 (2.0)	1,965 (8.7)	490 (2.2)	1,840 (8.2)	460 (2.0)
DIAB37 DIABL37	3⁄8 (9.5)	1⁄2	1 %16 (40)	4½ (114)	6 (152)	2,950 (13.1)	740 (3.3)	4,775 (21.2)	1,195 (5.3)	3,910 (17.4)	980 (4.4)	4,775 (21.2)	1,195 (5.3)
DIAB50 DIABL50 DIAB50C	½ (12.7)	5⁄8	2 (51)	6 (152)	8 (203)	5,190 (23.1)	1,300 (5.8)	6,760 (30.1)	1,690 (7.5)	6,515 (29.0)	1,630 (7.3)	6,760 (30.1)	1,690 (7.5)
DIAB62	5⁄8 (15.9)	7⁄8	21⁄2 (64)	7½ (191)	10 (254)	7,010 (31.2)	1,755 (7.8)	12,190 (54.2)	3,050 (13.6)	9,060 (40.3)	2,265 (10.1)	12,190 (54.2)	3,050 (13.6)
DIAB75 DIAB75C	3⁄4 (19.1)	1	3½ (79)	9 (229)	12½ (318)	9,485 (42.2)	2,370 (10.5)	15,960 (71.0)	3,990 (17.7)	11,660 (51.9)	2,915 (13.0)	15,960 (71.0)	3,990 (17.7)

1. The allowable loads listed are based on a safety factor of 4.0.

2. Refer to allowable load-adjustment factors for edge distance and spacing on p. 148.

3. Allowable loads may be linearly interpolated between concrete strength listed.

4. The minimum concrete thickness is 11/2 times the embedment depth.

5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

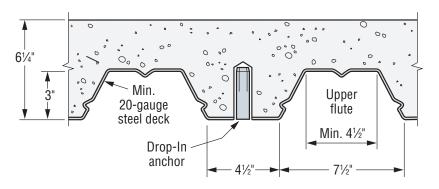
DIAB Allowable Tension and Shear Loads

in Soffit of Sand-Lightweight Concrete over Steel Deck

			Embed	Critical	Critical	f' _c ≥ 3,000. psi (20.7 MPa)					
Model	Rod Size in.	Drill Bit Dia.	Depth	End Dist.6		Tensio	n Load	Shear Load			
No.	(mm)	in.	in. (mm)			Ultimate Ib. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)		
DIAB37 DIABL37	3%8 (9.5)	1/2	1 %16 (40)	4½ (114)	6 (152)	2,895 (12.9)	725 (3.2)	3,530 (15.7)	885 (3.9)		
DIAB50 DIABL50 DIAB50C	½ (12.7)	5⁄8	2 (51)	6 (152)	8 (203)	4,100 (18.2)	1,025 (4.6)	4,685 (20.8)	1,170 (5.2)		

1. The allowable loads listed are based on a safety factor of 4.0.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.


2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for edge distance and spacing on p. 148.

4. Anchors were installed in the center of the bottom flute of the steel deck.

5. Steel deck must be minimum 20-gauge thick with minimum yield strength of 33 ksi.

6. Critical end distance is defined as the distance from end of the slab in the direction of the flute.

Lightweight Concrete over Steel Deck

SIMPSO

Strong-I

IBC

Drop-In (DIAB) Design Information — Concrete

Allowable Load-Adjustment Factors for Drop-In Anchor (DIAB) in Normal-Weight Concrete and Sand-Lightweight Concrete over Steel Deck: Edge Distance and Spacing, Tension and Shear Loads

D' - 1

How to use these charts:

1. The following tables are for reduced edge distance and spacing.

2. Locate the anchor size to be used for either a tension and/or a shear

load application.

3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f.)

Euge D	Istance	161121011	(I _C)				
Edge	Size	1⁄4 3	3⁄8	1/2	5⁄8	3⁄4	
Dist.	Ccr	3	41⁄2	6	71/2	³ ⁄4 9	IBC
Cact	C _{min}	13⁄4	2%	31/2	43%	51⁄4	
(in.)	f _{cmin}	0.77	0.77	0.77	0.77	0.77	
13⁄4		0.77					201202
2		0.82					
21/2		0.91					
25⁄8		0.93	0.77				
3		1.00	0.82				
31/2			0.88	0.77			
4			0.94	0.82			
43⁄8			0.98	0.85	0.77		
41/2			1.00	0.86	0.78		(+-)i
5				0.91	0.82		(CALLON AND
51⁄4				0.93	0.83	0.77	
5½ 6				0.95	0.85	0.79	
6				1.00	0.89	0.82	
61/2					0.93	0.85	
7					0.96	0.88	
71/2					1.00	0.91	
8						0.94	
81/2						0.97	
9						1.00	

1. cact = actual edge distance at which anchor is installed (inches).

2. ccr = critical edge distance for 100% load (inches).

3. c_{min} = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{CCT} = adjustment factor for allowable load at critical edge distance.

 f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

Spacing Tension (f_s)

Spacing	Size	1/4	3⁄8	1/2	5⁄8	3⁄4
	S _{Cr}	4	6	8	10	121⁄2
s _{act} (in.)	Smin	1½	21/4	3	3¾	43⁄4
	f _{smin}	0.72	0.72	0.80	0.80	0.80
11/2		0.72				
2		0.78				
21⁄4		0.80	0.72			
2½ 3		0.83	0.74			
3		0.89	0.78	0.80		
31/2		0.94	0.81	0.82		
3¾		0.97	0.83	0.83	0.80	
4		1.00	0.85	0.84	0.81	
41/2			0.89	0.86	0.82	
43⁄4			0.91	0.87	0.83	0.80
5			0.93	0.88	0.84	0.81
51⁄2			0.96	0.90	0.86	0.82
6			1.00	0.92	0.87	0.83
61⁄2				0.94	0.89	0.85
7				0.96	0.90	0.86
71/2				0.98	0.92	0.87
8				1.00	0.94	0.88
81⁄2					0.95	0.90
9					0.97	0.91
91⁄2					0.98	0.92
10					1.00	0.94
101/2						0.95
11						0.96
11½						0.97
12						0.99
121/2						1.00

1. s_{act} = actual spacing distance at which anchor is installed (inches).

2. s_{cr} = critical spacing distance for 100% load (inches).

 $3. s_{min}$ = minimum spacing distance for reduced load (inches).

4. f_s = adjustment factor for allowable load at actual spacing distance.

5. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

6. f_{smin} = adjustment factor for allowable load at minimum spacing distance. 7. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column. 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

()

Edge	Size	1/4	3⁄8	1/2	5⁄8	3/4
Dist.	Ccr	3	41/2	6	71⁄2	9
Cact	Cmin	13/4	2%	31/2	4%	51/4
(in.)	f _{cmin}	0.54	0.54	0.64	0.64	0.64
13⁄4		0.54				
2		0.63				
21⁄2		0.82				
25⁄8		0.86	0.54			
3		1.00	0.63			
31⁄2			0.75	0.64		
4			0.88	0.71		
43⁄8			0.97	0.77	0.64	
41/2			1.00	0.78	0.65	
5				0.86	0.71	
51⁄4				0.89	0.74	0.64
51/2				0.93	0.77	0.66
6				1.00	0.83	0.71
6½					0.88	0.76
7					0.94	0.81
71/2					1.00	0.86
8						0.90
81⁄2						0.95
9						1.00

1. c_{act} = actual edge distance at which anchor is installed (inches).

2. c_{cr} = critical edge distance for 100% load (inches).

3. c_{min} = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

Spacing Shear (f_s)

Spacing	Size	1⁄4	3⁄8	1/2	5⁄8	3⁄4
	S _{cr}	4	6	8	10	121/2
s _{act} (in.)	Smin	1½	21⁄4		3¾	43/4
	f _{smin}	1.00	1.00	1.00	1.00	1.00
11/2		1.00				
2		1.00				
21⁄4		1.00	1.00			
21/2		1.00	1.00			
3		1.00	1.00	1.00		
31/2		1.00	1.00	1.00		
3¾		1.00	1.00	1.00	1.00	
4		1.00	1.00	1.00	1.00	
41/2			1.00	1.00	1.00	
43⁄4			1.00	1.00	1.00	1.00
5			1.00	1.00	1.00	1.00
51/2			1.00	1.00	1.00	1.00
6			1.00	1.00	1.00	1.00
61/2				1.00	1.00	1.00
7				1.00	1.00	1.00
71/2				1.00	1.00	1.00
8				1.00	1.00	1.00
81/2					1.00	1.00
9					1.00	1.00
91⁄2					1.00	1.00
10					1.00	1.00
101/2						1.00
11						1.00
111/2						1.00
12						1.00
121/2						1.00

1. s_{act} = actual spacing distance at which anchor is installed (inches).

2. s_{cr} = critical spacing distance for 100% load (inches).

3. s_{min} = minimum spacing distance for reduced load (inches)

4. f_s = adjustment factor for allowable load at actual spacing distance.

5. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

- 6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

SIMPSOI

<u>Strong</u>-Tie

Drop-In Short Internally Threaded Anchor (DIAS)

Drop-in anchors are internally threaded drop-in expansion anchors for use in flush-mount applications in solid base materials. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Features

- Lipped edge eliminates need for precisely drilled hole depth
- Hand- and power-setting tools available for fast, easy and economical installation
- Fixed-depth stop bit helps you drill to the correct depth every time
- Short length enables shallow embedment to help avoid drilling into rebar or pre-stressed/post-tensioned cables
- Short drop-in anchors include a setting tool compatible with the anchor to ensure consistent installation

Material: Carbon steel

Coating: Zinc plated

Codes: DOT; Factory Mutual 3017082; Underwriters Laboratories File Ex3605

Installation

- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/8" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- 2. Insert designated anchor into hole. Tap with hammer until flush against surface.
- Using the designated drop-in setting tool, drive expander plug toward the bottom of the anchor until shoulder of setting tool makes contact with the top of the anchor.
- 4. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

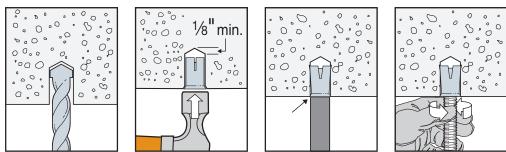
DIAS Short Drop-In

Material Specifications

Anchor	Component Material
Component	Zinc-Plated Carbon Steel
Anchor Body	Meets minimum 70,000 psi tensile
Expander Plug	Meets minimum 50,000 psi tensile
Thread	UNC/Coil-thread

Fixed-Depth Drill Bits for DIAS

Model No.	Drill Bit Diameter (in.)	Drill Depth (in.)	Drop-In Anchor (in.)
MDPL050DIAS	1/2	¹³ ⁄16	3⁄8
MDPL062DIAS	5⁄8	1 1⁄16	1/2


Fixed-Depth Drill Bit

Short Drop-In Anchor Product Data

Rod	Model	Model Drill Bit Bolt Body Thread		Quantity			
Size (in.)	No.	Diameter (in.)	Threads (per in.)	Length (in.)	Length (in.)	Box	Carton
3⁄8	DIA37S1	1/2	16	3⁄4	1⁄4	100	500
1/2	DIA50S1	5⁄8	13	1	5⁄16	50	200

1. A dedicated setting tool is included with each box of DIA37S and DIA50S.

Installation Sequence

Mechanical Anchors

Drop-In Short (DIAS) Design Information — Concrete

Allowable Tension and Shear Loads for

3/8" and 1/2" Short Drop-In Anchor in Sand-Lightweight Concrete Fill over Steel Deck

SIMPSON

	Rod	Drill						te or Upper Flute of Steel Deck, oncrete (20.7 MPa)		
Model No.	Size	Bit Dia.	Depth	End	End	Spacing	Tensio	n Load	Shear	Load
no.	(in.)	(in.)	(in.)	Distance (in.)	Distance (in.) (in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	
DIA37S	3⁄8	1/2	3⁄4	6	7	8	1,345	335	1,650	410
DIA50S	1⁄2	5⁄8	1	8	9%	10%	1,710	430	2,070	515

1. The allowable loads listed are based on a safety factor of 4.0.

- 2. Allowable loads may not be increased for
- short-term loading due to wind or seismic forces. 3. Refer to allowable load-adjustment factors for
- edge distances and spacing on p. 152. 4. Anchors were installed with a 1" offset from the centerline of the flute.

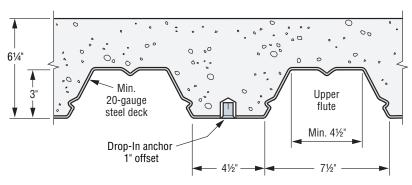


Figure 1. Lightweight Concrete over Steel Deck

Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Normal-Weight Concrete

		Drill	Tension Shear Normal-Weight Concrete, $f'_c \ge 2500$ psi		2500 psi	Normal-Weight Concrete, $f'_c \ge 4,000$ psi								
Model	Rod Size	Bit	Emb. Depth	Critical Edge	Critical Edge	Critical Spacing	Tensio	on Load	Shea	r Load	Tensio	on Load	Shea	r Load
No.	(in.)	Dia. (in.)	(in.)	Distance (in.)		(in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)
DIA37S	3⁄8	1⁄2	3⁄4	41⁄2	5¼	3	1,500	375	2,275	570	2,170	540	3,480	870
DIA50S	1⁄2	5⁄8	1	6	7	4	2,040	510	3,225	805	3,420	855	5,175	1,295

1. The allowable loads listed are based on a safety factor of 4.0.

2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 151.

4. Allowable loads may be linearly interpolated between concrete strengths.

5. The minimum concrete thickness is 1 ½ times the embedment depth.

Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Hollow-Core Concrete Panel

		Drill		Tension	Shear		Hollow Core Concrete Panel, $f'_c \ge 4,000$ psi				
Model	Rod Size	Bit	Emb. Depth	Critical Edge	Critical Edge	Critical Spacing	Tensio	n Load	Shear	Load	
No.	(in.)	Dia. (in.)	(in.)	Distance (in.)	Distance (in.)	(in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	
DIA37S	3⁄8	1⁄2	3⁄4	41⁄2	51⁄4	3	1,860	465	3,310	825	
DIA50S	1⁄2	5⁄8	1	6	7	4	2,650	660	4,950	1,235	

1. The allowable loads listed are based on a safety factor of 4.0.

2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 151.

4. Allowable loads may be linearly interpolated between concrete strengths.

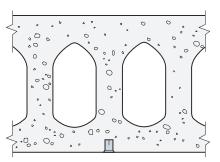


Figure 2. Hollow-Core Concrete Panel (anchor can be installed below web or hollow core)

Drop-In Short (DIAS) Design Information — Concrete

Allowable Load-Adjustment Factors for Short Drop-In Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

-			
	Size	3⁄8	1⁄2
Edge Dist.	C _{cr}	41⁄2	6
c _{act} (in.)	C _{min}	2%	31⁄2
()	f _{cmin}	0.65	0.65
25⁄8		0.65	
3		0.72	
31⁄2		0.81	0.65
4		0.91	0.72
43⁄8		0.98	0.77
41⁄2		1.00	0.79
5			0.86
51⁄4			0.90
51⁄2			0.93
6			1.00

See notes below.

Edge Distance Shear (f_c)

		-		
	Size	3⁄8	1⁄2	
Edge Dist.	C _{cr}	51⁄4	7	
c _{act} (in.)	C _{min}	25⁄8	31⁄2	
(11.)	f _{cmin}	0.45	0.45	
2%		0.45		
3		0.53		
31⁄2		0.63	0.45	
4		0.74	0.53	
43⁄8		0.82	0.59	
4 1/2		0.84	0.61	
5		0.95	0.69	
51⁄4		1.00	0.73	
51/2			0.76	
6			0.84	
61⁄2			0.92	
7			1.00	

1. cact = actual edge distance at which anchor is installed (inches).

3. c_{min} = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	3⁄8	1/2	IBC *
Sact	S _{cr}	3	4	
s _{act} (in.)	S _{min}	1½	2	231 232
	f _{smin}	0.50	0.50	
1 1⁄2		0.50		
2		0.67	0.50	
21/2		0.83	0.63	10-01
3		1.00	0.75	Ĩ ₩₩ ^T aviztat anti
31/2			0.88	
4			1.00	

1. s_{act} = actual spacing distance at which anchors are installed (inches).

- 2. s_{cr} = critical spacing distance for 100% load (inches).
- 3. *s_{min}* = minimum spacing distance for reduced load (inches).
- 4. f_s = adjustment factor for allowable load at actual spacing distance.
- 5. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 6. *f_{smin}* = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

Strong-I

^{2.} c_{cr} = critical edge distance for 100% load (inches).

Drop-In Short (DIAS) Design Information — Concrete

Allowable Load-Adjustment Factors for Short Drop-in Anchors in Sand-Lightweight Concrete over Steel Deck: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

Mechanical Anchors

Edua	Size	3⁄8	1⁄2
Edge Dist.	C _{Cr}	6	8
c _{act} (in.)	C _{min}	31⁄2	43⁄4
()	f _{cmin}	0.65	0.65
31⁄2		0.65	
4		0.72	
41⁄2		0.79	
43⁄4		0.83	0.65
5		0.86	0.68
51⁄2		0.93	0.73
6		1.00	0.78
61⁄2			0.84
7			0.89
71⁄2			0.95
8			1.00

See notes below.

Edge Distance Shear (f_c)

	Size	3⁄8	1/2
Edge Dist.	C _{cr}	7	9%
c _{act} (in.)	C _{min}	31⁄2	4¾
()	f _{cmin}	0.45	0.45
31⁄2		0.45	
4		0.53	
41⁄2		0.61	
43⁄4		0.65	0.45
5		0.69	0.48
51⁄2		0.76	0.54
6		0.84	0.60
6½		0.92	0.66
7		1.00	0.72
71⁄2			0.78
8			0.84
81⁄2			0.90
9			0.96
93⁄8			1.00

1. c_{act} = actual edge distance at which anchor is installed (inches).

2. c_{cr} = critical edge distance for 100% load (inches).

 $3. c_{min} =$ minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{cor} = adjustment factor for allowable load at critical edge distance. f_{cor} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

- 4. The load adjustment factor ($f_{c} \mbox{ or } f_{s}$) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	3⁄8	1/2
Sact	S _{Cr}	8	10%
s _{act} (in.)	S _{min}	4	51⁄4
	f _{smin}	0.50	0.50
4		0.50	
41⁄2		0.56	
5		0.63	
51⁄4		0.66	0.50
6		0.75	0.57
6½		0.81	0.62
7		0.88	0.66
71⁄2		0.94	0.71
8		1.00	0.76
81⁄2			0.80
9			0.85
91⁄2			0.90
10			0.94
10%			1.00

1. s_{act} = actual spacing distance at which anchors are installed (inches).

2. s_{cr} = critical spacing distance for 100% load (inches).

3. s_{min} = minimum spacing distance for reduced load (inches).

4. f_{S} = adjustment factor for allowable load at actual

spacing distance. 5. f_{scr} = adjustment factor for allowable load at critical

spacing distance. f_{scr} is always = 1.00.

6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.

7. $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$

Drop-In Stainless-Steel Internally Threaded Anchor (DIASS)

Drop-in anchors are internally threaded drop-in expansion anchors for use in flush-mount applications in solid base materials. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Features

- Hand- and power-setting tools available for fast, easy and economical installation
- Fixed-depth stop bit helps you drill to the correct depth every time

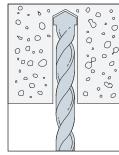
Material: Stainless steel

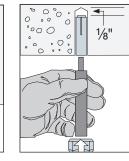
Codes: DOT; Factory Mutual 3017082; Underwriters Laboratories File Ex3605. Meets requirements of Federal Specifications A-A-55614, Type I.

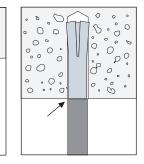
Installation

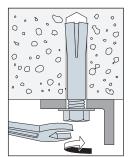
- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/3" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- 2. Insert designated anchor into hole. Tap with hammer until flush against surface.
- Using the designated drop-in setting tool, drive expander plug toward the bottom of the anchor until shoulder of setting tool makes contact with the top of the anchor.
- 4. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.
- Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

Material Specifications


Anchor	Component N	laterial
Component	Type 303 or 304 Stainless Steel	Type 316 Stainless Steel
Anchor Body	AISI 303. Meets chemical requirements of ASTM A582	Type 316
Expander Plug	AISI 303	Type 316
Thread	UNC	UNC


Stainless-Steel Drop-In Anchor Product Data


Rod Size	Type 303 or 304 Stainless	Type 316 Stainless	Drill Bit	Bolt	Body	Thread	Qua	ntity
(in.)	Model No.	Model No.	Diameter (in.)			Length (in.)	Box	Carton
1⁄4	DIA25SS	DIA256SS	3⁄8	20	1	3⁄8	100	500
3⁄8	DIA37SS	DIA376SS	1/2	16	1 %16	5⁄8	50	250
1/2	DIA50SS	DIA506SS	5⁄8	13	2	3⁄4	50	200
5⁄8	DIA62SS	—	7⁄8	11	21⁄2	1	25	100
3⁄4	DIA75SS		1	10	31⁄8	11⁄4	20	80


Installation Sequence

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Fixed-Depth Drill Bits for DIASS

Model No.

MDPL037DIA

MDPL050DIA

MDPL062DIA

Drill Bit

Diameter

(in.)

3/8

1/2

5/8

DIASS Stainless-Steel Drop-In

Drill Depth

(in.)

1 ¹/16

21/16

Drop-In

Anchor

(in.)

1/4

3⁄8

1/5

Fixed-Depth Drill Bit

Strong-Tie

Drop-In Stainless-Steel Internally Threaded Anchor (DIASS)

Allowable Tension Loads for Stainless-Steel Drop-In Anchor in Normal-Weight Concrete

			Ovitional		Tension Load								
Rod Size in.	Drill Bit Dia.	Embed. Depth in.	Critical Edge Dist. in.	Critical Spacing in.		f' _c ≥ 2,000 psi (13.8 MPa) Concrete		f' _c ≥ 3,000 psi (20.7 MPa) Concrete		f' _c ≥ 4,000 psi (27.6 MPa) Concrete			
(mm)			(mm)	(mm)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable lb. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable Ib. (kN)		
1/4 (6.4)	3⁄8	1 (25)	3 (76)	4 (102)	1,400 (6.2)	201 (0.9)	350 (1.6)	405 (1.8)	1,840 (8.2)	451 (2.0)	460 (2.0)		
3%8 (9.5)	1⁄2	1%16 (40)	4½ (114)	6 (152)	2,400 (10.7)	251 (1.1)	600 (2.7)	795 (3.5)	3,960 (17.6)	367 (1.6)	990 (4.4)		
½ (12.7)	5⁄8	2 (51)	6 (152)	8 (203)	3,320 (14.8)	372 (1.7)	830 (3.7)	1,178 (5.2)	6,100 (27.1)	422 (1.9)	1,525 (6.8)		
⁵⁄8 (15.9)	7⁄8	2½ (64)	7½ (191)	10 (254)	5,040 (22.4)	689 (3.1)	1,260 (5.6)	1,715 (7.6)	8,680 (38.6)	971 (4.3)	2,170 (9.7)		
3⁄4 (19.1)	1	31⁄8 (79)	9 (229)	12½ (318)	8,160 (36.3)	961 (4.3)	2,040 (9.1)	2,365 (10.5)	10,760 (47.9)	1,696 (7.5)	2,690 (12.0)		

See foonotes below.

Mechanical Anchors

Allowable Shear Loads for Stainless-Steel Drop-In Anchor in Normal-Weight Concrete

			Critical				S	hear Load	
Rod Size in.	Drill Bit Dia.	Embed. Depth in.	Edge S Dist.	Critical Spacing in.	$f'_c \ge 2,000 \text{ psi}$ (13.8 MPa) Concrete			f' _c ≥ 3,000 psi (20.7 MPa) Concrete	f' _c ≥ 4,000 psi (27.6 MPa) Concrete
(mm)	in.	(mm)		(mm)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable Ib. (kN)	Allowable Ib. (kN)	Allowable Ib. (kN)
1⁄4	3⁄8	1	3½	4	1,960	178	490	490	490
(6.4)		(25)	(89)	(102)	(8.7)	(0.8)	(2.2)	(2.2)	(2.2)
3%8	1⁄2	1%16	51⁄4	6	3,240	351	810	925	1,040
(9.5)		(40)	(133)	(152)	(14.4)	(1.6)	(3.6)	(4.1)	(4.6)
½	5⁄8	2	7	8	7,000	562	1,750	1,750	1,750
(12.7)		(51)	(178)	(203)	(31.1)	(2.5)	(7.8)	(7.8)	(7.8)
5%8	7⁄8	21⁄2	8¾	10	11,080	923	2,770	2,770	2,770
(15.9)		(64)	(222)	(254)	(49.3)	(4.1)	(12.3)	(12.3)	(12.3)
3⁄4	1	31⁄8	10½	12½	13,800	1,781	3,450	3,725	4,000
(19.1)		(79)	(267)	(318)	(61.4)	(7.9)	(15.3)	(16.6)	(17.8)

1. The allowable loads listed are based on a safety factor of 4.0.

2. Refer to allowable load-adjustment factors for edge distance and spacing on p. 155.

3. Allowable loads may be linearly interpolated between concrete strengths listed.

4. The minimum concrete thickness is 11/2 times the embedment depth.

Drop-In Stainless-Steel (DIASS) Design Information — Concrete

Allowable Load-Adjustment Factors for Stainless-Steel Drop-In Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

Edge	Size	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Dist.	C _{cr}	3	41⁄2	6	71⁄2	9
Cact	C _{min}	1¾	25⁄8	31⁄2	43⁄8	51⁄4
(in.)	f _{cmin}	0.65	0.65	0.65	0.65	0.65
13⁄4		0.65				
2		0.72				
21⁄2		0.86				
25⁄8		0.90	0.65			
3		1.00	0.72			
31⁄2			0.81	0.65		
4			0.91	0.72		
43⁄8			0.98	0.77	0.65	
41⁄2			1.00	0.79	0.66	
5				0.86	0.72	
51⁄4				0.90	0.75	0.65
51⁄2				0.93	0.78	0.67
6				1.00	0.83	0.72
61⁄2					0.89	0.77
7					0.94	0.81
71⁄2					1.00	0.86
8						0.91
81⁄2						0.95
9						1.00

See notes below.

Edge Distance Shear (f_c)

Edge	Size	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Dist.	Ccr	31⁄2	51⁄4	7	8¾	10½
Cact	C _{min}	1¾	2%	31⁄2	43%	51⁄4
(in.)	f _{cmin}	0.45	0.45	0.45	0.45	0.45
13⁄4		0.45				
2		0.53				
21⁄2		0.69				
2%		0.73	0.45			
3		0.84	0.53			
31⁄2		1.00	0.63	0.45		
4			0.74	0.53		
43⁄8			0.82	0.59	0.45	
41⁄2			0.84	0.61	0.47	
5			0.95	0.69	0.53	
51⁄4			1.00	0.73	0.56	0.45
51⁄2				0.76	0.59	0.48
6				0.84	0.65	0.53
6½				0.92	0.72	0.58
7				1.00	0.78	0.63
71⁄2					0.84	0.69
8					0.91	0.74
81⁄2					0.97	0.79
8¾					1.00	0.82
9						0.84
91⁄2						0.90
10						0.95
101/2						1.00

dge distance at which anchor is insta

2. c_{cr} = critical edge distance for 100% load (inches).

3. *c_{min}* = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance. 7. $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Sact	S _{cr}	4	6	8	10	121⁄2
S _{act} in.)	S _{min}	2	3	4	5	6¼
	f _{smin}	0.50	0.50	0.50	0.50	0.50
1⁄2						
2		0.50				
21/2		0.63				
3		0.75	0.50			
31/2		0.88	0.58			
4		1.00	0.67	0.50		
1/2			0.75	0.56		
5			0.83	0.63	0.50	
51/2			0.92	0.69	0.55	
6			1.00	0.75	0.60	
51/4				0.78	0.63	0.50
7				0.88	0.70	0.56
8				1.00	0.80	0.64
9					0.90	0.72
10					1.00	0.80
11						0.88
12						0.96
21⁄2						1.00

1. s_{act} = actual spacing distance at which anchors are installed (inches).

2. s_{cr} = critical spacing distance for 100% load (inches).

3. s_{min} = minimum spacing distance for reduced load (inches).

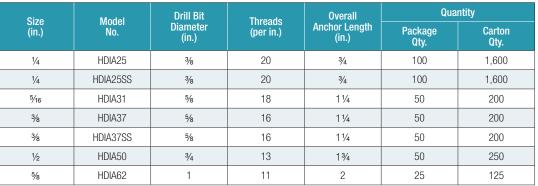
4. f_s = adjustment factor for allowable load at actual

- spacing distance.
- 5. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

Strong-I

Hollow Drop-In Internally Threaded Anchor

The Simpson Strong-Tie Hollow Drop-In Anchor (HDIA) is an internally threaded, flush-mount expansion anchor for use in hollow materials such as CMU and hollow-core plank, as well as in solid base materials such as brick, normal-weight and lightweight concrete.


Features:

- Suitable for suspending conduit, cable trays, pipe supports, fire sprinklers and suspended lighting into concrete
- Expansion design allows HDIA to anchor into CMU, hollow-core plank, brick, normal-weight concrete and lightweight concrete
- · Internally threaded anchor allows for easy bolt removal

Material: Die-cast Zamac 3 alloy shell with carbon-steel cone or Type 304 stainless-steel cone

Codes: Factory Mutual 3053987 (3%"-1/2" diameter) Underwriters Laboratories EX3605 (3%"-1/2" diameter)

Hollow Drop-In Anchor

HDIASTH Setting Tool for Hollow Materials

Setting tool designed to set the Hollow Drop-In internally threaded anchor in hollow materials such as CMU and hollow-core plank.

Model No.	Description	Size (in.)	Carton Qty.
HDIASTH25	Setting tool for use with Hollow Drop-In models HDIA25, HDIA25SS	1⁄4	25
HDIASTH31	Setting tool for use with Hollow Drop-In model HDIA31	5⁄16	25
HDIASTH37	Setting tool for use with Hollow Drop-In models HDIA37, HDIA37SS	3⁄8	25
HDIASTH50	Setting tool for use with Hollow Drop-In model HDIA50	1/2	25
HDIASTH62	Setting tool for use with Hollow Drop-In model HDIA62	5⁄8	10

1. Tools sold separately. Tools may be ordered by the piece.

HDIASTS Setting Tool for Solid Materials

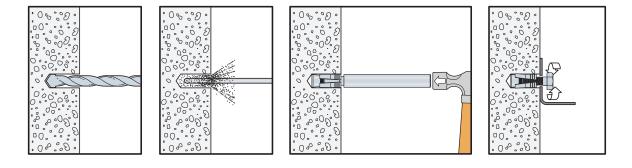
Setting tool designed to set the Hollow Drop-In internally threaded anchor in solid materials such as brick, normal-weight and lightweight concrete.

Model No.	Description	Size (in.)	Box Qty.	Carton Qty.
HDIASTS25	Setting tool for use with Hollow Drop-In models HDIA25, HDIA25SS	1⁄4	25	125
HDIASTS31-37	Setting tool for use with Hollow Drop-In models HDIA31, HDIA37, HDIA37SS	⁵ ⁄16 — ³ ⁄8	10	50
HDIASTS50	Setting tool for use with Hollow Drop-In model HDIA50	1⁄2	10	50
HDIASTS62	Setting tool for use with Hollow Drop-In model HDIA62	5⁄8	5	20

HDIASTH Setting Tool

HDIASTS Setting Tool

Hollow Drop-In


1. Tools sold separately. Tools may be ordered by the piece.

Hollow Drop-In Internally Threaded Anchor

Mechanical Anchors

Installation Instructions - Solid Base (using solid setting tool)

- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth.
- Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- Insert the HDIA into hole. Tap with hammer until flush against surface.
- Using the designated setting tool, drive the anchor to the bottom of the drilled hole. After the anchor reaches the bottom of the drilled hole, perform an additional 3 hammer blows against the setting tool to drive the anchor body over the cone.
- Position fixture; insert fastener and tighten.

Installation Instructions - Hollow Base (using hollow setting tool)

- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table.
- Thread the HDIA onto the designated setting tool for hollow base materials.
- Insert the HDIA into the hole. Tap the setting tool until the face of the tool contacts the surface.
- Rotate the setting tool a minimum of two turns to set the anchor.
- Remove the setting tool.
- Position fixture; insert fastener and tighten.

$\label{eq:hollow Drop-In} \text{ Design Information} - \text{Concrete and Masonry}$

Allowable Tension Loads for Hollow Drop-In Anchor in Normal-Weight Concrete

	Drill Bit		Embed.	Critical Critical	Critical		Tensio	n Load	
Model No.	Size in.	Dia. in.	Depth in.	th Edge Dist. in.	Spacing	f' _c ≥ 2,500 p	si (17.2 MPa)	17.2 MPa) f' _c ≥ 4,000 ps	
NU.	(mm)	(mm)	(mm)		in. (mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate Ib. (kN)	Allowable lb. (kN)
HDIA25, HDIA25SS	1⁄4 (6.4)	3⁄8 (9.5)	7⁄8 (22)	25% (67)	31⁄2 (89)	1,180 (5.2)	295 (1.3)	1,220 (5.4)	305 (1.4)
HDIA31	5⁄16 (7.9)	5% (15.9)	1½ (38)	41⁄2 (114)	6 (152)	3,000 (13.3)	750 (3.3)	3,420 (15.2)	855 (3.8)
HDIA37, HDIA37SS	3%8 (9.5)	5% (15.9)	1 ½ (38)	41⁄2 (114)	6 (152)	3,000 (13.3)	750 (3.3)	3,420 (15.2)	855 (3.8)
HDIA50	½ (12.7)	3⁄4 (19.1)	2 (51)	6 (152)	8 (203)	4,260 (18.9)	1,065 (4.7)	5,500 (24.5)	1,375 (6.1)
HDIA62	5% (15.9)	1 (25.4)	2¼ (57)	6¾ (171)	9 (229)	6,100 (27.1)	1,525 (6.8)	6,300 (28.0)	1,575 (7.0)

1. The allowable loads listed are based on a safety factor of 4.0.

2. The minimum concrete thickness is 11/2 times the embedment depth.

3. Allowable loads may be linearly interpolated between concrete strengths listed.

Allowable Shear Loads for Hollow Drop-In Anchor in Normal-Weight Concrete

		Drill Bit	Embed.	Edge Dist.	Critical		d Based on Strength		Load Based on el Strength	
Model No.	Size in. (mm)	Dia. in.	Depth in.		lge Dist. Spacing in. in.	f' _c ≥ 2,500 psi (17.2 MPa)		F1554 Grade 36	A193 Grade B7	
		(mm)	(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Allowable lb. (kN)	Allowable lb. (kN)	
HDIA25,	1⁄4	3%8	7⁄8	25%	31⁄2	1,840	460	485	1,045	
HDIA25SS	(6.4)	(9.5)	(22)	(67)	(89)	(8.2)	(2.0)	(2.2)	(4.6)	
HDIA31	5⁄16 (7.9)	5% (15.9)	1 ½ (38)	4½ (114)	6 (152)	2,660 (11.8)	665 (3.0)	755 (3.4)	1,630 (7.3)	
HDIA37,	3%8	5%	1 ½	4½ (114)	6	3,580	895	1,085	2,340	
HDIA37SS	(9.5)	(15.9)	(38)		(152)	(15.9)	(4.0)	(4.8)	(10.4)	
HDIA50	1⁄2	3⁄4	2	6	8	8,220	2,055	1,930	4,160	
	(12.7)	(19.1)	(51)	(152)	(203)	(36.6)	(9.1)	(8.6)	(18.5)	
HDIA62	5%	1	21⁄4	6¾	9	10,180	2,545	3,025	6,520	
	(15.9)	(25.4)	(57)	(171)	(229)	(45.3)	(11.3)	(13.5)	(29.0)	

1. The allowable loads listed are based on a safety factor of 4.0.

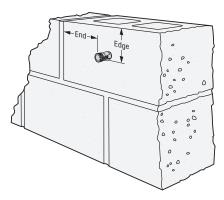
2. The minimum concrete thickness is 1 $\!\!\!^{1}\!\!\!_{2}$ times the embedment depth.

3. Allowable load must be the lesser of the load based on anchor strength or steel strength.

SIMPSON

Hollow Drop-In Design Information — Concrete and Masonry

Allowable Tension and Shear Loads for Hollow Drop-In Anchor in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU


Model	Size	Drill Bit Dia.	Embed. Depth⁴	Minimum Edge Dist.	Minimum End Dist.	Minimum Spacing	Tensio	n Load	Shea	r Load
No.	in.	in.	in.	in.	in.	in.	Ultimate	Allowable	Ultimate	Allowable
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ib. (kN)	Ib. (kN)	Ib. (kN)	lb. (kN)
HDIA25,	1/4	3%8	3⁄4	4	4%	8	500	100	975	195
HDIA25SS	(6.4)	(9.5)	(19)	(102)	(117)	(203)	(2.2)	(0.4)	(4.3)	(0.9)
HDIA31	5⁄16	5%	1 ¼	4	4%	8	500	100	1,450	290
	(7.9)	(15.9)	(32)	(102)	(117)	(203)	(2.2)	(0.4)	(6.4)	(1.3)
HDIA37,	3%8	5%8	1 ¼	4	45%	8	500	100	1,450	290
HDIA37SS	(9.5)	(15.9)	(32)	(102)	(117)	(203)	(2.2)	(0.4)	(6.4)	(1.3)
HDIA50	1⁄2	3⁄4	1 ¾	4	4%	8	1,525	305	2,300	460
	(12.7)	(19.1)	(44)	(102)	(117)	(203)	(6.8)	(1.4)	(10.2)	(2.0)
HDIA62	5⁄8	1	2	4	45%	8	1,525	305	2,325	465
	(15.9)	(25.4)	(51)	(102)	(117)	(203)	(6.8)	(1.4)	(10.3)	(2.1)

1. The allowable loads listed are based on a safety factor of 5.0.

2. Values for 8-inch wide lightweight, medium-weight, and normal-weight CMU.

3. The minimum specified compressive strength of masonry, f'm, at 28 days with a minimum face shell thickness of 11/4" is 1,500 psi.

4. The installed end of the anchor may extend into the CMU cavity depending upon face shell thickness.

Critical

Spacing

(mm)

Tension Load

f'_c ≥ 5,000 psi (34.5 Mpa)

Allowable Ib. (kN)

Ultimate Ib. (kN)

Tension and Shear Loads for Hollow Drop-In Anchor in Hollow-Core Concrete Panel

Embed.

Depth

in.

(mm)

Drill Bit

in.

(mm)

Size

in.

(mm)

Model

No.

ŀ

ŀ

HDIA25,	1⁄4	³ ⁄8	³ ⁄4	3	4½	1,340	335	2,040
HDIA25SS	(6.4)	(9.5)	(19)	(76)	(114)	(6.0)	(1.5)	(9.1)
HDIA31	^{5/} 16	⁵⁄8	1 ¼	5	7½	1,820	455	3,240
	(7.9)	(15.9)	(32)	(127)	(191)	(8.1)	(2.0)	(14.4)
HDIA37,	³ ⁄8	5%	1 ¼	5	7½	1,820	455	4,560
HDIA37SS	(9.5)	(15.9)	(32)	(127)	(191)	(8.1)	(2.0)	(20.3)
HDIA50	1⁄2	³ ⁄4	1 ¾	7	10½	2,840	710	5,820
	(12.7)	(19.1)	(44)	(178)	(267)	(12.6)	(3.2)	(25.9)
HDIA62	5%	1	2	8	12	2,980	745	8,700
	(15.9)	(25.4)	(51)	(203)	(305)	(13.3)	(3.3)	(38.7)

Critical

Edge Dist.

(mm)

1. The allowable loads listed are based on a safety factor of 4.0.

2. The minimum concrete thickness over the open cores is 11/4".

3. The minimum specified compressive strength of the concrete used in the hollow-core panel, f'_c, is 5,000 psi (34.5 MPa).

4. The installed end of the anchor may extend into the panel cavity depending upon face shell thickness.

A193

Grade B7

Allowable lb. (kN)

1,045

(4.6)

1,630 (7.3)

2,340

(10.4)

4,160

(18.5)

6,520

(29.0)

Shear Load Based on

Steel Strength of Threaded Rod

F1554

Grade 36

Allowable lb. (kN)

485

(2.2)

755 (3.4)

1,085

(4.8)

1,930

(8.6)

3,025

(13.5)

Shear Load Based on

Anchor Strength

f^ıc ≥ 5,000 psi (34.5 MPa)

Allowable lb. (kN)

510

(2.3)

810

(3.6)

1,140

(5.1)

1,455

(6.5)

2,175

(9.7)

Ultimate Ib. (kN)

SIMPSON

Strong-

IBC

Zinc Nailon[™] Pin Drive Anchors

Zinc Nailon anchors are low-cost, easy-to-install anchors for applications under static loads.

Features

- Available with carbon and stainless-steel pins
- · Pin and head configuration designed to make anchor tamper-resistant

Materials

- Body Die-cast Zamac 3 alloy
- Pin Carbon steel; Type 304 stainless steel

Code: Meets Federal Specification A-A-1925A, Type 1

Installation

- **Caution:** Not for use in overhead applications.
- Caution: Nailon anchors are not recommended for eccentric tension (prying) loads — capacity will be greatly reduced in such applications
- Drill a hole in base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to specified embedment depth, plus ¼" for pin extension, and blow hole clean using compressed air. Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- 2. Position fixture and insert Nailon anchor.
- 3. Tap with hammer until flush with fixture, then drive pin until flush with top of head.

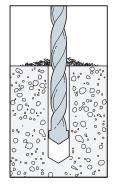
Zinc Nailon Anchor (Mushroom Head)

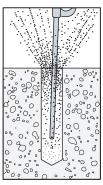
Zinc Nailon Product Data

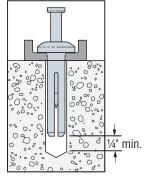
Size	Carbon Steel Pin	Stainless		Quantity	/
(in.)	Model No.	Steel Pin Model No.	Box	Carton	Bulk
³ ⁄16 X ⁷ ⁄8	ZN18078	—	100	1,600	3,000
1⁄4 X 3⁄4	ZN25034	ZN25034SS	100	500	2,000
1⁄4 x 1	ZN25100	ZN25100SS	100	500	1,500
1⁄4 x 1 1⁄4	ZN25114	ZN25114SS	100	500	1,500
1⁄4 x 1 1⁄2	ZN25112	ZN25112SS	100	500	1,000
1⁄4 x 2	ZN25200	ZN25200SS	100	400	1,000
1⁄4 x 21⁄2	ZN25212	ZN25212SS	100	400	_
1⁄4 x 3	ZN25300	ZN25300SS	100	400	1,000

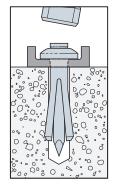
Allowable Tension and Shear Loads for Zinc Nailon in Normal-Weight Concrete

IBC		*
-----	--	---


SIMPSON


Strong-Tie


	Drill Bit Emt		Ultimate I	_oads (lb.)	Allowable Loads (lb.) ¹		
Size Dia.		Embed. Depth	f' <i>c</i> ≥ 3,	000 psi	f' <i>c</i> ≥ 3,000 psi		
	(in.)	(in.)	Tension	Shear	Tension	Shear	
³ ⁄16	3⁄16	5⁄8	460	465	115	115	
		5⁄8	590	635	150	160	
1⁄4	1⁄4	3⁄4	780	765	195	190	
		1 1⁄2	1,050	1,050	265	265	


1. The allowable loads are based on a safety factor of 4.0.

Installation Sequence

Crimp Drive® Anchor

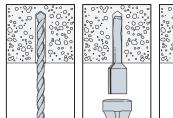
The Crimp Drive anchor is an easy-to-install expansion anchor for use in concrete and grout-filled block. The pre-formed curvature along the shaft creates an expansion mechanism that secures the anchor in place and eliminates the need for a secondary tightening procedure. This speeds up anchor installation and reduces the overall cost.

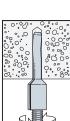
Five crimp anchor head styles are available to handle different applications that include fastening wood or light-gauge steel, attaching concrete formwork and hanging overhead support for sprinkler pipes or suspended ceiling panels.

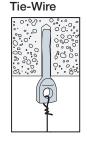
Material: Carbon steel, stainless steel

Coating: Zinc plated and mechanically galvanized

Codes: Factory Mutual 3031136 for the %" rod coupler.

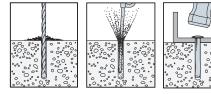

Head Styles: Mushroom, rod coupler, countersunk, tie-wire and duplex


Installation


- Warning: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, with the exception of the duplex anchor, use these products in dry, interior and non-corrosive environments only.
- 1. Drill a hole using the specified diameter carbide bit into the base material to a depth of at least 1/2" deeper than the required embedment.
- 2. Blow the hole clean of dust and debris using compressed air. Overhead application need not be blown clean. Where a fixture is used, drive the anchor through the fixture into the hole until the head sits flush against the fixture.
- 3. Be sure the anchor is driven to the required embedment depth. The rod coupler and tie-wire models should be driven in until the head is seated against the surface of the base material.

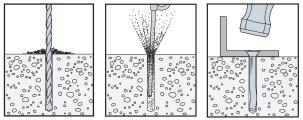
Installation Sequence

Rod Coupler



Duplex

Mushroom Head


C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

Duplex-head anchor may be removed with a claw hammer

Countersunk Head Installation Sequence

Mushroom Head

Rod Coupler

Tie-Wire

Countersunk Head

Duplex Head

SIMPSO

Strong-Tie

Crimp Drive® Anchor

Crimp Drive Anchor Product Data

Size	Model No.	Head Style/	Drill Bit Dia.	Min. Fixture	Min. Embed.	Quantity		
(in.)	Model No.	Finish	(in.)	Hole Size	(in.)	Pkg. Qty.	Carton Qty.	
³ ⁄16 Х 1 ¼	CD18114M				7⁄8	100	1,600	
³∕16 X 2	CD18200M				1 1⁄4	100	500	
³∕16 X 21⁄2	CD18212M		2/	1/	1 1⁄4	100	500	
³∕16 X 3	CD18300M		3⁄16	1⁄4	1 1⁄4	100	500	
³ ⁄16 X 3 ½	CD18312M				1 1⁄4	100	500	
³∕16 X 4	CD18400M				1 1⁄4	100	500	
1⁄4 x 1	CD25100M				7⁄8	100	1,600	
1⁄4 x 1 1⁄4	CD25114M	Mushroom Head /			7⁄8	100	1,600	
1⁄4 x 1 1⁄2	CD25112M	Zinc Plated			1 1⁄4	100	1,600	
1⁄4 x 2	CD25200M		1/	E/	1 1⁄4	100	500	
1⁄4 x 21⁄2	CD25212M		1⁄4	5⁄16	1 1⁄4	100	500	
1⁄4 x 3	CD25300M				1 1⁄4	100	500	
1⁄4 x 3 1⁄2	CD25312M				1 1⁄4	100	500	
1⁄4 x 4	CD25400M				1 1⁄4	100	500	
3∕8 x 2	CD37200M		3⁄8	7/	1¾	25	125	
¾ x 3	CD37300M			7⁄16	1 3⁄4	25	125	
1⁄4 x 3	CD25300MG	Mushroom Head / Mechanically Galvanized	1⁄4	5⁄16	1 1⁄4	100	500	
1/4" rod coupler	CD25114RC	Rod Coupler /	3⁄16	N/A	1 1⁄4	100	500	
3/8" rod coupler	CD37112RC	Zinc Plated	1⁄4	N/A	1 1⁄2	50	250	
³ ⁄16 X 2 ¹ ⁄2	CD18212C				1 1⁄4	100	500	
³ ⁄16 Х З	CD18300C		3⁄16	1⁄4	1 1⁄4	100	500	
³∕16 X 4	CD18400C				1 1⁄4	100	500	
1⁄4 x 1 1⁄2	CD25112C				1 1⁄4	100	500	
1⁄4 x 2	CD25200C	Countersunk Head / Zinc Plated			1 1⁄4	100	500	
1⁄4 x 21⁄2	CD25212C		1/	5/	1 1⁄4	100	500	
1⁄4 x 3	CD25300C		1⁄4	5⁄16	1 1⁄4	100	500	
1⁄4 x 3 1⁄2	CD25312C				1 1⁄4	100	400	
1⁄4 x 4	CD25400C				1 1⁄4	100	400	
1⁄4 x 3	CD25300CMG	Countersunk Head /	1/	5/	1 1⁄4	100	500	
1⁄4 x 4	CD25400CMG	Mechanically Galvanized ¹	1⁄4	5⁄16	11⁄4	100	400	
1⁄4" Tie Wire	CD25118T	Tie-Wire/Zinc Plated	1⁄4	N/A	1 1/8	100	500	
1/4" duplex	CD25234D	Duplex Head/Zinc Plated	1⁄4	5⁄16	11⁄4	100	500	

1. Mechanical galvanizing meets ASTM B695, Class 55, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 235 for details.

Length Identification Head Marks on Mushroom, Countersunk and
Duplex-Head Crimp Drive Anchors (corresponds to length of anchor — inches)

Mark		А	В	С	D	E	F
From	1	1 1⁄2	2	21⁄2	3	31⁄2	4
Up To But Not Including	1½	2	21⁄2	3	31⁄2	4	41⁄2

Crimp Drive® Design Information — Concrete

Carbon-Steel Crimp Drive Allowable Tension and Shear Loads in Normal-Weight Concrete

					Tensio	on Load	Shea	r Load
Size (in.)	Drill Bit Diameter (in.)	Embed. Depth (in.)	Minimum Spacing (in.)	Minimum Edge Distance	f' _c ≥ 2,000 psi Concrete	f' _c ≥ 4,000 psi Concrete	f' _c ≥ 2,000 psi Concrete	f' _c ≥ 4,000 psi Concrete
	(()	()	(in.)	Allowable Load (lb.)	Allowable Load (lb.)	Allowable Load (lb.)	Allowable Load (lb.)
				Mushroom/Co	ountersunk Head		·	
3⁄16	3⁄16	1 1⁄4	3	3	145	250	340	450
1⁄4	1⁄4	1 1⁄4	3	3	175	275	395	610
3⁄8	3⁄8	1¾	4	4	365	780	755	1,305
				Duple	ex Head			
1⁄4	1⁄4	1 1⁄4	3	3	175	275	395	610
				Tie	Wire			
1⁄4	1⁄4	1 1/8	3	3	155	215	265	325
				Rod (Coupler ⁴			
1⁄4	3⁄16	11⁄4	3	3	145	250		—
3⁄8	1⁄4	1 1⁄2	4	4	265	600		_

1. The allowable loads listed are based on a safety factor of 4.0.

2. The minimum concrete thickness is 11/2 times the embedment depth.

3. Allowable loads may be linearly interpolated between concrete strengths listed.

4. For rod coupler, mechanical and plumbing design codes may prescribe lower allowable loads; verify with local codes.

SIMPSON

Strong-Tie

Crimp Drive® Design Information — Concrete

Carbon-Steel Crimp Drive Allowable Tension and Shear Loads in Sand-Lightweight Concrete over Steel Deck

Size (in.)	Drill Bit Diameter (in.)	Embed. Depth (in.)	Minimum Spacing (in.)	Minimum Edge Distance (in.)	Tension Load (Install in Concrete) $f'_c \ge 3,000 \text{ psi}$ Concrete Allowable Load (lb.)	Tension Load (Install Through Steel Deck) f [*] _c ≥ 3,000 psi Concrete Allowable Load (lb.)	Shear Load (Install in Concrete) f [*] _c ≥ 3,000 psi Concrete Allowable Load (lb.)	Shear Load (Install Through Steel Deck) $f'_c \ge 3,000 \text{ psi}$ ConcreteAllowable Load (lb.)
			P	Mushroom/Count	ersunk Head			
3⁄16	3⁄16	1 1⁄4	4	4	115	85	345	600
1⁄4	1⁄4	1 1⁄4	4	4	145	130	375	890
3⁄8	3⁄8	1¾	51⁄2	5½	315	330	1,030	1,085
	` 			Duplex H	lead			
1⁄4	1⁄4	1 1⁄4	4	4	145	130	375	890
	` 			Tie Wi	re			
1⁄4	1⁄4	1 1/8	3	3	130	90	275	210
				Rod Cou	pler ⁴			
1⁄4	3⁄16	11⁄4	4	4	115	85	—	_
3⁄8	1⁄4	1 1⁄2	5	5	300	280		_

1. The allowable loads listed are based on a safety factor of 4.0.

2. The minimum concrete thickness is 11/2 times the embedment depth.

3. Anchors may be installed off-center in the flute, up to 1" from the center of flute.

4. Anchor may be installed in either upper or lower flute.

5. Deck profile shall be 3" deep, 20-gauge minimum.

6. For rod coupler, mechanical and plumbing design codes may prescribe lower allowable loads; verify with local codes.

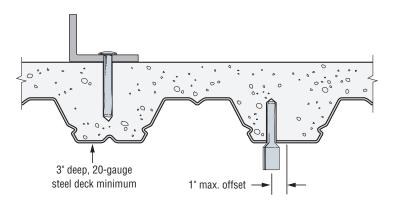


Figure 1. Sand-Lightweight Concrete on Steel Deck

SIMPSON

CSD/DSD Split-Drive Anchors

The Split-Drive anchor is a one-piece expansion anchor that can be installed in concrete, grout-filled block and stone. As the anchor is driven in, the split-type expansion mechanism on the working end compresses and exerts force against the walls of the hole.

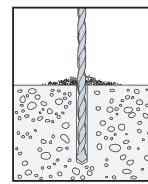
Features

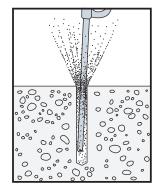
- Available in countersunk (CSD) and duplex-head (DSD) styles
- DSD anchor can be removed with a claw hammer for temporary applications

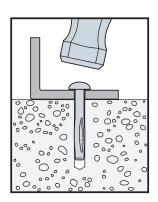
Material: Carbon steel

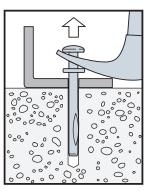
Coating: Zinc plated; mechanically galvanized

Installation


- Warning: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, use these products in dry, interior and non-corrosive environments only.
- Caution: Oversized holes in the base material will greatly reduce the anchor's load capacity. For CSD, embedment depths greater than 11/2" may cause bending during installation.
- Drill a hole in base material using a ¼"-diameter carbide-tipped drill. Drill hole to specified embedment depth and blow clean using compressed air. Overhead installation need not be blown clean. Alternatively, drill hole deep enough to accommodate embedment depth and dust from drilling. Position fixture and insert split-drive anchor through fixture hole.
- 2. For CSD, %"-diameter fixture hole is recommended for hard fixtures such as steel. For DSD, 5/16"-diameter fixture hole is recommended.
- 3. Drive anchor until head is flush against fixture.




(duplex)


CSD (countersunk)

Installation Sequence

DSD anchor may be removed with a claw hammer.

SIMPSO

Strong-Tie

CSD/DSD Design Information — Concrete

CSD/DSD Product Data

Size	Model	Head Style/Finish	Drill Bit Diameter	Quantity		
(in.)	No. Head Style/Thish		(in.)	Box	Carton	
1⁄4 X 1 1⁄2	CSD25112			100	500	
1⁄4 x 2	CSD25200			100	500	
1⁄4 x 21⁄2	CSD25212	Countersunk bood Zing plated	1/4	100	500	
1⁄4 x 3	CSD25300	Countersunk head – Zinc plated		100	400	
1⁄4 x 31⁄2	CSD25312			100	400	
1⁄4 x 4	CSD25400			100	400	
1⁄4 x 3	CSD25300MG	Countercounty hand Machanically achyanized	1/	100	400	
1⁄4 x 4	CSD25400MG	Countersunk head – Mechanically galvanized ¹	1⁄4	100	400	
1⁄4 x 3	DSD25300	Duplex head – Zinc plated	1⁄4	100	400	

1. Mechanical galvanizing meets ASTM B695, Class 55, Type 1. Intended for some preservative-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 235 for details.

CSD Allowable Tension and Shear Loads in Normal-Weight Concrete

	a-veigint	COncrete							
	Drill Bit	Embed.	Minimum	Minimum	Tensio (II	n Load ɔ.)		r Load o.)	
Size (in.)	Diameter (in.)	Depth (in.)	Spacing (in.)	Edge Distance (in.)	$f_c^i \ge 2,$	f' _c ≥ 2,000 psi		f' _c ≥ 2,000 psi	
				()	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	
1⁄4	1⁄4	1 1⁄4	21⁄2	3	655	165	970	240	

DSD Allowable Tension and Shear Loads in Normal-Weight Concrete

Size	Drill Bit Diameter	Embed. Depth	Minimum Spacing	Minimum Edge	Concrete Tension Compressive (lb.				· Load D.)
(in.)	(in.)	(in.)	(in.)	Distance Strength (in.) (psi)	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	
1⁄4	1⁄4	1¼	21⁄2	3	2,500	800	200	2,480	620
1⁄4	1⁄4	1¼	21⁄2	3	4,000	1,060	265	2,740	685

SIMPSON Strong-Tie

Sure Wall[™] Drywall Anchor

Sure Wall anchors are self-drilling drywall anchors and provide excellent holding value and greater capacity than screws alone. This anchor cuts threads into drywall, greatly increasing the bearing surface and strength of the fastening.

Features

- Self-drilling may be installed in gypsum board drywall with only a screwdriver
- Easy to remove

Material: Die-cast zinc or reinforced nylon

Sure Wall Zinc

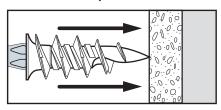
Sure Wall Product Data

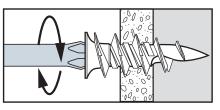
Screw	Mo N	Stulo	Qua	ntity	Applications	
Size	Packaged with Screws	Packaged Without Screws	Style	Style Box		Applications
#8 x 11⁄4"	SWN08LS-R100	SWN08L-R100	Nylon	100	500	3/8", 1/2" drywall, ceiling tile
#8 x 1 ¼"	SWZ08LS-R100 SWZ08L-R100		Zinc	100	500	%", ½", %" drywall, plaster

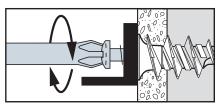
Sure Wall Tension and Shear Loads in 1/2" Drywall

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

IBC	*


Model	Screw	Allowab	le Loads
No.	Size	Tension (lb.)	Shear (lb.)
SWN08LS	#8	10	50
SWZ08LS	#8	10	50


1. The allowable loads are baswed on a safety factor of 4.0.


2. The allowable loads listed are based on single anchor tests.

3. The performance of multiple anchors spaced closely together has not been investigated.

Installation Sequence

Direct Fastening Solutions

Powder-Actuated Tool / Fastener Suitability

PTP-27L

0.300'

√

√

~

~

√

√

This matrix matches Simpson Strong-Tie powder-actuated tools with the fasteners typically used with each tool.

Fasteners

wder-ac ool.	tuated tools		\checkmark = Suitable - = Not suitable	
	General-Pu	rpose Tools		
	PT-27	PT-22A	PT-22HA	
P				
'-Headed F	asteners with 0.157" Shank Dia	ameter		
	✓ Max. 21⁄2"	\checkmark	\checkmark	
	√	\checkmark	\checkmark	
	_	_	_	
	\checkmark	\checkmark	✓	
	✓	\checkmark	\checkmark	
	✓	\checkmark	✓	
	✓	\checkmark	✓	
'-Headed F	-Headed Fasteners with 0.145" Shank Diameter			

	0.300"-Headed Fasteners with 0.145" Shank Diameter				
PINW-XXX		\checkmark	\checkmark	\checkmark	\checkmark
PINWP-XXX	-	\checkmark	\checkmark	\checkmark	\checkmark
PHBC-XXX	∧ I	\checkmark	\checkmark	\checkmark	\checkmark
PCC-XXX		\checkmark	\checkmark	\checkmark	\checkmark
PBXDP-100	nļ.	\checkmark	\checkmark	\checkmark	\checkmark
		8	mm-Headed Fasteners		
PKP-250		\checkmark	\checkmark	\checkmark	\checkmark
%"-Headed Fasteners / Threaded Studs					
PSLV3-XXX		_	_	_	_

PDPA-XXX

PDPAWL-XXX

PDPAS-XXX

PDPAT-XXX

PCLDPA-XXX

PECLDPA-XXX

PTRHA3-XXX

See **strongtie.com** for more tool and fastener product information.

SIMPSON

Strong-Tie

Direct Fastening Solutions

Powder-Actuated Tools, Fasteners and Loads

SIMPSON Strong-Tie

	Simpson Strong-Tie Powder-Actuated Tools			
	PTP-27L	PT-27	PT-22A	PT-22HA
Load Caliber	0.27 cal strip loads	0.27 cal strip loads	0.22 cal "A" crimp	0.22 cal "A" crimp
Load Power Level	Brown (2) – Purple (6)	Brown (2) – Red (5)	Brown (2) – Yellow (4)	Brown (2) – Yellow (4)
Firing Action	Automatic	Semi-automatic	Single shot	Single shot
Features	Adjustable Power	Professional Grade	Economical	DIY

PDPA Drive Pins

- · Manufactured with tight tolerances for superior performance
- Code listed per ICC-ES ESR-2138; City of L.A. RR25469; Florida FL15730

All pins/loads available in 100 count boxes. See strongtie.com or product guide (S-A-PG) for additional information.

Drive Pin 0.157" Shank Diameter 0.300" Head Diameter

Model No.	Pin Length (in.)
PDPA-50	1⁄2
PDPA-50K	1⁄2 knurled
PDPA-62K	% knurled
PDPA-75	3⁄4
PDPA-100	1
PDPA-106	1 1⁄16
PDPA-125	1 1⁄4
PDPA-131	1 5⁄16
PDPA-150	1 1⁄2
PDPA-187	1 7⁄8
PDPA-200	2
PDPA-250	21⁄2
PDPA-287	21⁄8

These models available in mechanically galvanized Class 65 finish (PDPA-200MG, PDPA-250MG and PDPA-287MG).

PDPA

Drive Pin with Washer 0.157" Shank Diameter 0.300" Head Diameter 1" Washer Diameter

Model No.	Pin Length (in.)
PDPAWL-50K	1⁄2 knurled
PDPAWL-75	3⁄4
PDPAWL-100	1
PDPAWL-125	11⁄4
PDPAWL-150	1½
PDPAWL-187	17⁄8
PDPAWL-200	2
PDPAWL-225	21⁄4
PDPAWL-250	21⁄2
PDPAWL-287	21⁄8

These models available in mechanically galvanized Class 65 finish (PDPAWL-200MG, PDPAWL-250MG and PDPAWL-287MG).

Collated Drive Pin 0.157" Shank Diameter 0.300" Head Diameter (10-Pin Collation)

	,
Model No.	Pin Length (in.)
PDPAS-50K	1⁄2 knurled
PDPAS-62K	5∕8 knurled
PDPAS-75	3⁄4
PDPAS-100	1
PDPAS-125	11⁄4
PDPAS-150	1 1⁄2
PDPAS-187	1 1 1/8
PDPAS-200	2
PDPAS-250	21⁄2
PDPAS-287	21/8

Drive Pin with Tophat 0.157" Shank Diameter 0.300" Head Diameter

Model No.	Pin Length (in.)
PDPAT-50K	1∕₂ knurled
PDPAT-62KP	5∕% knurled
PDPAT-75	3⁄4
PDPAT-100	1

K - Knurled KP — Knurled, point protrusion to aid in hole location

PDPAT

Pre-Assembled Ceiling Clips 0.157" Shank Diameter 0.300" Head Diameter

Model No.	Pin Length (in.)
PCL	—
PCLDPA-87	7/8
PCLDPA-106	1 1⁄16
PCLDPA-131	1 5⁄16
PECLDPA-106	1 1⁄16
PECLDPA-131	1 5⁄16

PCL

PECLDPA

Powder-Actuated Tools, Fasteners and Loads

Threaded Rod Hanger 0.145" Shank Diameter 0.300" Head Diameter

Model No.	Pin Length (in.)
PTRHA4-131	1 %16, ¼ − 20 threaded rod hanger
PTRHA3-131	1 %16, % – 16 threaded rod hanger

Insulation Metal Washer 0.145" Shank Diameter 0.300" Head Diameter 17/16" Washer Diameter

Model No.	Pin Length (in.)
PINW-150	1½
PINW-200	2
PINW-250	21⁄2
PINW-300	3

Insulation Plastic Washer 0.145" Shank Diameter 0.300" Head Diameter 1%" Washer Diameter

Model No.	Pin Length (in.)
PINWP-150W	1½
PINWP-175W	1¾
PINWP-200W	2
PINWP-250W	21⁄2
PINWP-300W	3

Highway Basket Clip 0.145" Shank Diameter 0.300" Head Diameter

SIMPSON

Strong-Tie

Model No.	Pin Length (in.)
PHBC-150	1 1⁄2
PHBC-200	2
PHBC-250	21⁄2

Pre-Assembled BX Cable Straps and Conduit Clips 0.145" Shank Diameter 0.300" Head Diameter

Model No.	Description
PBXDP-100	BX cable strap with 1" pin
PCC50-DP100	Conduit clip ½" EMT with 1" pin
PCC75-DP100	Conduit clip 3⁄4" EMT with 1" pin
PCC100-DP100	Conduit clip 1" EMT with 1" pin

%"-16 Threaded Studs 0.205" Shank Diameter

PINW

Model No.	Pin Length (in.)
PSLV3-12575K	Thread: 1 ¼ Shank: ¾ (knurled)
PSLV3-125100	Thread: 1 ¼ Shank: 1
PSLV3-125125	Thread: 1 ¼ Shank: 1 ¼

PSLV3

Concrete Forming Pin 0.145" Shank Diameter 0.187" Head Diameter

Model No.	Pin Length (in.)
PKP-250	21⁄2

Hammer Drive Fastener 0.140" Shank Diameter 0.250" Head Diameter %" Metal Washer

Model No.	Pin Length (in.)
PHD-75	3⁄4
PHD-100	1
PHD-125	11⁄4

PKP

PHD

PHT-38 Manual Hammer Tool

 Designed for use with PHD fastener.
 Warning: Do not use powder loads with this tool. This is a hammer drive tool only. Use of powder loads with this tool may result in injury or death.

Direct Fastening Solutions

Powder-Actuated Tools, Fasteners and Loads

SIMPSON Strong-Tie

0.22-Caliber "A" Crimp Loads - Single Shot

Model	Caliber	Lo	ad
No.	Galibei	Color	Level
P22AC2		Brown	2
P22AC2A		DIOWII	2
P22AC3	0.22	Green	3
P22AC3A	0.22	Green	3
P22AC4		Yellow	4
P22AC4A		renow	4

Note: An "A" in a part number denotes imported load. No "A" indicates a domestic load.

P22AC

0.27-Caliber Single-Shot Loads - Long

Model	Caliber	Lo	ad
No.	Galibei	Color	Level
P27LVL4		Yellow	4
P27LVL5	0.27	Red	5
P27LVL6		Purple	6

P27LVL

0.25-Caliber Plastic, 10-Shot Strip Loads

Model			ad
No.	Camper	Color	Level
P25SL3		Green	3
P25SL4	0.25	Yellow	4
P25SL5		Red	5

0.27-Caliber Plastic, 10-Shot Strip Loads

Model	Caliber	Load		
No.	Galibei	Color	Level	
P27SL2		Brown	2	
P27SL2A		DIOWII	2	
P27SL3		Green	3	
P27SL3A		Green	5	
P27SL4	0.27	Yellow	4	
P27SL4A		Tellow	4	
P27SL5		Red	5	
P27SL5A		neu	5	
P27SL6		Purple	6	

Note: An "A" in a part number denotes imported load. No "A" indicates a domestic load.

Gas Tool / Fastener Suitability

Gas Tool G3			UNV VIEV				
Fuel Cell GFC34				GFC34 Fuel Cell			
	Model N		Pin Lengt	h (in.)	72	~~~	
0.106"-Diameter	GDP-50k GDP-62k		1/2				
Shank Pins	GDP-62k GDP-75k		5⁄8 3⁄4				
GDP US Patent 605,016	GDP-100		1				
	GDP-125		1¼ 1½		VV	VV	V V
	GDP-130		1/2			* 9	v v
0.118"- /	Model N		Pin Leng	h (in.)			ĀĀ
0.102"-Diameter Stepped-Shank Pins	GDPS-50		1/2				
GDPS	GDPS-62 GDPS-75		5⁄8 3⁄4				
Spiral Knurl Pins GDPSK	Model N GDPSK-13		Pin Lengt 1%				
	Model No.	Pir Diameter (in.)		Description		8	
	GCC50-R100	0.126	1	1/2" conduit clip (0.047" thick) with pin		9	1
	GCC75-R100	0.126	1	$\ensuremath{\overset{3}_{\!$			GCL
	GCC100-R100	0.126	1	1" conduit clip (0.059" thick) with pin	6		
	GCC125-R50	0.126	1	11/4" conduit clip (0.071" thick) with pin	V		Star 1
Mechanical,	GCL50-R50	0.126	1	1/2" conduit clamp (0.047" thick) with pin		1	
Electrical, Plumbing and	GCL75-R25	0.126	1	³ / ₄ " conduit clamp (0.047" thick) with pin		GCC	GAC
Ceiling Pins	GAC-R100	0.126	1	90° ceiling angle clip (0.071" thick) with pin			#
	GCT-R50	0.126	1	Tie-strap holder (0.0315" thick) with pin	1	- M	
	GW50-R200	0.128/ 0.110	1⁄2	1/2" dome washer stepped-shank pin		6	
	GW75-R200	0.126	3⁄4	1/2" dome washer pin		GCT	GW
		0.126	1	1/2" dome washer pin			
	GW100-R100	0.120					
	GTS4- 5075-R200 GTH-R200	0.128	11/4	1/4" – 20 threaded stud (%4" shank and 1/2" thread) Top-Hat pin			

See product guide (S-A-PG) and **strongtie.com** for additional information.

Powder-Actuated and Gas-Actuated Fasteners – Allowable Tension Loads in Normal-Weight Concrete

Direct		Shank	Minimum	Minimum	Minimum	Allowable Tension Load — Ib. (kN)					
Fastening Type	Model No.	Diameter in. (mm)	Embedment in. (mm)	Edge Distance in. (mm)	Spacing in. (mm)	f' _c = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 5,000 psi (34.5 MPa)	f' _c = 6,000 psi (41.3 MPa)	
			3⁄4 (19)	31⁄2 (89)	5 (127)	110 (0.49)	110 (0.49)	110 (0.49)	—	110 (0.49)	
	PDPA	0.157	1 (25)	3½ (89)	5 (127)	210 (0.93)	240 (1.07)	310 (1.38)	—	160 (0.71)	
	PDPAT PDPAWL	(4.0)	1 ¼ (32)	3½ (89)	5 (127)	320 (1.42)	340 (1.51)	380 (1.69)	—	365 (1.62)	
Powder Actuated			1 ½ (38)	3½ (89)	5 (127)	375 (1.67)	400 (1.78)	450 (2.00)	_	465 (2.07)	
	PINW	PINW 0.145	1 (25)	3 (76)	4 (102)	70 (0.31)	100 (0.44)	150 (0.67)	—	150 (0.67)	
	PINWP	PINWP (3.7)	(3.7)	1 ¼ (32)	3 (76)	4 (102)	195 (0.87)	255 (1.13)	370 (1.65)	_	370 (1.65)
	PSLV3	0.205 (5.2)	1 ¼ (32)	4 (102)	6 (152)	260 (1.16)	—	_	—	—	
	GDP	0.106	5%8 (16)	3 (76)	4 (102)	25 (0.11)	30 (0.13)	45 (0.20)	45 (0.20)	—	
Gas	GDF	(2.7)	3⁄4 (19)	3 (76)	4 (102)	30 (0.13)	30 (0.13)	30 (0.13)	30 (0.13)	—	
Actuated	GW-75	0.126	5% (16)	3 (76)	4 (102)	65 (0.29)	70 (0.31)	95 (0.42)	_	_	
GW-100 GTH		GW-100 (2.2)	3⁄4 (19)	3 (76)	4 (102)	95 (0.42)	105 (0.47)	190 (0.85)	_	—	

1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.

2. Minimum concrete thickness must be three times the fastener embedment into the concrete.

3. The allowable tension values are only for the fastener in the concrete. Members connected to the concrete must be investigated

in accordance with accepted design criteria.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

5. For fastener installation in concrete with compressive strength outside of the listed range, published allowable loads shall not be extrapolated.

Powder-Actuated and Gas-Actuated Fasteners — Allowable Shear Loads in Normal-Weight Concrete

Direct		Shank	Minimum	Minimum	Minimum	Allowable Shear Load — Ib. (kN)					
Fastening Type	Model No.	Diameter in. (mm)	Embedment in. (mm)	Edge Distance in. (mm)	f' _c = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 5,000 psi (34.5 MPa)	f' _c = 6,000 psi (41.3 MPa)		
			3⁄4 (19)	31⁄2 (89)	5 (127)	120 (0.53)	125 (0.56)	135 (0.60)	_	130 (0.58)	
	PDPA Pdpat Pdpawl	0.157 (4.0)	1 (25)	3½ (89)	5 (127)	285 (1.27)	290 (1.29)	310 (1.38)	_	350 (1.56)	
Powder			1 ¼ (32)	3½ (89)	5 (127)	360 (1.60)	380 (1.69)	420 (1.87)	_	390 (1.73)	
Actuated			1 ½ (38)	3½ (89)	5 (127)	405 (1.80)	430 (1.91)	485 (2.16)	_	495 (2.20)	
	PINW PINWP	0.145 (3.7)	1 (25)	3 (76)	4 (102)	140 (0.62)	165 (0.73)	205 (0.91)	_	205 (0.91)	
			1 ¼ (32)	3 (76)	4 (102)	265 (1.18)	265 (1.18)	265 (1.18)	—	265 (1.18)	
	CDD	0.106 (2.7)	5%8 (16)	3 (76)	4 (102)	25 (0.11)	25 (0.11)	25 (0.11)	25 (0.11)	—	
Gas Actuated	GDP		3⁄4 (19)	3 (76)	4 (102)	50 (0.22)	55 (0.24)	75 (0.33)	75 (0.33)	—	
	GW-75		5%8 (16)	3 (76)	4 (102)	60 (0.27)	65 (0.29)	95 (0.42)	_	_	
	GW-100 GTH		3⁄4 (19)	3 (76)	4 (102)	135 (0.60)	145 (0.64)	215 (0.96)	_	_	

1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.

2. Minimum concrete thickness must be three times the fastener embedment into the concrete.

3. The allowable shear values are only for the fastener in the concrete. Members connected to the concrete must be investigated

in accordance with accepted design criteria.

4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

5. For fastener installation in concrete with compressive strength outside of the listed range, published allowable loads shall not be extrapolated.

Strong-I

IBC 📑

IBC

Powder-Actuated and Gas-Actuated Assemblies — Allowable Tension Loads in Normal-Weight Concrete

		Shank Diameter in. (mm)	Minimum	Minimum	Minimum Spacing in. (mm)	Allowable Tension Load — Ib. (kN)					
Direct Fastening Type	Model No.		Embedment in. (mm)	Edge Distance in. (mm)		f' _c = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 5,000 psi (34.5 MPa)	f' _c = 6,000 psi (41.3 MPa)	
	PCLDPA	0.157 (4.0)	3⁄4 (19)	3½ (89)	5 (102)	70 (0.31)		120 (0.53)		130 (0.58)	
			1 (25)	3½ (89)	5 (102)	175 (0.78)		180 (0.80)		190 (0.85)	
Powder			1 ¼ (32)	3½ (89)	5 (102)	210 (0.93)		210 (0.93)		190 (0.85)	
Actuated	PECLDPA	0.157 (4.0)	7/8 (22)	3½ (89)	5 (102)	90 (0.40)		110 (0.49)		85 (0.38)	
			1 (25)	3½ (89)	5 (102)	180 (0.80)		155 (0.69)		180 (0.80)	
	PTRHA3 PTRHA4	0.157 (4.0)	1 ¼ (32)	3½ (89)	5 (102)	185 (0.82)	_	220 (0.98)		190 (0.85)	
Gas Actuated	GAC	0.126 (3.2)	3⁄4 (19)	3 (76)	4 (102)	105 (0.47)	120 (0.53)	150 (0.67)	170 (0.76)	195 (0.87)	

1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.

2. Minimum concrete thickness must be three times the fastener embedment into the concrete.

3. The allowable tension values are only for the fastener in the concrete. Members connected to the concrete must be

investigated in accordance with accepted design criteria.

4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

5. For fastener installation in concrete with compressive strength outside of the listed range, published allowable loads shall not be extrapolated.

Powder-Actuated and Gas-Actuated Assemblies – Allowable Oblique Loads in Normal-Weight Concrete

Direct		Shank Diameter in. (mm)	Minimum	Minimum	nce Spacing in.	Allowable Oblique Load — Ib. (kN)					
Direct Fastening Type	Model No.		Embedment in. (mm)	Edge Distance in. (mm)		f' _c = 2,500 psi (17.2 MPa)	f' _c = 3,000 psi (20.7 MPa)	f' _c = 4,000 psi (27.6 MPa)	f' _c = 5,000 psi (34.5 MPa)	f' _c = 6,000 psi (41.3 MPa)	
	PCLDPA	0.157 (4.0)	3⁄4 (19)	3½ (89)	5 (102)	115 (0.51)		105 (0.47)	_	140 (0.62)	
			1 (25)	3½ (89)	5 (102)	255 (1.13)		240 (1.07)		245 (1.09)	
Powder Actuated			1 ¼ (32)	3½ (89)	5 (102)	250 (1.11)		265 (1.18)	_	265 (1.18)	
		РА 0.157 (4.0)	7/8 (22)	3½ (89)	5 (102)	135 (0.60)		130 (0.58)		115 (0.51)	
	PECLDPA		1 (25)	3½ (89)	5 (102)	225 (1.00)		230 (1.02)	_	255 (1.13)	
Gas Actuated	GAC	0.126 (3.2)	3⁄4 (19)	3 (76)	4 (102)	130 (0.58)	135 (0.60)	145 (0.64)	155 (0.69)	175 (0.78)	

1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.

2. Minimum concrete thickness must be three times the fastener embedment into the concrete.

3. The allowable oblique values are only for the fastener in the concrete. Members connected to the concrete must be

investigated in accordance with accepted design criteria.

4. Oblique load direction is 45° from the concrete member surface.

5. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

6. For fastener installation in concrete with compressive strength outside of the listed range, published allowable loads shall not be extrapolated.

176

IBC 🛃 🗔 '

IBC

Powder-Actuated Fasteners - Allowable Tension and Shear Loads

Shank

Length

in.

(mm)

21/8

(73)

2. Minimum concrete thickness must be three times the fastener embedment into the concrete.

for Attachment of Wood Sill Plates to Normal-Weight Concrete

5. Only mechanically galvanized fasteners (with 'MG' in the designation) may be used to attach preservative-treated wood to concrete.

6. Minimum spacing shall be 4" (101.6 mm) on center.

investigated in accordance with accepted design criteria.

Model

No.

PDPAWL-287

PDPAWL-287MG

Direct

Fastening

Туре

Powder

Actuated

7. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 code report for seismic load conditions.

Pin Spacing Requirements of Powder-Actuated Fasteners for Attachment of Wood Sill Plates for Interior Non-Structural Walls to Normal-Weight Concrete

1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.

Direct Fastening Type	Model No.	Shank Length in. (mm)	Shank Diameter in. (mm)	Concrete Edge Distance in. (mm)	Maximum Spacing in. (mm)
Powder Actuated	PDPAWL-287 ³ PDPAWL-287MG ³	27⁄8 (73)	0.157 (4.0)	1¾ (44.5)	48 (1,219)

1. Spacings are based upon the attachment of 2" (nominal thickness) wood sill plates, with specific gravity

of 0.50 or greater, to concrete floor slabs or footings.

2. All walls shall have fasteners placed at 6" (152.4 mm) from ends of sill plates, with maximum spacing as shown in the table.

3. Fasteners shall not be driven until the concrete has reached a compressive strength of 2,500 psi.

4. The maximum horizontal transverse load on the wall shall be 5 psf (0.239 kPa).

5. The maximum wall height shall be 14 feet (4.3 m).

6. For exterior walls and interior structural walls, this table is not applicable and allowable loads must be used.

7. Walls shall be laterally supported at the top and the bottom.

8. Minimum fastener spacing shall be 4" (101.6 mm) on center.

9. Only mechanically galvanized fasteners (with 'MG' in the designation) may be used to attach preservative-treated wood to concrete.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

(kN)

205

(0.91)

SIMPSO

Strong

Allowable

Tension Load

lb.

(kN)

200

(0.89)

IBC

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

Nominal

Head

Diameter

in.

(mm)

0.300

(7.6)

3. The allowable tension and shear values are only for the fastener in the concrete. Members connected to the concrete must be

Gas- and Powder-Actuated Fasteners Design Information - Concrete

Shank

Diameter

in.

(mm)

0.157

(4.0)

Washer

Thickness

in.

(mm)

0.070

(1.8)

Washer

Bearing

Area in.4

 (mm^2)

0.767

(495)

Powder-Actuated and Gas-Actuated Fasteners —

Allowable Tension Loads in Sand-Lightweight Concrete over Steel Deck

				Allowable Tension Load — Ib. (kN)							
		Shank	Minimum Embedment	f' _c = 3,000 psi (20.7 MPa) Sand-Light Weight Concrete							
Direct Fastening	Model	Diameter		Installed in	Installed Through	3" "W" Deck with	Installed Through 1.5" "B" Deck with				
Туре	No.	in. (mm)	in. (mm)	Top Side of Concrete⁴	3¼" Concrete Fill⁵	2 ¹ /4" Concrete Fill ⁶	2 ¹ /4" Concrete Fill ⁷	2" Concrete Fill ⁸			
				Figure 1, 2 and 3	Figure 1	Figure 1	Figure 2 and 3	Figure 2			
			3⁄4 (19)	85 (0.38)	105 (0.47)	_	_	160 (0.71)			
	PDPA PDPAT PDPAWL	0.157 (4.0)	1 (25)	150 (0.67)	145 (0.64)	—	—	210 (0.93)			
Powder			1 ¼ (32)	320 (1.42)	170 (0.76)	_	_	265 (1.18)			
Actuated			1 ½ (38)	385 (1.71)	325 (1.45)	_	_	—			
	PINW PINWP	0.145 (3.7)	7 ⁄8 (22)	85 (0.38)	40 (0.18)	_	_	—			
	PSLV3	0.205 (5.2)	1 ¼ (32)	_	225 (1.00)	—	—	—			
	GDP	0.106	5%8 (16)	75 (0.33)	_	60 (0.27)	65 (0.29)	—			
Gas		(2.7)	3⁄4 (19)	105 (0.47)	—	60 (0.27)	130 (0.58)	—			
Actuated	GW-75 GW-100	0.126 (3.2)	5%8 (16)	60 (0.27)	_	35 (0.16)	_	_			
	GTH		3⁄4 (19)	115 (0.51)	_	55 (0.24)	_	_			

 The fastener shall not be driven until the concrete has reached the designated compressive strength.

- The allowable tension values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.
- 3. Steel deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.
- The minimum fastener spacing is 4". The minimum edge distances are 3½" and 3" for powder-actuated fasteners and gas-actuated fasteners, respectively.
- The fastener shall be installed minimum 1½" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 6. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4". For GW and GTH fasteners, the fastener must be a minimum of 1%" from the edge of flute.
- The fastener shall be installed minimum ⁷/₄" from the edge of flute. For inverted 1.5" "B" deck configuration, the fastener must be a minimum of 1" from the edge of flute. Fastener must be installed minimim 3" from the end of the deck. The minimum fastener spacing is 4".
- The fastener shall be installed minimum %" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.
- 10. See figures on the right for nominal deck dimensions and fastener locations.

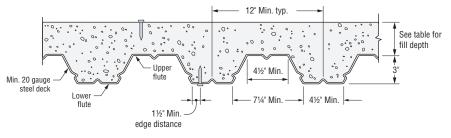


Figure 1. 3" "W" Deck with Concrete Infill

Figure 2. 11/2" "B" Deck with Concrete Infill

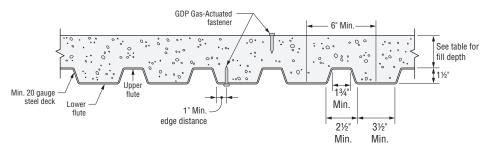


Figure 3. 11/2" Inverted "B" Deck with 21/4" Concrete Infill

SIMPSON

Strong-

5

LW

IBC

SIMPSON

Strong-Tie

IBC

Powder-Actuated and Gas-Actuated Fasteners -

Allowable Shear Loads in Sand-Lightweight Concrete over Steel Deck

				Allowable Shear Load — Ib. (kN)						
		Shank	Minimum	f' _c = 3,000 psi (20.7 MPa) Sand-Light Weight Concrete						
Direct Fastening	Model No.	Diameter in.	Embedment in.	Installed in	Installed Through	3" "W" Deck with	Installed Through 1.5" "B" Deck with			
Туре	NU.	(mm)	(mm)	Top Side of Concrete ⁹	3¼" Concrete Fill⁵	21⁄4" Concrete Fill ⁶	2 ¹ /4" Concrete Fill ⁷	2" Concrete Fill [®]		
				Figure 1, 2 and 3 ¹¹	Figure 1 ¹¹	Figure 1 ¹¹	Figure 2 and 3 ¹¹	Figure 2 ¹¹		
		0.157 (4.0)	3⁄4 (19)	105 (0.47)	280 (1.25)	_	_	275 (1.22)		
	PDPA PDPAT PDPAWL		1 (25)	225 (1.00)	280 (1.25)	_	_	370 (1.65)		
Powder Actuated			1 ¼ (32)	420 (1.87)	320 (1.42)			460 (2.05)		
			1 ½ (38)	455 (2.02)	520 (2.31)			_		
	PINW PINWP	0.145 (3.7)	7⁄8 (22)	250 (1.11)	275 (1.22)	_	_	—		
	GDP	0.106 (2.7)	5%8 (16)	35 (0.16)	_	180 (0.80)	195 (0.87)	—		
Gas			3⁄4 (19)	140 (0.62)	_	180 (0.80)	270 (1.20)	_		
Actuated	GW-75	0.126 (3.2)	5% (16)	110 (0.49)	_	215 (0.96)	_	—		
	GW-100 GTH		3⁄4 (19)	130 (0.58)	_	235 (1.05)	_	_		

1. The fastener shall not be driven until the concrete has reached the designated compressive strength.

2. The allowable shear values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.

3. Steel deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.

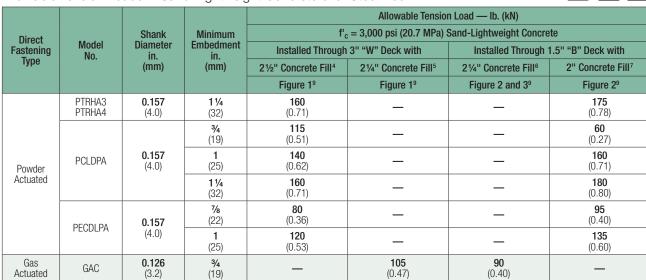
4. Shear values are for loads applied toward edge of flute.

5. The fastener shall be installed minimum 11/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".

6. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4". For GW and GTH fasteners, the fastener must be a minimum of 1 1/2" from the edge of flute.

7. The fastener shall be installed minimum %" from the edge of flute. For inverted 1.5" "B" deck configuration, the fastener must be a minimum of 1" from the edge of flute. Fastener must be installed minimum 3" from the end of the deck. The minimum fastener spacing is 4".

8. The fastener shall be installed minimum 1/8" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".


9. The minimum fastener spacing is 4". The minimum edge distances are 31/2" and 3" for powder-actuated fasteners and gas-actuated fasteners, respectively.

10. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

11. See figures on p. 178 for nominal deck dimensions and fastener locations.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Powder-Actuated and Gas-Actuated Assemblies — Allowable Tension Loads in Sand-Lightweight Concrete over Steel Deck

1. The fastener shall not be driven until the concrete has reached the designated compressive strength.

2. The allowable tension values are for the fastener only. Members connected to the concrete must be invesigated separately

in accordance with accepted design criteria.

3. Steel deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.

4. The fastener shall be installed minimum 1 1/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".

5. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".

6. The fastener shall be installed minimum 1%" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".

7. The fastener shall be installed minimum 1%" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".

8. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

9. See figures on p. 178 for nominal deck dimensions and fastener locations.

Powder-Actuated and Gas-Actuated Assemblies — Allowable Oblique Loads in Sand-Lightweight Concrete over Steel Deck

				Allowable Oblique Load — Ib. (kN)					
Direct		Shank	Minimum Embedment in. (mm)	f' _c = 3,000 psi (20.7 MPa) Sand-Lightweight Concrete					
Fastening	Model No.	Diameter in.		Installed Through	3" "W" Deck with	Installed Through 1.5" "B" Deck with			
Туре		(mm)		2 ¹ / ₂ " Concrete Fill ⁴	21/4" Concrete Fill ⁵	2 ¹ / ₄ " Concrete Fill ⁶	2" Concrete Fill ⁷		
				Figure 1 ¹⁰	Figure 1 ¹⁰	Figure 2 and 3 ¹⁰	Figure 2 ¹⁰		
	PCLDPA	0.157 (4.0)	3⁄4 (19)	155 (0.69)	_	_	175 (0.78)		
			1 (25)	175 (0.78)	_	_	240 (1.07)		
Powder Actuated			1 ¼ (32)	185 (0.82)	_	_	280 (1.25)		
	PECDLPA	0.157 (4.0)	7⁄8 (22)	110 (0.49)	_	_	110 (0.49)		
	PEGDLPA		1 (25)	145 (0.64)		_	175 (0.78)		
Gas Actuated	GAC	0.126 (3.2)	3⁄4 (19)	_	120 (0.53)	90 (0.40)	_		

1. The fastener shall not be driven until the concrete has reached the designated compressive strength.

2. The allowable oblique values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.

3. Steel deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.

4. The fastener shall be installed minimum 1 1/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".

5. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".

6. The fastener shall be installed minimum 1/8" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".

7. The fastener shall be installed minimum 7/8" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".

8. Oblique load direction is 45° from the concrete member surface.

9. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

10. See figures on p. 178 for nominal deck dimensions and fastener locations.

180

IBC

SIMPSOI

Strong

IBC

Gas- and Powder-Actuated Fasteners Design Information – CMU

Powder-Actuated and Gas-Actuated Fasteners — Allowable Tension and Shear Loads in Hollow and Grout-Filled CMU^{4,5,8}

Direct		Shank	Minimum	Minimum Edge	8-inch Hollow CMU		8-inch Grou	t-Filled CMU
Fastening Type	Model No.	Diameter in. (mm)	Embedment in. (mm)	Distance in. (mm)	Allowable Tension Load Ib. (kN)	Allowable Shear Load Ib. (kN)	Allowable Tension Load Ib. (kN)	Allowable Shear Load Ib. (kN)
Powder	PDPA PDPAT PDPAWL	0.157 (4.0)	1 ¾ (44)	31⁄2 (89)	125 ¹ (0.56)	210 ¹ (0.93)	190 ³ (0.85)	245 ³ (1.09)
Actuated	PINW PINWP	0.145 (3.7)	1 ¾ (44)	31⁄2 (89)	110 ¹ (0.49)	200 ¹ (0.89)	_	_
Gas	GDP	0.106 (2.7)	5% (16)	3 (76)	35 ¹ (0.16)	60 ¹ (0.27)	_	_
Actuated	GW-75 GW-100 GTH	0.126 (3.2)	5% (16)	3 (76)	75 ² (0.33)	90 ² (0.40)	_	_

1. Allowable values for fasteners in hollow lightweight concrete masonry units conforming to ASTM C90.

2. Allowable values for fasteners in hollow medium-weight concrete masonry units conforming to ASTM C90.

3. Allowable values for fasteners in grout-filled lightweight concrete masonry units conforming to ASTM C90 with

coarse grout conforming to ASTM C746.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

4. The minimum allowable nominal size of the CMU must be 8" high by 8" wider by 16" long, with a minimum 11/4"-thick face shell thickness.

5. Allowable values are for fasteners installed in the center of a CMU face shell. See Figure 1 for the applicable placement zone.

Only one fastener may be installed at each cell.

6. Minimum embedment is measured from the outside face of the CMU.

 Allowable values are for the fastener only. Members connected to the CMU must be investigated separately in accordance with accepted design criteria.

8. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

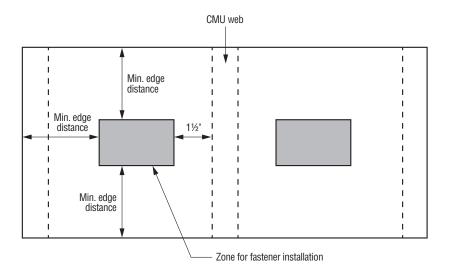


Figure 1. Zone for Fastener Installation in Face Shell of CMU

SIMPSO

Strong-Tie

IBC

Gas- and Powder-Actuated Fasteners Design Information - Steel

Powder-Actuated and Gas-Actuated Fasteners – Allowable Tension Loads in Steel¹

Direct		Shank	Minimum	Minimum	Minimum	Allowable Tension Load — Ib. (kN)						
Fastening Type	Model No.	Diameter ¹⁰ in.	Edge Distance in.	Spacing in.	Steel Strength ³ ASTM			Steel T	hickness			
туре		(mm)	(mm)	(mm)	ASTIVI	1⁄8"	3⁄16"	1⁄4"	3⁄8"	1⁄2"	3⁄4"	
	PDPA PDPAT	0.157	½ (13)	1 (25)	A36	—	260 (1.16)	370 (1.65)	380 ⁷ (1.69)	530 ⁷ (2.36)	195 ⁴ (0.87)	
	PDPAI	(4.0)	1/2 (13)	1 (25)	A572 Gr. 50 or A992	—	305 (1.36)	335 (1.49)	355 ⁷ (1.58)	485 ⁵ (2.16)	170 ⁶ (0.76)	
Powder	PINW PINWP	0.145 (3.7)	½ (13)	1 (25)	A36	_	155 (0.69)	—	_	—	_	
Actuated	PSLV3 Smooth shank	0.205 (5.2)	1 (25)	1 ½ (38)	A36	_	270 (1.20)	680 (3.02)	_	_	_	
	PSLV3- 12575K 0.205 Knurled (5.2) shank		1 (25)	1 ½ (38)	A36	_	270 (1.20)	870 (3.87)	_	_	_	
	GDP	0.106	1⁄2 (13)	1 (25)	A36	125 (0.56)	210 (0.93)	220 (0.98)	_	_	—	
	GDP	(2.7)	½ (13)	1 (25)	A572 Gr. 50 or A992	_	225 (1.00)	185 (0.82)		_	_	
Gas	GDPS	0.118/0.102	½ (13)	1 (25)	A36	_	95 (0.42)	170 (0.76)	165 ⁸ (0.73)	145 ⁸ (0.64)	_	
Actuated	Actuated	(3.0/2.6)	(3.0/2.6)	½ (13)	1 (25)	A572 Gr. 50 or A992		110 (0.49)	170 (0.76)	155 ⁸ (0.69)	—	—
	CW/ 50	0.128/0.110	½ (13)	1 (25)	A36	_	225 (1.00)	275 (1.22)	245 ⁹ (1.09)	_	_	
	GW-50	(3.3/2.8)	½ (13)	1 (25)	A572 Gr. 50 or A992	—	240 (1.07)	215 ⁹ (0.96)	280 ⁹ (1.25)	—	_	

1. The entire pointed portion of the fastener must penetrate through the steel to obtain the tabulated values, unless otherwise indicated.

2. The allowable tension values are for the fastener only. Members connected to the steel must be investigated separately in accordance with accepted design criteria.

3. Steel strength must comply with the minimum requirements of ASTM A 36 (F_y = 36 ksi, F_u = 58 ksi),

ASTM A 572, Grade 50 (F_y = 50 ksi, F_u = 65 ksi), or ASTM A992 (F_y = 50 ksi, F_u = 65 ksi).

4. Based upon minimum penetration depth of 0.46" (11.7 mm).

5. Based upon minimum penetration depth of 0.58" (14.7 mm).

6. Based upon minimum penetration depth of 0.36" (9.1 mm).

7. The fastener must be driven to where the point of the fastener penetrates through the steel.

8. Based upon minimum penetration depth of 0.35" (8.9 mm).

Based upon minimum penetration depth of 0.25" (6.4 mm).

10. For stepped shank fasteners: (Diameter of shank above the step)/(Diameter of shank below the step)

11. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

SIMPSON

Strong-

Direct Fastening Solutions

Gas- and Powder-Actuated Fasteners Design Information - Steel

Powder-Actuated and Gas-Actuated Fasteners -Allowable Shear Loads in Steel¹

Direct		Shank	Minimum Edge Distance	Minimum	Minimum		Allow	able Shear	Load — Ib.	(kN)										
Fastening	Model No.			Spacing in.	Steel Strength ³ ASTM	Steel Thickness														
Туре		(mm)	(mm)	(mm)	ASTIM	1⁄8"	³ ⁄16 ^{''}	1⁄4"	3⁄8"	1⁄2"	3⁄4"									
	PDPA, PDPAT,	0.157	1/2	1	A36	—	410 (1.82)	365 (1.62)	385 ⁷ (1.71)	385⁷ (1.71)	325 ⁴ (1.45)									
	PDPAWL	(4.0)	(13)	(25)	A572 Gr. 50 or A992	—	420 (1.87)	365 (1.62)	290 ⁷ (1.29)	275 ⁷ (1.22)	275 ⁷ (1.22)									
Powder Actuated	PINW PINWP	0.145 (3.7)	½ (13)	1 (25)	A36	—	395 (1.76)	_	—	_	—									
	PSLV3 Smooth shank	0.205 (5.2)	1 (25)	1 ½ (38)	A36	—	770 (3.43)	1,120 (4.98)	_	_	—									
	PSLV3-12575K Knurled shank	0.205 (5.2)	1 (25)	1 ½ (38)	A36	_	930 (4.14)	1,130 (5.03)	_	_	—									
	GDP	0.106	½ (13)	1 (25)	A36	285 (1.27)	225 (1.00)	205 (0.91)	—	—	—									
	GDF	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	1⁄2 (13)	1 (25)	A572 Gr. 50 or A992	—	250 (1.11)	145 (0.64)	_	—	—
Gas	GDPS	0.118/0.102	½ (13)	1 (25)	A36	—	180 (0.80)	265 (1.18)	225 ⁸ (1.00)	225 ⁸ (1.00)	—									
Actuated	Actuated GDPS	GDP5	(3.0/2.6)	(3.0/2.6)	(3.0/2.6)	(3.0/2.6)	½ (13)	1 (25)	A572 Gr. 50 or A992		205 (0.91)	305 (1.36)	205 ⁸ (0.91)		_					
	GW 50	0.128/0.110	½ (13)	1 (25)	A36	_	400 (1.78)	345 (1.53)	310 ⁹ (1.38)	—	—									
	GW-50	(3.3/2.8)	1⁄2 (13)	1 (25)	A572 Gr. 50 or A992	—	380 (1.69)	325 ⁹ (1.45)	350 ⁹ (1.56)	—	—									

1. The entire pointed portion of the fastener must penetrate through the steel to obtain the tabulated values, unless otherwise indicated.

2. The allowable shear values are for the fastener only. Members connected to the steel must be investigated separately

in accordance with accepted design criteria.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Steel strength must comply with the minimum requirements of ASTM A 36 (F_y = 36 ksi, F_u = 58 ksi), З.

ASTM A 572, Grade 50 (F_y = 50 ksi, F_u = 65 ksi), or ASTM A992 (F_y = 50 ksi, F_u = 65 ksi).

4. Based upon minimum penetration depth of 0.46" (11.7 mm).

5. Based upon minimum penetration depth of 0.58" (14.7 mm).

6. Based upon minimum penetration depth of 0.36" (9.1 mm).

7. The fastener must be driven to where the point of the fastener penetrates through the steel.

8. Based upon minimum penetration depth of 0.35" (8.9 mm).

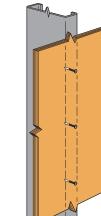
9. Based upon minimum penetration depth of 0.25" (6.4 mm).

10. For stepped shank fasteners: (Diameter of shank above the step)/(Diameter of shank below the step)

11. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

Spiral Knurl Pin Allowable Tension and Shear Loads in Cold-Formed Steel Studs

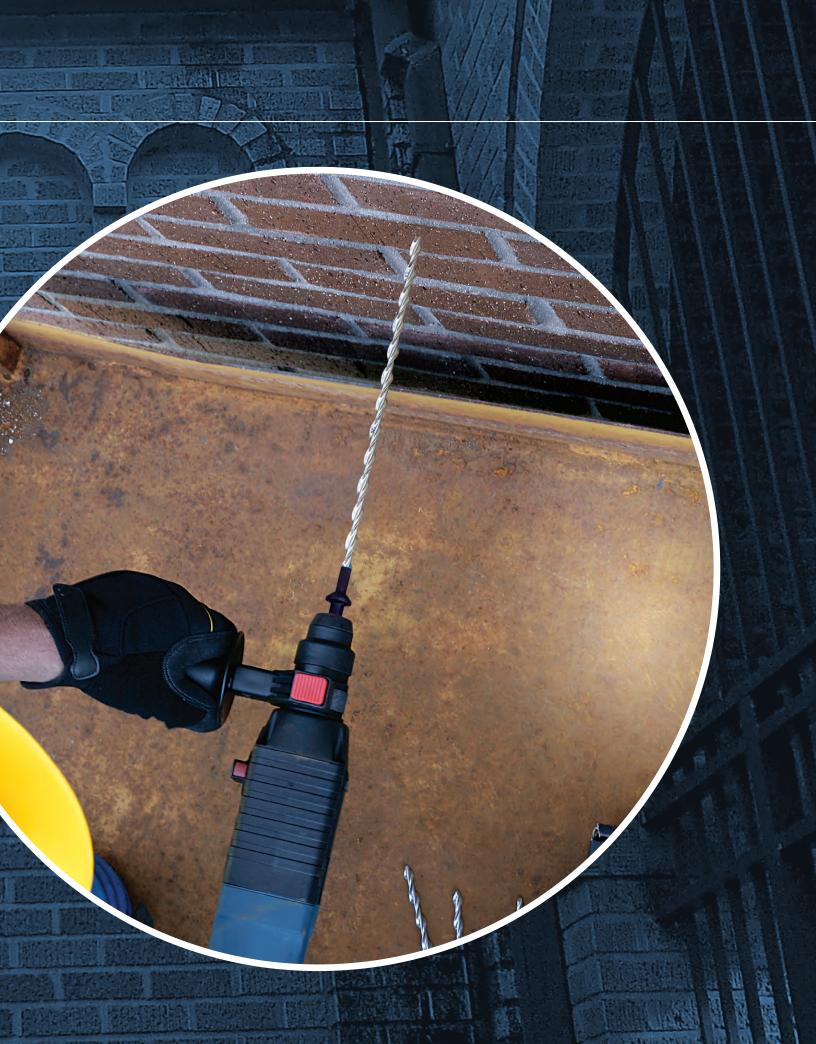
	Shank	Minimum	Minimum	Designation	Allowable Loads		
Model No.	Diameter in. (mm)	Edge Dist. in. (mm)	Spacing in. (mm)	Thickness mil (gauge)	Tension lb. (kN)	Shear Ib. (kN)	
			33 (20)	30 (0.13)	70 (0.31)		
GDPSK-138	0.106	¹³ ⁄16	4 (102)	43 (18)	48 (0.21)	89 (0.40)	
GDPSK-130	(2.8)	(2.1)		54 (16)	92 (0.41)	150 (0.67)	
				68 (14)	73 (0.32)	218 (0.97)	


1. Entire pointed portion of the fastener must penetrate through the cold-formed steel to obtain tabulated values.

2. The allowable tension and shear values are for the fastener only. Members connected to the cold-formed steel must be investigated separately in accordance with accepted design criteria.

3. Fastener is to be installed in the center of the stud flange.

4. Loads are based on cold-formed steel members with a minimum yield strength, $F_y = 33$ ksi and tensile strength, $F_u = 45$ ksi for 33 mil (20 ga.) and 43 mil (18 ga.), and minimum yield strength, $F_y = 50$ ksi and tensile strength,


 $F_u = 65$ ksi for 54 mil (16 ga.) and 68 mil (14 ga.)

Typical GDPSK Installation

IBC

Restoration Solutions

CSS V-WRAP[™] FRP Composite Strengthening Systems

SIMPSON Strong-Tie

A Strong Alliance for Stronger Structures

Through their alliance, Simpson Strong-Tie and Structural Technologies offer one-stop, end-to-end concrete strengthening and repair solutions with the best products, installation and support available.

Integrated Design-Build Solutions

Simpson Strong-Tie, a leading provider of tested, code-listed, high-performance products and technical services for the construction industry, and Structural Technologies, a renowned provider of state-of-the-art infrastructure strengthening solutions and engineering support services, have formed a strategic alliance within North America.

This new alliance enables both companies to jointly deliver complete end-to-end repair and strengthening solutions to engineering professionals, general contractors and owners across multiple construction and repair markets. The combination of innovative products, design support, engineering partners and contracting services allows us to deliver fully integrated design-build solutions from initial problem investigation through final installation.

Simpson Strong-Tie offers decades of innovative engineer-supported products, cutting-edge testing capabilities, relentless customer service and dedicated field-engineering support.

Struc tural

Structural Technologies brings their deep industry knowledge, solutions, design support and technical services, along with licensed installers, to the alliance.

Together, we offer a uniquely integrated scope of technical knowledge and solutions for concrete and masonry strengthening and repair that ultimately better serves your needs and helps ensure stronger, safer, longer-lasting structures.

One End-to-End Solution, Twice the Expertise

- Design, engineering and specification services
- Innovative product solutions
- Advanced testing capabilities
- Expert installation and maintenance service by licensed installers
- Dedicated customer service and onsite field engineers

Let us help you find the right solution for your project and budget. For additional information, visit **strongtie.com/alliance** or call (800) 999-5099 to discuss your project with a local field engineer.

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

CSS V-WRAP[™] FRP Composite Strengthening Systems

The Simpson Strong-Tie and Structural Technologies alliance has state-of-the-art composite strengthening systems that utilize lightweight, durable, and high-strength carbon and glass fibers bonded with adhesive resins. CSS V-Wrap products are used to increase or restore the load-carrying capacity, ductility, and seismic resistance to a variety of structures. Significant flexural, axial or shear strength gains can be realized with an easy-to-apply composite without adding significant weight or mass to the structure.

Large Aspect Ratio Column Confinement

Slab Flexural Strengthening

Transferring Diaphragm Chord Forces

Carbon Fiber Composites

- Carbon Fiber Fabrics
- Carbon Fiber Precured Plates
- Carbon Fiber Grid (Fabric-Reinforced Cementitious Matrix/FRCM)

SIMPSO

Strong-Tie

- Carbon Fiber Precured Bars
- Carbon Fiber Precured Anchors
- Carbon Fiber Anchors

Glass Fiber Composites

- Glass Fiber Fabrics
- Glass Fiber Anchors

Resins/Coatings

- 770 Epoxy Saturant
- PF Putty Filler
- FPS UL Listed Fire Protection System
- Tstrata TC Protective Acrylic
 Based Topcoat

Shearwall Strengthening

FRP Coating, Flame and Smoke Resistance

Near-Surface-Mounted FRP Reinforcement

SIMPSON Strong-Tie

Performance Coatings

RPS-70-9 Epoxy Coating

(Formerly FX-70-9)

RPS-70-9 epoxy coating is a high-solids, two-component, moisture-tolerant, high-build protective coating designed to protect steel, concrete and wood.

Features

- Excellent abrasion resistance in wastewater and other industrial applications
- Resists abrasion and staining
- Suitable for immersion service
- Can be applied to damp concrete
- Self-priming for most applications
- Can be fabric-reinforced for added durability
- Very low odor

Restoration Solutions

- Can be applied by brush, roller or spray
- Excellent bond to common construction materials

Where to Use

- Commercial and industrial applications requiring moderate chemical resistance
- Primary and secondary containment
- Water/wastewater: clarifiers, digesters, sludge thickener tanks, lift stations, manholes
- Marine applications: protection from salt spray and water intrusion in immersion service applications
- Fiber-reinforced polymer (FRP) topcoat
- Petrochemical applications
- Above- and below-grade applications
- Floor and wall coating

RPS-207 Slurry Seal

(Formerly FX-207)

RPS-207 slurry seal is a two-component, polymer-modified cementitious coating designed for fire insulation with FRP materials as well as waterproofing and damp-proofing concrete and masonry substrates. This product is part of the tested assembly in UL Design No. N861, which achieved a four-hour fire rating when subjected to ASTM E119/UL 263 full-scale fire testing.

Features

- Trowel or slurry consistency
- Convenient pre-measured kit
- Excellent bond strength
- Can be applied by brush, roller, spray, or trowel
- UL listed (refer to UL Online Certifications Directory for the UL listing at ul.com/database)

Where to Use

- Coating over FRP materials for fire insulation and flame/smoke spread resistance
- Horizontal and vertical surfaces
- · Above-grade and below-grade applications
- Waterproofing and damp-proofing concrete and masonry
- Interior and exterior applications
- To protect concrete and masonry from freeze/thaw cycles

RPS-505 Water-Based Acrylic Coating

(Formerly FX-505)

RPS-505 water-based acrylic coating is a single-component, fast-drying, protective architectural coating for concrete, masonry and stucco.

Features

- Excellent color retention
- 100% acrylic resin
- Good hiding properties
- Breathable
- Water based
- Fast drying

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Can be applied by brush, roller or spray
- Easy to clean
- · Bonds well to concrete, masonry and FRP substrates
- Repels rain
- Excellent UV resistance

Where to Use

- Commercial building façades
- Concrete and masonry substrates
- New and remedial applications
- Exterior applications
- Vertical and overhead surfaces
- Tilt-wall and precast panels
- Block and brick masonry
- Fiber-reinforced polymer (FRP) topcoat
- Retaining walls
- Various DOT applications

General Concrete Repair

RPS-406 Zinc-Rich Primer

(Formerly FX-406)

RPS-406 zinc-rich primer is a single-component, fast-drying, zinc-rich coating designed to protect steel from corrosion by combining a barrier coating with the sacrificial galvanic protection of zinc.

Features

- High-zinc content provides superior corrosion
 protection of steel
- Excellent bond to steel
- Can be shop- or field-applied
- Ready to use, simply stir and apply
- Single-component product
- Fast drying

Where to Use

- Priming reinforcing steel to protect against corrosion
- As a corrosion-resistant steel primer for protective coating systems

SIMPSON

Strong-Tie

RPS-752 Epoxy Bonding Agent

(Formerly FX-752)

RPS-752 epoxy bonding agent is a 100%-solids, two-component, moisture-tolerant epoxy system designed to increase the bond between freshly placed repair mortars or concrete mixes and existing concrete.

Features

- Bonds to both damp and dry concrete
- Can be applied by brush, roller, spray or squeegee

Where to Use

• Bonding new concrete or repair mortars to existing concrete

RPS-792LPL Long Pot Life Epoxy Bonding Agent

(Formerly FX-792LPL)

RPS-792LPL long pot life epoxy bonding agent is a two-component, 100%-solids, moisture-tolerant epoxy resin designed to increase the bond between freshly placed repair mortars or concrete mixes and existing concrete.

Features

- Bonds to both damp and dry concrete
- Can be applied by brush, roller, spray or squeegee
- 60-minute pot life at 70°F (21°C)
- 8-hour open time at 70°F (21°C) for repair mortar installation

Where to Use

- Bonding new concrete or repair mortar to existing concrete
- For warm-weather applications
- Where longer open times are required

RPS-263 Rapid-Hardening Vertical/Overhead Repair Mortar (Formerly FX-263)

(Formerly FX-203)

RPS-263 rapid-hardening vertical/overhead repair mortar is a cementitious, single-component, fiber-reinforced, polymer-modified, silica-fume–enhanced, structural repair mortar with integral corrosion inhibitor designed for vertical and overhead applications.

Features

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Ready to use simply add potable water
- Fiber-reinforced
- High early strength
- High buildup to 3 in. (76 mm) per lift
- Excellent freeze/thaw resistance
- Excellent abrasion resistance
- Low permeability

Where to Use

- Partial-depth concrete repairs
- Above-, below-, or on-grade applications
- Vertical and overhead applications
- Tunnels, bridges, balconies, parking decks, elevated structures, water treatment facilities and marine structure

CI-SLV Super-Low-Viscosity Injection Epoxy

CI-SLV super-low-viscosity structural injection epoxy is a two-component, high-modulus, high-solids, moisture-tolerant epoxy specially designed for pressure injection, gravity feeding and flood coat filling of concrete cracks when substrate temperatures are between 60°F (16°C) to 90°F (32°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual or pneumatic dispensing tool.

Features

- Chemically bonds with the concrete to provide a structural repair. CI-SLV seals the crack from moisture, protecting rebar in the concrete from corrosion.
- Moisture-tolerant, can be used on dry and damp surfaces.
- Low surface tension allows the material to effectively penetrate narrow cracks.
- Formulated for maximum penetration under pressure.
- Non-shrink and resistant to oils, salts and mild chemicals.
- Can be used with metered pressure-injection equipment.
- Freeze-thaw resistant.

Applications

- Pressure injection
- Gravity feed
- Underwater pressure injection
- Flood coat

Product Information

Mix Ratio/Type	2:1
Mixed Color	Clear
Crack Width	0.002"–0.25" (0.05 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Volatile Organic Compound (VOC)	8 g/L mixed
Yield	231 in.³/US gal. (0.001 m³/L)
For Flood-Coat Applications	150–200 ft.²/US gal. (3.7–4.9 m²/L) depending on surface profile and porosity
Pot Life, 1 Quart	6 minutes at 90°F (32°C) 25 minutes at 72°F (22°C)
Thin Film (5 mil) Set Time at 72°F, ASTM D5895	Set to touch: 4 hr. Dry through: 9 hr.
Manufactured in the LIS using global r	materials

Manufactured in the US using global materials

Code Reports, Standards and Compliance

ASTM C881 and AASHTO M235 Type I/IV; Grade 1; Class C

Installation Instructions

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-SLV Technical Data Sheet at **strongtie.com/rps**.

Accessories

See p. 209 for information on crack repair accessories.

CI-SLV Packaging Information

Model No.	Capacity (ounces)	Packaging Type	Package Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
CISLV32	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	EMN022 (included)
CISLV3KT	384	3-gallon bulk kit	1 case of (3) gallon cans	_	Metering pumps offered by third-party manufacturers	_

1. Cartridge estimation guidelines are available at strongtie.com/apps.

CI-SLV Super-Low-Viscosity Injection Epoxy

SIMPSON **Strong-Tie**

Technical Information

Compressive Strength

Cure Time	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	Test Standard
4-hour cure			10,250 (70.7)	
8-hour cure		4,450 (30.7)	11,500 (79.3)	
16-hour cure	5,750 (39.6)	10,200 (70.3)	11,700 (80.7)	
24-hour cure	7,600 (52.4)	11,250 (77.6)	11,900 (82.0)	ASTM D695
3-day cure	12,800 (88.3)	13,150 (90.7)	12,250 (84.5)	ASTMI D095
7-day cure	13,400 (92.4)	13,300 (91.7)	12,500 (86.2)	
14-day cure	13,700 (94.5)	13,600 (93.8)	12,500 (86.2)	
28-day cure	13,700 (94.5)	14,200 (97.9)	12,500 (86.2)	

Temperature Range	>60°F (16°C)	Test Standard
Epoxy Classification	Types I, IV; Grade I (LV)	ASTM C881
Viscosity — mixed1	150 cP	ASTM D2556
Gel Time — 60 gram mass ¹	40 minutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure ² Hardened to Hardened Concrete — 14-day cure ²	2,200 psi (15.2 MPa) 3,600 psi (24.8 MPa)	ASTM C882
Tensile Strength — 7-day cure ²	7,500 psi (51.7 MPa)	ASTM D638
Elongation at Break — 7-day cure ²	2.14%	ASTM D638
Flexural Strength — 7-day cure ²	7,300 psi (50.3 MPa)	ASTM D790
Modulus of Elasticity in Compression — 7-day cure ²	318,000 psi (2,192.5 MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure ³	122°F (50°C)	ASTM D648
Glass Transition Temperature — 7-day cure ³	128°F (53°C)	ASTM E1356
Water Absorption — 14-day cure ⁴	0.57%	ASTM D570
Linear Coefficient of Shrinkage ³	0.005	ASTM D2566
Coefficient of Thermal Expansion ³	2.89 x 10 ⁻⁵ in./(in.°F) 5.20 x 10 ⁻⁵ cm/(cm°C)	ASTM C531
Shore D Hardness — 24-hour cure ³	82	ASTM D2240
Shore D Hardness — 7-day cure ³	82	ASTM D2240
Adhesion to Concrete — 24-hour cure ³	1,100 psi (7.6 MPa)	ASTM D7234

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

1. Tested at 72°F (22°C).

2. Cured at 60°F (16°C).

3. Cured at 72°F (22°C).

4. Cured at 72°F (22°C), immersed in water 24 hours.

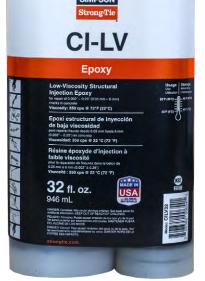
CI-LV Low-Viscosity Injection Epoxy

CI-LV low-viscosity structural injection epoxy is a two-component, high-modulus, high-solids, moisture-tolerant epoxy specially designed for pressure injection, gravity feeding and flood coat filling of concrete cracks and for increasing the bond between freshly placed repair mortars or concrete mixes and existing concrete when substrate temperatures are between 40°F (4°C) to 90°F (32°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual or pneumatic dispensing tool.

Features

- Chemically bonds with the concrete to provide a structural repair. CI-LV seals the crack from moisture, protecting rebar in the concrete from corrosion.
- Approved under NSF/ANSI Standard 61 (568 in.² /1,000 gal.).
- Moisture-tolerant, can be used on dry and damp surfaces.
- Low surface tension allows the material to effectively penetrate narrow cracks.
- Formulated for maximum penetration under pressure.
- Non-shrink and resistant to oils, salts and mild chemicals.
- Can be used with metered pressure-injection equipment.
- Freeze-thaw resistant.

Applications


- Pressure injection
 Underwater pressure injection
- Gravity feed
 Flood coat
- Repair mortar

Restoration Solutions

ortar
• Bonding agent

Product Information

i loadot information	
Mix Ratio/Type	2:1
Mixed Color	Dark amber
Crack Width	0.002"–0.25" (0.05 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	40°F (4°C)–90°F (32°C)
Volatile Organic Compound (VOC)	2 g/L mixed
Yield	231 in. ³ /US gal. (0.001 m ³ /L)
For Flood-Coat Applications	150–200 ft.²/US gal. (3.7–4.9 m²/L) depending on surface profile and porosity
Pot Life, 1 Quart	10 minutes at 90°F (32°C) 25 minutes at 72°F (22°C) 100 minutes at 50°F (10°C)
Thin Film (5 mil) Set Time at 72°F, ASTM D5895	Set to touch: 3 hr. 50 min. Dry through: 6 hr. 15 min.
Manufactured in the US using global m	naterials

CI-LV

Installation Instructions

ASTM C881 and AASHTO M235

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-LV Technical Data Sheet at **strongtie.com/rps**.

Type I/II; Grade 1; Class B Type I/IV and II/V, Grade 1; Class C

(568 in.2 / 1,000 gal.)

Accessories

NSF/ANSI/CAN 61

See p. 209 for information on crack repair accessories.

Code Reports, Standards and Compliance

CI-LV Packaging Information

Model No.	Capacity (ounces)	Packaging Type	Package Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
CILV32	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	EMN022 (included)
CILV3KT	384	3-gallon bulk kit	1 case of (3) gallon cans	_	Metering pumps offered by third-party manufacturers	—

1. Cartridge estimation guidelines are available at strongtie.com/apps.

CI-LV Low-Viscosity Injection Epoxy

Technical Information

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	Test Standard
4-hour cure	_	—	—	9,800 (67.6)	
8-hour cure	—	—	5,000 (34.5)	10,100 (69.6)	
16-hour cure	_	—	9,100 (62.7)	10,350 (71.4)	
24-hour cure	_	6,250 (43.0)	9,250 (63.8)	10,450 (72)	
3-day cure	5,350 (36.9)	10,800 (74.5)	10,700 (73.8)	11,150 (76.9)	ASTM D695
7-day cure	9,100 (62.7)	11,250 (77.6)	11,000 (75.8)	11,150 (76.9)	
14-day cure	11,000 (75.8)	11,800 (81.4)	11,250 (77.6)	11,150 (76.9)	
28-day cure	12,150 (83.8)	12,000 (82.7)	11,600 (80.0)	11,450 (78.9)	

Temperature Range	Class B 40°–60°F (4°C–16°C)	Class C >60°F (16°C)	Test Standard
Epoxy Classification	Types I, II; Grade I (LV)	Types I, II, IV, V; Grade I (LV)	ASTM C881
Viscosity — mixed ¹	1,500 cP	350 cP	ASTM D2556
Gel Time — 60 gram mass ¹	400 minutes	45 minutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure ² Hardened to Hardened Concrete — 14-day cure ² Fresh to Hardened Concrete — 14-day cure ³	1,100 psi (7.6 MPa) 2,150 psi (14.8 MPa) 1,850 psi (12.8 MPa)	2,400 psi (16.5 MPa) 3,450 psi (23.8 MPa) 1,850 psi (12.8 MPa)	ASTM C882
Tensile Strength — 7-day cure ²	5,550 psi (38.2 MPa)	7,950 psi (54.8 MPa)	ASTM D638
Elongation at Break — 7-day cure ²	2.2%	3.2%	ASTM D638
Flexural Strength — 14-day cure ²	5,500 psi (37.9 MPa)	11,900 psi (82.0 MPa)	ASTM D790
Modulus of Elasticity in Compression — 7-day cure ²	318,000 psi (2,190 MPa)	382,000 psi (2,630MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure ³	127°F	(53°C)	ASTM D648
Glass Transition Temperature — 7-day cure ³	136°F	(58°C)	ASTM E1356
Water Absorption — 7-day cure ⁴	0.2	7%	ASTM D570
Linear Coefficient of Shrinkage ³	0.0)03	ASTM D2566
Coefficient of Thermal Expansion ³	5.82 x 10 ⁻⁵ in./(in.°F) 1.05 x 10 ⁻⁴ cm/(cm°C)		ASTM C531
Shore D Hardness — 24-hour cure ³	82		ASTM D2240
Shore D Hardness — 7-day cure ³	8	2	ASTM D2240
Adhesion to Concrete — 24-hour cure ³	1,100 psi	(7.6 MPa)	ASTM D7234

1. Class B tested at 50°F (10°C), Class C tested at 72°F (22°C).

2. Class B cured at 40°F (4°C), Class C cured at 60°F (16°C).

3. Cured at 72°F (22°C).

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

4. Cured at 72°F (22°C), immersed in water 24 hours.

Technical Information — When Used As a Mortar

Tests performed at 1 part by volume of mixed CI-LV to 5 parts by volume of oven-dried sand. Pot life: 120 minutes at 72° F.

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	Test Standard
1-day cure	250 (1.7)	6,650 (45.9)	7,600 (52.4)	
7-day cure	6,500 (44.8)	7,200 (49.6)	8,100 (55.8)	ASTM C579
28-day cure	6,600 (45.5)	7,350 (50.7)	8,400 (57.9)	

Temperature Range	72°F (22°C) psi (MPa)	Test Standard
Flexural Strength — 7-day cure	2,250 (15.5)	ASTM C580
Tensile Strength — 7-day cure	1,200 (8.3)	ASTM C307
Bond Strength, Slant Shear: Hardened to Fresh Mortar — 7-day cure	1,350 (9.3)	ASTM C882

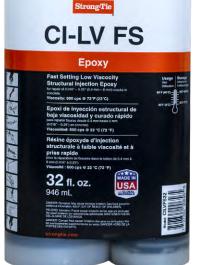
CI-LV FS Low-Viscosity Fast-Setting Injection Epoxy

CI-LV FS low-viscosity fast-setting structural injection epoxy is a two-component, high-modulus, high-solids, moisture-tolerant epoxy specially designed for pressure injection of concrete cracks and for increasing the bond between freshly placed repair mortars or concrete mixes and existing concrete when substrate temperatures are between 40°F (4°C) to 90°F (32°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual, battery-powered or pneumatic dispensing tool.

Features

- Chemically bonds with the concrete to provide a structural repair. CI-LV FS seals the crack from moisture, protecting rebar in the concrete from corrosion.
- Moisture-tolerant, can be used on dry and damp surfaces.
- Low surface tension allows the material to effectively penetrate narrow cracks.
- Formulated for maximum penetration under pressure.
- Non-shrink and resistant to oils, salts and mild chemicals.
- Can be used with metered pressure-injection equipment.
- Freeze-thaw resistant.

Applications


- Pressure injection
- Underwater pressure injection

Flood coat

- Gravity feed
- Bonding agent

Product Information

i loadot illioilliadoli	
Mix Ratio/Type	2:1
Mixed Color	Amber
Crack Width	0.016"–0.25" (0.4 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	40°F (4°C)–90°F (32°C)
Volatile Organic Compound (VOC)	13 g/L mixed
Yield	231 in.³/US gal. (0.001 m³/L)
For Flood-Coat Applications	150–200 ft.²/US gal. (3.7–4.9 m²/L) depending on surface profile and porosity
Pot Life, 1 Quart	10 minutes at 72°F (22°C) 28 minutes at 50°F (10°C)
Thin Film (5 mil) Set Time at 72°F, ASTM D5895	Set to touch: 1 hr. 45 min. Dry through: 4 hr.
Manufactured in the US using global r	materials

SIMPSOI

Strong-Tie

Code Reports, Standards and Compliance

ASTM C881 and AASHTO M235

Type I/II; Grade 1; Class B Type I/IV, Grade 1; Class C

Installation Instructions

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-LV FS Technical Data Sheet at **strongtie.com/rps**.

Accessories

See p. 209 for information on crack repair accessories.

CI-LV FS Packaging Information

Model No.	Capacity (ounces)	Packaging Type	Package Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
CILVFS32	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	EMN022 (included)
CILVFS3KT	384	3-gallon bulk kit	1 case of (3) gallon cans	_	Metering pumps offered by third-party manufacturers	—

1. Cartridge estimation guidelines are available at strongtie.com/apps.

CI-LV FS Low-Viscosity Fast-Setting Injection Epoxy

SIMPSO Strong-Tie

Technical Information

Compressive Strength

Cure Time	23°F (-5°C) psi (MPa)	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	Test Standard
1-hour cure	—	—	—	9,500 (65.5)	
2-hour cure	—	—	—	11,250 (77.6)	
4-hour cure	—	—	—	11,600 (80.0)	
8-hour cure	—	—	—	11,700 (80.7)	
16-hour cure	—	—	7,150 (49.3)	11,800 (81.4)	ASTM D695
24-hour cure	—	—	8,350 (57.6)	11,800 (81.4)	ASTIM D095
3-day cure	—	6,600 (45.5)	12,800 (88.3)	12,800 (88.3)	
7-day cure	2,250 (15.5)	12,600 (86.9)	13,700 (94.5)	13,500 (93.1)	
14-day cure	2,850 (19.7)	13,700 (94.5)	14,500 (100.0)	13,600 (93.8)	
28-day cure	2,900 (20.0)	14,500 (100.0)	15,200 (104.8)	13,600 (93.8)	

Temperature Range	Class B 40°–60°F (4°C–16°C)	Class C >60°F (16°C)	Test Standard
Epoxy Classification	Types I, II; Grade 1 (LV)	Types I, IV; Grade 1 (LV)	ASTM C881
Viscosity — mixed ¹	2,000 cP	600 cP	ASTM D2556
Gel Time — 60 gram mass ¹	55 minutes	12 minutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure ² Hardened to Hardened Concrete — 14-day cure ² Fresh to Hardened Concrete — 14-day cure ³	1,700 psi (11.7 MPa) 3,850 psi (26.5 MPa) 2,150 psi (14.8 MPa)	3,650 psi (25.2) 4,000 psi (27.6 MPa) 2,150 psi (14.8 MPa)	ASTM C882
Tensile Strength — 7-day cure ²	5,300 psi (36.5 MPa)	7,900 psi (54.5 MPa)	ASTM D638
Elongation at Break — 7-day cure ²	1.06%	1.91%	ASTM D638
Flexural Strength — 7-day cure ²	5,700 psi (39.3 MPa)	9,350 psi (64.5 MPa)	ASTM D790
Modulus of Elasticity in Compression — 7-day cure ²	442,000 psi (3,050 MPa)	439,000 psi (3,030 MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure ³	122	ASTM D648	
Glass Transition Temperature — 7-day cure ³	132°F (56°C)		ASTM E1356
Water Absorption — 7-day cure ⁴	().23%	ASTM D570
Linear Coefficient of Shrinkage ³	(0.004	ASTM D2566
Coefficient of Thermal Expansion ³	4.78 x 10 ⁻⁵ in./(in.°F) 8.60 x 10 ⁻⁵ cm/(cm°C)		ASTM C531
Shore D Hardness — 24-hour cure ³		80	ASTM D2240
Shore D Hardness — 7-day cure ³		82	ASTM D2240
Adhesion to Concrete — 24-hour cure ³	1,100 p	osi (7.6 MPa)	ASTM D7234

1. Class B tested at 50°F (10°C), Class C tested at 72°F (22°C). 2. Class B cured at 40°F (4°C), Class C cured at 60°F (16°C).

Cured at 72°F (22°C).
 Cured at 72°F (22°C), immersed in water 24 hours.

Technical Information – When Used As a Mortar

Tests performed at 1 part by volume of mixed CI-LV FS to 5 parts by volume of oven-dried sand. Pot life: 40 minutes at 72°F (22°C).

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	Test Standard
1-day cure	3,650 (25.2)	7,800 (53.8)	9,150 (63.1)	
7-day cure	8,000 (55.2)	5.2) 8,850 (61.0) 10,000 (68.9)		ASTM C579
28-day cure	8,100 (55.8)	8,950 (61.7)	10,150 (70.0)	

Temperature Range	72°F (22°C) psi (MPa)	Test Standard	
Flexural Strength — 7-day cure	1,900 (13.1)	ASTM C580	
Tensile Strength — 7-day cure	1,350 (9.3)	ASTM C307	
Bond Strength, Slant Shear: Hardened to Fresh Mortar — 7-day cure	1,800 (12.4)	ASTM C882	

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

CI-LPL Low-Viscosity Long-Pot-Life Injection Epoxy

CI-LPL long-pot-life structural injection epoxy is a two-component, high-modulus, high-solids, moisture-tolerant epoxy specially designed for pressure injection, gravity feeding and flood coat filling of concrete cracks when substrate temperatures are between 60°F (16°C) to 110°F (43°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual or pneumatic dispensing tool.

Features

- Chemically bonds with the concrete to provide a structural repair. CI-LPL seals the crack from moisture, protecting rebar in the concrete from corrosion.
- Moisture-tolerant, can be used on dry and damp surfaces.
- Formulated for use in hot environments to 110°F.
- Low surface tension allows the material to effectively penetrate narrow cracks.
- Formulated for maximum penetration under pressure.
- Non-shrink and resistant to oils, salts and mild chemicals.
- Can be used with metered pressure-injection equipment.
- Freeze-thaw resistant.

Applications

- Pressure injection
- Gravity feed

Restoration Solutions

• Underwater pressure injection

Product Information

FIGUUCI IIIOIIIation	
Mix Ratio/Type	2:1
Mixed Color	Amber
Crack Width	0.016"–0.25" (0.4 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	60°F (16°C)–110°F (43°C)
Volatile Organic Compound (VOC)	< 1 g/L mixed
Yield	231 in.³/US gal. (0.001 m³/L)
For Flood-Coat Applications	150–200 ft.²/US gal. (3.7–4.9 m²/L) depending on surface profile and porosity
Pot Life, 1 Quart	20 minutes at 90°F (32°C) 60 minutes at 72°F (22°C)
Thin Film (5 mil) Set Time at 72°F, ASTM D5895	Set to touch: 6 hrs. 30 min. Dry through: 16 hrs. 30 min.
Thin Film (5 mil) Set Time at 95°F, ASTM D5895	Set to touch: 3 hr. Dry through: 4 hr.
Manufactured in the US using global r	materials

CI-LPL

Code Reports, Standards and Compliance ASTM C881 and AASHTO M235 Type I/IV;

35 Type I/IV; Grade 1; Class C

Installation Instructions

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-LPL Technical Data Sheet at **strongtie.com/rps**.

Accessories

See p. 209 for information on crack repair accessories.

CI-LPL Packaging Information

Model No.	Capacity (ounces)	Packaging Type	Package Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
CILPL32	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	EMN022 (included)
CILPL3KT	384	3-gallon bulk kit	1 case of (3) gallon cans	_	Metering pumps offered by third-party manufacturers	_

1. Cartridge estimation guidelines are available at strongtie.com/apps.

CI-LPL Low-Viscosity Long-Pot-Life Injection Epoxy

SIMPSON Strong-Tie

Technical Information

Compressive Strength

Cure Time	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	110°F (43°C) psi (MPa)	Test Standard
8-hour cure	_	_	6,900 (47.6)	10,000 (70.0)	
16-hour cure	_	_	9,900 (68.3)	10,100 (69.6)	
24-hour cure	_	6,800 (46.9)	10,900 (75.2)	10,200 (70.3)	
3-day cure	8,450 (58.3)	9,900 (68.3)	11,200 (77.2)	10,200 (70.3)	ASTM D695
7-day cure	10,400 (71.7)	10,800 (74.5)	11,200 (77.2)	10,200 (70.3)	
14-day cure	11,600 (80.0)	11,500 (79.3)	11,200 (77.2)	10,200 (70.3)	
28-day cure	12,000 (82.7)	11,700 (80.7)	11,400 (78.6)	10,400 (71.7)	

Temperature Range	60°F (16°C)	72°F (22°C)	95°F (35°C)	Test Standard
Epoxy Classification	Types I, IV; Grade II (MV) ¹	Types I, IV;	Grade I (LV)1	ASTM C881
Viscosity — mixed	3,600 cP	2,000 cP	750 cP	ASTM D2556
Gel Time — 60 gram mass	420 minutes	135 minutes	40 minutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure Hardened to Hardened Concrete — 3-day cure Hardened to Hardened Concrete — 14-day cure	3,000 psi (20.7 MPa) ² — —	 1,375 psi (9.5 MPa) 1,500 psi (10.3 MPa)	1,300 psi (9.0 MPa) — —	ASTM C882
Tensile Strength — 7-day cure	7,100 psi (49.0 MPa)	8,000 psi (55.2 MPa)	8,300 psi (57.2 MPa)	ASTM D638
Elongation at Break — 7-day cure	2.52%	3.41%	3.21%	ASTM D638
Flexural Strength — 7-day cure		11,400 psi (78.6 MPa)		ASTM D790
Modulus of Elasticity in Compression — 7-day cure	345,000 psi (2,378.7 MPa)	349,000 psi (2,406.3 MPa)	365,000 psi (2,516.6 MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure		122°F (50°C)		ASTM D648
Glass Transition Temperature — 7-day cure	_	135°F (57°C)		ASTM E1356
Water Absorption — 7-day cure ³		0.07%		ASTM D570
Linear Coefficient of Shrinkage		0.001		ASTM D2566
Coefficient of Thermal Expansion	_	2.92 x 10⁻⁵ in./(in.°F) 5.26 x 10⁻⁵ cm/(cm°C)		ASTM C531
Shore D Hardness — 24-hour cure	_	78		ASTM D2240
Shore D Hardness — 7-day cure		80		ASTM D2240
Adhesion to Concrete — 24-hour cure		1,250 psi (8.8 MPa)		ASTM D7234

1. Installation under damp conditions 72°F-110°F (22°C-43°C).

2. Tested using dry test specimens.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

3. Cured at 72°F (22°C), immersed in water 24 hours.

CI-GV Gel-Viscosity Injection Epoxy

CI-GV structural injection epoxy gel is a two-component, high-modulus, high-solids, moisture-tolerant, thixotropic epoxy designed for pressure injection of concrete cracks. CI-GV is suitable for vertical and horizontal crack sealing and general concrete repair applications when substrate temperatures are between 40°F (4°C) to 90°F (32°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual or pneumatic dispensing tool.

Features

- Chemically bonds with the concrete to provide a structural repair. CI-GV seals the crack from moisture, protecting rebar in the concrete from corrosion.
- Gel-viscosity moisture-tolerant, can be used on dry and damp surfaces.
- Formulated for maximum penetration under pressure.
- Non-shrink and resistant to oils, salts and mild chemicals.
- Can be used with metered pressure-injection equipment.
- Freeze-thaw resistant.

Applications

- Pressure injection
 Underwater pressure injection
- Repair mortar
- Bonding agent

Pick proof sealant

Product Information

i ioddol inionnation	
Mix Ratio/Type	2:1
Mixed Color	Concrete gray
Crack Width	0.094"–0.25" (2.4 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	40°F (4°C)–90°F (32°C)
Volatile Organic Compound (VOC)	10 g/L mixed
Yield	231 in.³/US gal. (0.001 m³/L)
Pot Life, 1 Quart	8 minutes at 90°F (32°C) 19 minutes at 72°F (22°C) 55 minutes at 50°F (10°C)
Thin Film (5 mil) Set Time at 72°F, ASTM D5895	Set to touch: 3 hr. Dry through: 6 hr.

CI-GV

Manufactured in the US using global materials

Code Reports, Standards and Compliance

ASTM C881 and AASHTO M235

Type I/II/V; Grade 3; Class B Type I/IV and II/V, Grade 3; Class C

Installation Instructions

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-GV Technical Data Sheet at **strongtie.com/rps**.

Accessories

See p. 209 for information on crack repair accessories.

CI-GV Packaging Information

Model No.	Capacity (ounces)	Packaging Type	Package Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
CIGV32	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	EMN022 (included)
CIGV3KT	384	3-gallon bulk kit	1 case of (3) gallon cans		Metering pumps offered by third-party manufacturers	

1. Cartridge estimation guidelines are available at strongtie.com/apps.

CI-GV Gel-Viscosity Injection Epoxy

Technical Information

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	Test Standard
4-hour cure	—	—	—	9,150 (63.1)	
8-hour cure	—	—	5,150 (35.5)	9,800 (67.6)	
16-hour cure	—	3,100 (21.4)	9,300 (64.1)	10,200 (70.3)	
24-hour cure	—	6,800 (46.9)	10,250 (70.7)	10,250 (70.7)	
3-day cure	5,400 (37.2)	10,500 (72.4)	11,250 (77.6)	10,250 (70.7)	ASTM D695
7-day cure	8,000 (55.2)	11,700 (80.7)	11,600 (80.0)	10,400 (71.7)	
14-day cure	8,750 (60.3)	12,150 (83.8)	11,600 (80.0)	10,600 (73.1)	
28-day cure	11,100 (76.5)	12,400 (85.5)	11,700 (80.7)	10,800 (74.5)	

Temperature Range	Class B 40°-60°F (4°C-16°C)	Class C >60°F (16°C)	Test Standard
Epoxy Classification	Types I, II, V; Grade 3	Types I, II, IV, V; Grade 3	ASTM C881
Gel Time — 60 gram mass ¹	200 minutes	30 minutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure ² Hardened to Hardened Concrete — 14-day cure ² Fresh to Hardened Concrete — 14-day cure ³	1,250 psi (8.6 MPa) 3,650 psi(25.2 MPa) 3,130 psi (21.6 MPa)	3,050 psi (21.0 MPa) 3,850 psi (26.5 MPa) 3,130 psi (21.6 MPa)	ASTM C882
Flexural Strength — 7-day cure ²	4,400 psi (30.3 MPa)	10,150 psi (70.0 MPa)	ASTM D790
Modulus of Elasticity in Compression — 7-day $\rm cure^2$	389,000 psi (2,680 MPa)	454,000 psi (3,130 MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure ³	124°F (51°C)		ASTM D648
Glass Transition Temperature — 7-day cure ³	136°F	(58°C)	ASTM E1356
Water Absorption — 14-day cure ⁴	0.3	51%	ASTM D570
Linear Coefficient of Shrinkage ³	0.0	001	ASTM D2566
Coefficient of Thermal Expansion ³		⁵ in./(in.°F) ⁶ cm/(cm°C)	ASTM C531
Shore D Hardness — 24-hour cure ³	74		ASTM D2240
Shore D Hardness — 7-day cure ³	8	0	ASTM D2240
Adhesion to Concrete — 24-hour cure ³	1,100 psi	(7.6 MPa)	ASTM D7234

Class B tested at 50°F (10°C), Class C tested at 72°F (22°C).
 Class B cured at 40°F (4°C), Class C cured at 60°F (16°C).
 Cured at 72°F (22°C).
 Cured at 72°F (22°C), immersed in water 24 hours.

Technical Information – When Used As a Mortar

Tests performed at 1 part by volume of mixed CI-GV to 1 part by volume of oven-dried sand. Pot life: 30 minutes at 72°F (22°C).

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	Test Standard
1-day cure	—	8,000 (55.2)	9,200 (63.4)	
7-day cure	8,600 (59.3)	9,500 (65.5)	10,200 (70.3)	ASTM C579
28-day cure	9,450 (65.2)	9,600 (66.2)	10,450 (72.0)	

Temperature Range	72°F (22°C) psi (MPa)	Test Standard
Flexural Strength — 7-day cure	4,050 (27.9)	ASTM C580
Tensile Strength — 7-day cure	2,000 (13.8)	ASTM C307
Bond Strength, Slant Shear: Hardened to Fresh Mortar — 7-day cure	1,800 (12.4)	ASTM C882

Crack-Pac® Injection Epoxy

Crack-Pac injection epoxy is designed to repair cracks in concrete ranging from 1/64" to 1/4" wide in concrete walls, floors, slabs, columns and beams. The mixed adhesive has the viscosity of a light oil and a low surface tension, allowing it to penetrate fine to medium-width cracks in dry, damp or wet conditions with excellent results. Resin is contained in the cartridge and hardener is contained in the nozzle.

Features

- Dispenses with a standard caulking tool, no special dispensing tool needed
- Clean and easy to mix
- Seals out moisture, protecting rebar in the concrete from corrosion and flooring from moisture damage
- Chemically bonds with the concrete to restore strength
- Non-shrink material resistant to oils, salts and mild chemicals
- · Freeze-thaw resistant

Applications

- Pressure injection
- Gravity feed

Restoration Solutions

• Underwater pressure injection

Product Information

r roddor information	
Mix Ratio/Type	8:1
Mixed Color	Amber
Cure Color	Dark purple, fading to amber over time
Crack Width	0.016"–0.25" (0.4 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	60°F (16°C)–90°F (32°C)
Volatile Organic Compound (VOC)	6 g/L mixed
Yield	16 in. ³ /cartridge (0.0003 m ³ /cartridge)
Pot Life, Cartridge	50 minutes at 72°F (22°C) 10 minutes at 90°F (32°C)
Thin Film (20 mil) Set Time at 72°F, ASTM D5895	Set to touch: 7 hr. Dry through: 14 hr.
Manufactured in the LIS using global r	materials

Code Reports, Standards and Compliance

ASTM C881 and AASHTO M235 Type I, Grade 1, Class C

Installation Instructions

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the Crack-Pac Technical Data Sheet at **strongtie.com/rps**.

Accessories

See p. 209 for information on crack repair accessories.

Crack-Pac Cartridge System

Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool
ETIPAC2G10	9	Single	12	CDT10S
ETIPAC2G10KT	18	Single	2 (kits)	CDTTOS

Crack-Pac Injection Epoxy (ETIPAC2G10)

Crack-Pac® Injection Epoxy

Technical Information

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	Test Standard
24-hour cure	_	1,900 (13.1)	4,400 (30.3)	7,500 (51.7)	
72-hour cure	_	8,000 (55.2)	7,800 (53.8)	9,000 (62.1)	
7-day cure	4,250 (29.3)	9,000 (62.1)	8,900 (61.4)	9,200 (63.4)	ASTM D695
14-day cure	7,400 (51.0)	10,000 (69.0)	9,600 (66.4)	9,400 (64.8)	
28-day cure	9,200 (63.4)	12,200 (84.1)	10,300 (71.3)	9,600 (66.4)	

Temperature Range		Class C 60°F (16°C) — 90°F (32°C)	
Epoxy Classification	Types I;	Grade 1	ASTM C881
Viscosity — mixed ¹	500) cP	ASTM D2556
Gel Time — mixed ¹	105 m	ninutes	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure Hardened to Hardened Concrete — 14-day cure	1,050 psi (7.2 MPa)² 1,500 psi (10.3 MPa)²	1,230 psi (8.5 MPa)³ 1,700 psi (11.7 MPa)³	ASTM C882
Tensile Strength — 7-day cure	6,100 psi (42.0 MPa) ²	6,150 psi (42.4 MPa) ³	ASTM D638
Tensile Elongation at Break — 7-day cure	5.0% ²	7.5% ³	ASTM D638
Flexural Strength — 7-day cure	9,600 psi (66.2 MPa) ²	9,200 psi (63.4 MPa) ³	ASTM D790
Modulus of Elasticity in Compression — 7-day cure	307,000 psi (2,100 MPa) ²	264,000 psi (1,800 MPa) ³	ASTM D695
Water Absorption — 14-day cure ⁴	0.08%		ASTM D570
Linear Coefficient of Shrinkage ³	0.0014		ASTM D2566
Coefficient of Thermal Expansion ³		⁵ in./(in.°F) ⁶ cm/(cm°C)	ASTM C531

1. Tested at 72°F (22°C).

2. Cured at 60°F (16°C).

3. Cured at 72°F (22°C).

4. Cured at 72°F (22°C), immersed in water 24 hours.

(ETIPAC2G10KT)

Crack-Pac injection epoxy is also available in the Crack-Pac Injection Kit (ETIPAC2G10KT). The kit includes everything needed to pressure inject cracks.

- 2 Crack-Pac cartridge/nozzle sets (ETIPAC2G10).
- 12 E-Z-Click[™] injection ports.
- 2 E-Z-Click injection fittings with 12" tubing.
- 1 pint of ETR paste-over epoxy (8 oz. of resin + 8 oz. of hardener).
- 4 disposable wood paste-over applicators.
- 1 pair latex gloves.

Restoration Solutions

Simpson Strong-Tie® Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry

Crack-Pac® Flex-H2O[™] Polyurethane Crack Sealer

The Crack-Pac Flex-H2O polyurethane injection resin seals leaking cracks, voids or fractures from 1/2^e to 1/4^e wide in concrete or solid masonry. Designed to perform in applications where water is seeping or mildly leaking from the crack, the polyurethane is packaged in the cartridge and an accelerator is packaged in the nozzle. When the resin encounters water as it is injected into the crack, it becomes an expanding foam that provides a flexible seal in leaking and non-leaking cracks.

Features

Restoration Solutions

- Can be dispensed with a standard caulking tool
- Can also be used on dry cracks if water is introduced to affected area
- Can be used with a reduced amount or without accelerator to slow down reaction time
- Expands to fill voids and seal the affected area
- Fast reacting reaction begins within 1 minute after exposure to moisture; expansion may be completed within 3 minutes (depending on the amount of moisture and the ambient temperature)
- 20:1 expansion ratio (unrestricted rise) means less material needed

Application Considerations

- Suitable for sealing cracks ranging from $1\!\!\!/_{22}$ to $1\!\!\!/_{4}$ wide in concrete and solid masonry.
- Suitable for repair of cracks in dry, damp and wet conditions with excellent results. Designed to perform in applications where water is seeping or mildly leaking from the crack.
- In order for components to mix properly, the resin and hardener must be conditioned to 60°F (16°C) to 90°F (32°C) before mixing.

Shelf Life: 12 months from the date of manufacture, unopened

Base Material Temperature: 60°F (16°C) to 90°F (32°C)

Storage Conditions: For best results, store in a dry area between 45°F (7°C) and 90°F (32°C). Product is very moisture sensitive.

Installation Instructions: See pp. 210-215

Accessories: See p. 209 for information on crack repair accessories.

Crack-Pac Flex-H2O Crack Sealer (CPFH09)

SIMPSON Strong-Tie

Crack-Pac Flex-H2O Kit (CPFH09KT) Crack-Pac Flex-H2O injection epoxy is also available in the Crack-Pac Flex-H2O Injection Kit (CPFH09KT). The kit includes everything needed to pressure inject cracks.

- 2 Crack-Pac Flex-H2O cartridge/nozzle sets (CPFH09).
- 12 E-Z-Click[™] injection ports.
- 2 E-Z-Click injection fittings with 12" tubing.
- 1 pint of ETR paste-over epoxy (8 oz. of resin + 8 oz. of hardener).
- 4 disposable wood paste-over applicators.
- 1 pair latex gloves.

Crack-Pac Flex-H2O Packaging

Model No.	Capacity	Cartridge Type	Carton Quantity	Dispensing Tool	
CPFH09	9 ounces	Single	12	CDT10S	
CPFH09KT	18 ounces	Single	2 (kits)	CDITUS	
FU0F1	5 gallons resin	Deil	1		
FH05 ¹	16 ounces catalyst	Pail	I	_	

1. For standard reaction time, use 30:1 resin to catalyst ration.

For a faster reaction time, add more catalyst; for a slower reaction time, use less.

CI-PO Paste-Over and Structural Repair Epoxy

CI-PO is a fast-curing, two-component, high-modulus, high-solids, moisture-tolerant, thixotropic epoxy designed for securing injection ports at the concrete surface prior to injection repair. CI-PO is suitable for general concrete repair applications when substrate temperatures are between 40°F (4°C) and 90°F (32°C). Available in 3-gallon bulk kits or convenient side-by-side cartridges dispensed through a static mixing nozzle using either a manual or a pneumatic dispensing tool.

Features

- Dispenses with standard Crack Injection (CI) dispensing tools
- · Chemically bonds with the concrete to provide a structural repair
- Gel-viscosity moisture-tolerant, can be used on dry and damp surfaces
- Non-shrink
- Can be used with metered pressure-injection equipment
- · Freeze-thaw resistant

Applications

 For adhesion of crack injection ports and paste-over of cracks up to ¼" (6 mm) in width

Code Reports, Standards and Compliance

Installation instructions are located at the following locations: pp. 210–215, product packaging or on the CI-PO Technical Data

See p. 209 for information on crack repair accessories.

- For structural repairs
- As a pick-proof sealant

Product Information

i loadot information	
Mix Ratio/Type	2:1
Cure Color	Concrete gray
Crack Width	0.016"–0.25" (0.4 mm–6 mm)
Shelf Life	24 months
Storage Temperature	45°F (7°C)–90°F (32°C)
Base Material Temperature	40°F (4°C)–90°F (32°C)
Volatile Organic Compound (VOC)	2 g/L mixed
Yield	231 in. ³ /US gal. (0.001 m ³ /L)
Thin Film (20 mil) Set Time at 72°F, ASTM D5895	Set to touch: 40 min. Dry through: 2 hr.
Manufactured in the US using global m	naterials

Type I; Grade 3; Class B Type I/IV; Grade 3; Class C

CI-PO

CI-PO Cure Schedule

	laterial erature	Gel Time 60 grams	Port Set Time ASTM D7234
°F	°C	ASTM C881	A31WI D7234
40	4	18 minutes	4 hours
50	10	15 minutes	2 hours
72	22	5 minutes	1 hour
90	32	3 minutes	45 minutes

CI-PO Packaging Information

ASTM C881 and AASHTO M235

Installation Instructions

Sheet at strongtie.com/rps.

Accessories

	Model No.	Capacity (ounces)	Packaging Type	Packaging Quantity	Carton Quantity	Dispensing Tools	Mixing Nozzle
(CIP032	32	Side-by-side cartridge	1	5	ADT30S, ADT30P	AMN19Q
(CIPO3KT	384	3-gallon bulk kit	1 case of (3) gallon cans	—	Metering pumps offered by third party manufacturers	_

SIMPSON

CI-PO Paste-Over and Structural Repair Epoxy

Technical Information

Compressive Strength

Cure Time	40°F (4°C) psi (MPa)	60°F (16°C) psi (MPa)	72°F (22°C) psi (MPa)	90°F (32°C) psi (MPa)	Test Standard
4-hour cure	—	9,300 (64.1)	13,000 (89.8)	13,400 (92.4)	
8-hour cure	_	11,500 (79.3)	13,400 (92.4)	13,400 (92.4)	
16-hour cure	_	12,000 (82.8)	13,650 (94.1)	13,400 (92.4)	ASTM D695
24-hour cure	7,800 (53.8)	12,150 (83.8)	13,750 (94.8)	13,400 (92.4)	
7-day cure	9,350 (64.5)	13,000 (89.7)	13,750 (94.8)	13,500 (93.1)	

Temperature Range	Class B 40°–60°F (4°C–16°C)	Class C >60°F (16°C)	Test Standard
Epoxy Classification	Types I; Grade 31	Types I, IV; Grade 31	ASTM C881
Bond Strength, Slant Shear: Hardened to Hardened Concrete — 2-day cure ² Hardened to Hardened Concrete — 14-day cure ²	1,300 psi (9.0 MPa) 1,650 psi (11.4 MPa)	2,350 psi (16.2 MPa) 2,550 psi (17.6 MPa)	ASTM C882
Flexural Strength — 7-day cure ²	1,900 psi (13.1 MPa)	3,150 psi (21.7 MPa)	ASTM D790
Modulus of Elasticity in Compression — 7-day cure ²	686,000 psi (4,730 MPa)	681,000 psi (4,690 MPa)	ASTM D695
Heat Deflection Temperature — 7-day cure ³	134°F	ASTM D648	
Glass Transition Temperature — 7-day cure ³	134°F (57°C)		ASTM E1356
Water Absorption — 14-day cure ⁴	0.26%		ASTM D570
Linear Coefficient of Shrinkage ³	0.0	ASTM D2566	
Coefficient of Thermal Expansion ³	1.38 x 10 ⁻⁵ in./(in.°F) 2.49 x 10 ⁻⁵ cm/(cm°C)		ASTM C531
Shore D Hardness — 24-hour cure ³	84		ASTM D2240
Shore D Hardness — 7-day cure ³	8	5	ASTM D2240
Adhesion to Concrete — 24-hour cure ³ Adhesion to Dry Concrete Adhesion to Surface Saturated Dry Concrete	1,200 psi (8.3 MPa) 850 psi (5.9 MPa)		ASTM D7234

Class B tested at 50°F (10°C), Class C tested at 72°F (22°C).
 Class B cured at 40°F (4°C), Class C cured at 60°F (16°C).
 Cured at 72°F (22°C).
 Cured at 72°F (22°C), immersed in water 24 hours.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

CIP-F / ETR Paste-Over and Crack Sealants

CIP-F and ETR are fast-curing epoxies used to paste over and seal cracks while securing injection ports to the surface of concrete substrates prior to injecting an epoxy or urethane crack repair product. When properly mixed, the products will be a uniform gray color and can be left in place or removed after the repair is complete.

Features

- 1:1 two component, high solids, epoxy amine based adhesive
- Non-sag paste consistency for horizontal, vertical or overhead applications
- Manufactured in the US using global materials

CIP-F Flexible Paste-Over Adhesive and Crack Sealant

- Remains flexible after cure for easier removal
- Moderate substrate bond; peels away for removal
- Gel Time 4 minutes at 72°F (22°C), 9 minutes at 40°F (4°C)
- Set Time 1 hour at 72°F (22°C), and 3 hours at 40°F (4°C)
- Volatile organic compound (VOC) 0 g/L

ETR Concrete Repair and Paste-Over Epoxy

- Canisters are mixed manually and do not require dispensing tool
- Each package contains enough material to cover approximately eight lineal feet of cracks
- Gel Time 6 minutes at 72°F (22°C), 10 minutes at 40°F (4°C)
- Set Time 1 hour at 72°F (22°C), 2 hours at 60°F (16°C)
- Volatile organic compound (VOC) 7 g/L
- Available in two 8 fl. oz. canisters

Application Considerations

 Apply to concrete 40°F (4°C) or above. For best results, warm material to 65°F (16°C) or above prior to application.

Shelf Life: 24 months from date of manufacture, unopened for ETR; 12 months from date of manufacture, unopened for CIP-F

Storage Conditions: For best results, store between 45°F (7°C) and 90°F (32°C) for ETR; 60°F (16°C) – 95°F (35°C) for CIP-F

Installation Instructions: See pp. 210-215

CIP-F

ETR16

Paste-Over and Crack Sealants

Model No.	Capacity (oz.)	Cartridge	Mixing Nozzle	Dispensing Tool	Package Quantity	Carton Quantity
CIP-F221	22	Side-by-side	EMNCIPF22	EDT22S, EDTA22CKT, EDTA22P	1	10
ETR16	16	_	_		1	4

1. One EMNCIPF22 mixing nozzle is supplied with each cartridge.

Crack Repair Accessories

Mixing Nozzle

Mixing Nozzles

Model No.	Description	Package Quantity	Carton Quantity
EMNCIPF22-RP5 ²	Mixing nozzle for CIPF-22 epoxy	5	5
EMN022-RP6 ²	Optimix mixing nozzle for epoxies	6	5
AMN19Q-RP5	Mixing nozzle for CIPO32 epoxy	5	10

1. Use only appropriate Simpson Strong-Tie mixing nozzle in accordance with Simpson Strong-Tie instructions.

Modification or improper use of mixing nozzle may impair epoxy performance.

2. Includes retaining nuts.

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

E-Z-Click[™] Ports and Injection Fitting

Injection Ports and Injection Fittings

EIPX-EZ Corner Mount/ Drilled-In Port

EIP-EZA Flush-Mount Port

Package Contents Model **Hole Size** Carton Description (in.) Quantity No. E-Z Click Ports **Injection Fitting** EIP-EZAKT 20 1 5 kits _ E-Z Click flush mount injection ports EIP-EZA 1 each 100 EIPX-EZKT 5 kits 20 1 E-Z Click corner mount or drill in injection port 5⁄8 EIPX-EZ-RP20 20 5 packs of 20 EIF-EZ E-Z Click injection fitting 10 1 each

1. EIPX intended for use as a surface-mount port in corners and as a drilled-in port on flat surfaces.

Detailed information on the full line of Simpson Strong-Tie manual and pneumatic dispensing tools is available on **strongtie.com**.

SIMPSON Strong-Tie

Crack Injection Guide

Important: These instructions are intended as recommended guidelines. Due to the variability of field conditions, selection of the proper material for the intended application and installation is the sole responsibility of the applicator.

Epoxy injection is an economical method of repairing non-moving cracks in concrete walls, slabs, columns and piers and is capable of restoring the concrete to its pre-cracked strength. Prior to doing any injection it is necessary to determine the cause of the crack. If the source of cracking has not been determined and remedied, the concrete may crack again.

Materials

- CI-LV and CI-SLV for repair of hairline cracks (0.002") and those up to 1/4" in width.
- CI-LV FS and CI-LPL for repair of fine to medium-width cracks (suggested width range: 1/4"-1/4").
- CI-GV for repair of medium-width cracks (suggested width range: 3/32"-1/4").
- Crack-Pac® injection epoxy for repair of fine to medium non-structural cracks (suggested width range: 1/4"-1/4").
- Crack-Pac Flex-H2O polyurethane crack sealer for repair of fine- to medium-width cracks (suggested width range: 1/2"-1/4").
- CI-PO, CIP-F and ETR are recommended for paste-over of crack surface and installation of injection ports.
- E-Z-Click[™] injection ports, fittings and other suitable accessories.

Estimating Guide for Epoxy Crack Injection

Width of Crack	Concrete	CI-SLV, CI-LV, CI-LV FS, CI-LPL, CI-GV	Crack-Pac	Crack-Pac Flex-H20
(in.)	Thickness (in.)	Approx. Coverage per 32 oz. Cartridge (linear ft.)	Approx. Coverage per 9 oz. Cartridge (linear ft.)	Approx. Coverage per 9 oz. Cartridge (linear ft.)
	4	69.4	18.4	—
1/	6	46.3	12.3	—
1⁄64	8	34.6	9.2	—
	10	27.8	7.4	—
	4	34.6	9.2	108.0
1/32	6	23.1	6.1	72.0
/32	8	17.3	4.6	54.0
	10	13.8	3.7	43.2
	4	17.3	4.6	54.0
1/	6	11.5	3.1	36.0
1⁄16	8	8.7	2.3	27.0
	10	7.0	1.8	21.6
	4	8.7	2.3	27.0
17	6	5.8	1.5	18.0
1⁄8	8	4.4	1.2	13.5
	10	3.5	0.9	10.8
	4	5.8	1.5	18.0
2/	6	3.8	1.0	12.0
3⁄16	8	2.9	0.8	9.0
	10	2.3	0.6	7.2
	4	4.4	1.2	13.5
1/	6	2.9	1.8	9.0
1/4	8	2.2	0.6	6.8
	10	1.7	0.5	5.4

Coverage listed is approximate and will vary depending on waste and condition of concrete.

Preparation of the Crack for Injection

Clean the crack and the surface surrounding it to allow the paste-over to bond to sound concrete. At a minimum, the surface to receive paste-over should be brushed with a wire brush. Oil, grease or other surface contaminant must be removed in order to allow the paste-over to bond properly. Take care not to impact any debris into the crack during cleaning. Using clean, oil-free compressed air, blow out the crack to remove any dust, debris or standing water. Best results will be obtained if the crack is dry at the time of injection. If water is continually seeping from the crack, the flow must be stopped in order for epoxy injection to yield a suitable repair. Other materials such as polyurethane resins may be required to repair an actively leaking crack.

For many applications, additional preparation is necessary in order to seal the crack. Where a surfacing material has been removed using an acid or chemical solvent, prepare the crack as follows:

- 1. Using clean, compressed air, blow out any remaining debris and liquid.
- 2. Remove residue by high-pressure washing or steam cleaning.
- 3. Blow any remaining water from the crack with clean compressed air.

If a coating, sealant or paint has been applied to the concrete, it must be removed before placing the paste-over epoxy. Under the pressure of injection, these materials may lift and cause a leak. If the surface coating is covering the crack, it may be necessary to route out the opening of the crack in a "V" shape using a grinder in order to get past the surface contamination.

Sealing of the Crack and Attachment of E-Z-Click[™] Injection Ports

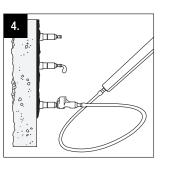
1. To adhere the port to the concrete, apply a small amount of paste-over around the bottom of the port base. Place the port at one end of the crack and repeat until the entire crack is ported. As a rule of thumb, injection ports should be placed 8" apart along the length of the crack.

Important: Do not allow paste-over to block the port or the crack under it, this is where epoxy must enter the crack.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

2. Using a putty knife or other paste-over tool, generously work paste-over along the entire length of the crack. Take care to mound the paste-over around the base of the port to approximately ¼" thick extending 1" out from the base of the port and to work out any holes in the material. It is recommended that the paste-over should be a minimum of ¾₆" thick and 1" wide along the crack. Insufficient paste-over will result in leaks under the pressure of injection. If the crack passes completely through the concrete element, seal the back of the crack, if possible. If not, injection epoxy may be able to run out the backside of the crack, resulting in an ineffective repair.

3. Allow the paste-over to harden before beginning injection. Note: CI-PO and ETR are a fast cure and when manually mixed may harden prematurely if left in a mixed mass on the mixing surface while installing ports. Spreading paste-over into a thin film (approximately 1/8") on the mixing surface will slow curing by allowing the heat from the reaction to dissipate.


SIMPSON Strong-Tie

Injection Procedure for CI-SLV, CI-LV, CI-LV FS, CI-LPL, CI-GV and Crack-Pac[®] Injection Epoxy

- Follow cartridge preparation instructions on the cartridge label. Verify the material flowing from the Optimix[®] mixing nozzle is a uniform and consistent color.
- Attach the E-Z-Click[™] fitting to the end of the nozzle by pushing the tubing over the barbs at the end of the nozzle. Make sure that all ports are pushed in to the open position.
- 3. Attach the E-Z-Click injection fitting to the first E-Z-Click port until it clicks into place. Make sure that the heads of all the ports are pushed in to the open position. In vertical applications, begin injection at the lowest port and work your way up. In a horizontal application start at one end of the crack and work your way to the other end.

4. Inject epoxy into the first port until it will no longer flow into the crack. If epoxy shows at the next port and the first port still accepts material, close the second port and continue to inject into the first port until it accepts no more epoxy. Continue closing ports where epoxy appears until the first port refuses epoxy. When the first port reaches the point of refusal, brace the base of the port and pull out gently on the head of the port to close it. Pulling too hard may dislodge the port from the surface of the concrete, causing a leak. Depress the metal tab on the head of the E-Z-Click fitting and remove it from the port.

5. Go to the last port where epoxy appeared while injecting the first port, open it, and continue injection at this port. If the epoxy has set up and the port is bonded closed, move to the next clean port and repeat the process until every portion of the crack has refused epoxy.

While this method may appear to leave some ports uninjected, it provides maximum pressure to force the epoxy into the smaller areas of the crack. Moving to the next port as soon as epoxy appears will allow the epoxy to travel along the wider parts of the crack to the next ports rather than force it into the crack before it travels to the next ports.

Injection Tips

- If using a pneumatic dispensing tool, set the tool at a low setting when beginning injection and increase pressure if necessary to get the epoxy to flow.
- For narrow cracks it may be necessary to increase the pressure gradually until the epoxy begins to flow. It may also be necessary
 to wait a few minutes for the epoxy to fill the crack and travel to the next port.
- If desired, once the injection epoxy has cured, remove the injection ports and paste-over. Epoxy paste-over can be removed with
 a chisel, scraper, or grinder. The paste-over can be simply peeled off if CIP-F is used. Using a heat gun to soften the epoxy is
 recommended when using a chisel or scraper.
- Mixing nozzles can be used for multiple cartridges as long as the epoxy does not harden in the nozzle. For injection epoxies in side-by-side cartridges, care must be taken to ensure the level of material is the same on both parts of the cartridge. This can be done by checking for air in the cartridge and the positions of the wipers in the back of the cartridge. If the liquid levels are off by more than 1/8", then Step 1 from the injection procedures must be repeated.

Troubleshooting

Epoxy is flowing into the crack, but not showing up at the next port.

This most likely indicates that epoxy is running out of the unsealed backside of the crack. In this case, the application may require a gel viscosity injection epoxy (CI-GV) or may not be suitable for epoxy injection repair without excavation and sealing of the backside of the crack.

This may also indicate that either the crack expands and/or branches off under the surface of the concrete. Continue to inject and fill these voids. In situations where the crack penetrates completely through the concrete element and the backside of the concrete element cannot be sealed (e.g., basement walls, or footings with backfill), longer injection time may not force the epoxy to the next port.

Epoxy is leaking from the pasted-over crack or around injection ports.

Stop injecting. If using a fast cure paste-over material (CI-PO, CIP-F or ETR), wipe off the leaking injection epoxy with a cotton cloth and reapply the paste-over material. Wait approximately 10 to 15 minutes to allow the paste-over to begin to harden. If the leak is large (e.g., the port broke off of the concrete surface), it is a good idea to wait approximately 30 minutes, or longer as necessary, to allow the paste-over to cure more completely. Check to see that the paste-over is hard before reinjecting or the paste-over or ports may leak. Another option for small leaks is to clean off the injection epoxy and use paraffin or crayon to seal the holes.

More epoxy is being used than estimated.

This may indicate that the crack either expands or branches off below the surface. Continue to inject and fill these voids. This may also indicate that epoxy is running out of the backside of the crack. If the crack penetrates completely through the concrete element and cannot be sealed, the application may not be suitable for injection repair.

Back pressure is preventing epoxy from flowing.

This can indicate several situations:

- The crack is not continuous and the portion being injected is full (see above instructions about injection after the port has reached refusal). See Step 4 on p. 212.
- The port is not aligned over the crack properly.
- The crack is blocked by debris.
- The injection epoxy used has too high of a viscosity.
- If the mixing nozzle has been allowed to sit for a few minutes full of epoxy, the material may have hardened in the nozzle.

Attach the E-Z-Click[™] fitting to a port at another uninjected location on the crack and attempt to inject. If the epoxy still won't flow, chances are the epoxy has hardened in the nozzle.

Less epoxy is being used than estimated.

This may indicate that the crack is shallower than originally thought, or the epoxy is not penetrating the crack sufficiently before moving to the next port. Reinject some ports with a lower viscosity epoxy to see if the crack will take more epoxy. Another option is to heat the epoxy to a temperature of 80–100°F, which will reduce its viscosity and allow it to penetrate into small cracks easier. The epoxy should be heated uniformly, do not overheat cartridge.

Gravity-Feed Procedure

Some horizontal applications where complete penetration is not a requirement can be repaired using the gravity-feed method.

- 1. Follow cartridge preparation instructions on the cartridge label. Verify that the material flowing from the Optimix[®] mixing nozzle is a uniform and consistent color.
- 2. Starting at one end of the crack, slowly dispense epoxy into the crack, moving along the crack as it fills. It will probably be necessary to do multiple passes in order to fill the crack. It is possible that the epoxy will take some time to run into the crack, and the crack may appear empty several hours after the initial application. Reapply epoxy until the crack is filled.
- 3. In situations where the crack completely penetrates the member (e.g., concrete slab), the material may continue to run through the crack into the subgrade. It may be possible to use a small amount of course, dry sand to act as a barrier for the injection epoxy. Place the sand in the crack to a level no more than ¼ thickness of the member and apply the injection epoxy as described in step 2. The epoxy level will drop as it penetrates the sand, but should cure and provide a seal to the bottom of the crack. Reapply the epoxy until the crack is filled. In some cases, application of sand is impractical or not permitted and epoxy repair may not provide a complete and effective repair. Use of a gel viscosity injection epoxy (CI-GV) may permit a surface repair to the crack with partial penetration.

Chemical Resistance of Injection Epoxies

Samples of Simpson Strong-Tie epoxies were immersed in the chemicals shown below for a maximum of three months. The samples were then tested according to ASTM D543 *Standard Practices for Evaluating the Resistance of Plastics to Chemical Changes*, Procedures I & II, and ASTM D2240 *Standard Test Method for Rubber Property–Durometer Hardness.*

Samples showing no visible damage and demonstrating statistically equivalent hardness as compared to control samples were classified as **"Resistant" (R)**. These epoxies are considered suitable for continuous exposure to the identified chemical.

Samples exhibiting slight damage, such as swelling or crazing, or not demonstrating equivalent hardness as compared to control samples were classified as **"Non-Resistant" (NR)**. These epoxies are considered suitable for periodic exposure to the identified chemical if the chemical will be diluted and washed away after exposure. Some manufacturers refer to this as "limited resistance" or "partial resistance" in their literature.

Restoration Solutions

Samples that were completely destroyed by the chemical, or that demonstrated a significant loss in hardness after exposure were classified as **"Failed" (F)**. These epoxies are considered unsuitable for exposure to the identified chemical.

Note: In many actual service conditions, the majority of the injection epoxy is not exposed to the chemical and thus some period of time is required for the chemical to saturate the entire mass of repair material. The repair would be expected to maintain integrity and load-bearing capability until a significant portion of the injection epoxy is saturated. Data Table

Chemical	Concentration	CI-LV	CI-LVFS	CI-LPL	CI-GV	CI-SLV
Apotio Apid	10%	F	F	F	F	F
Acetic Acid	pH = 3	R	R	R	R	R
Acetone	100%	F	F	F	NR	F
Aluminum Ammonium Sulfate (Ammonium Alum)	10%	R	_	_	_	
Aluminum Chloride	10%	R	—	_	—	—
Aluminum Potassium Sulfate (Potassium Alum)	10%	R	_		_	_
Aluminum Sulfate (Alum)	15%	R	_	_	_	
X 7	20%	R	R	R	R	R
Ammonium Hydroxide (Ammonia)	pH = 10	R	R	R	R	R
Ammonium Sulfate	15%	R	_	—	_	_
Antifreeze	100%	R	R	R	R	R
Aviation Fuel (JP5)	100%	R	R	R	R	R
Break Fluid	100%	R	R	R	R	R
Calcium Hydroxide	10%	R	R	R	R	R
Calcium Hypochlorite	15%	R	R	R	R	R
Calcium Oxide	5%	R	R	R	R	R
Chlorine (Sodium Dichloro-s-triazinetrione)	2,000 ppm	R	R	R	R	R
Detergent (ASTM D543)	100%	R	R	R	R	R
Diesel Oil	100%	R	R	R	R	R
	95%	F	F	NR	NR	F
Ethyl Alcohol	50%	NR	NR	R	R	NR
Fluorosilicic Acid	25%	R				
Gasoline	100%	NR	NR	R	R	NR
	10%	NR	R	R	R	F
Hydrochloric Acid	pH = 3	R	R	R	R	R
Hydrogen Peroxide	12%	F	R	NR	R	F
Iron (II) Chloride (Ferrous Chloride)	15%	R		—	_	
Iron (III) Chloride (Ferric Chloride)	15%	R	_	_	_	_
Isopropanol	100%	R	R	R	R	R
Machine Oil	100%	R	R	R	R	R
Methyl Ethyl Ketone	100%	F	F	F	NR	F
Mineral Spirits	100%	R	R	R	R	R
Motor Oil	100%	R	R	R	R	R
Potassium Permanganate	10%	R		_	_	_
Seawater (ASTM D1141)	100%	R	R	R	R	R
Soap (ASTM D543)	100%	R	R	R	R	R
Sodium Bicarbonate	10%	R	_	_	_	
Sodium Bisulfite	15%	R	_	_	_	
Sodium Carbonate	15%	R	_	_	_	_
Sodium Fluoride	10%	R	—	—	_	—
Sodium Hexafluorosilicate (Sodium Silicon Floride)	50%	R	_	_	_	_
Sodium Hydrogen Sulfide	15%	R		_	_	_
	20%	R	R	R	R	R
Sodium Hydroxide	pH = 10	R	R	R	R	R
Sodium Hypochlorite	15%	R	R	R	R	R
Sodium Nitrate	15%	R	_	_	—	—
Sodium Phosphate (Trisodium Phosphate)	10%	R	_	—	_	_
Sodium Silicate	10%	R		_	_	_
	10%	NR	R	R	NR	F
Sulfuric Acid	pH = 3	R	R	R	R	R
Toluene	100%	R	R	R	R	R
Water	100%	R	R	R	R	R

1. "R" - Resistant, "NR" - Non-Resistant, "F" - Failed, "-" - Not tested

SIMPSO

Strong-Tie

214

Injection Procedure for Crack-Pac[®] Flex-H2O[™] Crack Sealer

- 1. Follow cartridge preparation instructions on the cartridge label. Verify that the material flowing from the nozzle is a uniform green color.
- 2. Attach the E-Z-Click[™] fitting to the end of the nozzle by pushing the tubing over the barbs at the end of the nozzle. Make sure that all ports are pushed into the open position. If crack is dry, introduce a small amount of water (1–2 mL) into each open port using a dropper, pipet, syringe or squirt bottle.
- 3. Attach the E-Z-Click injection fitting to the first E-Z-Click port until it clicks into place. Make sure that the head of the port is pushed into the open position. In vertical applications, begin injection at the lowest port and work your way up. In a horizontal application, start at one end of the crack and work your way to the other end.
- 4. Inject polyurethane into the first port until material shows at the next port. Remove the E-Z-Click fitting by bracing the base of the port and pulling out gently on the head of the port to close it. Pulling too hard may dislodge the port from the surface of the concrete, causing a leak. Depress the metal tab on the head of the E-Z-Click fitting and remove it from the port.
- 5. Move to the next port and repeat until all ports have been injected.

Injection Tips for Crack-Pac FlexH2O Crack Sealer

- For narrow cracks, it may be necessary to increase the pressure gradually until the polyurethane begins to flow. It may also be necessary to wait a few minutes for the material to fill the crack and travel to the next port.
- If desired, once the injection epoxy has cured, remove the injection ports and paste-over. Epoxy paste-over can be removed with a chisel, scraper, or grinder. The paste-over can be simply peeled off if CIP-F is used. Using a heat gun to soften the epoxy is recommended when using a chisel or scraper.

Troubleshooting for Crack-Pac Flex-H2O Crack Sealer

Polyurethane is flowing into the crack, but not showing up at the next port.

This can indicate several situations:

- That polyurethane is running out the unsealed backside of the crack.
- There is not enough water present to react with the polyurethane and generate foam.
- The crack either expands and/or branches off under the surface of the concrete.

Continue to inject and fill these voids. In situations where the crack penetrates completely through the concrete element, and the backside of the concrete element cannot be sealed (e.g., basement walls, or footings with backfill), longer injection time may not force the polyurethane to the next port. This most likely indicates that polyurethane is running out the unsealed backside of the crack. In this case, the application may require a gel viscosity injection epoxy (CI-GV) or may not be suitable for injection repair without excavation and sealing of the backside of the crack.

Back pressure is preventing polyurethane from flowing.

This can indicate several situations:

- The crack is not continuous and the portion being injected is full.
- The port is not aligned over the crack properly.
- The crack is blocked by debris.

Attach the E-Z Click[™] fitting to the next uninjected port on the crack and continue the injection.

Polyurethane is leaking from the pasted-over crack or around injection ports.

Stop injecting. If using a fast cure paste-over material (CI-PO, CIP-F or ETR), wipe off the leaking polyurethane with a cotton cloth and reapply the paste-over material. Wait approximately 10–15 minutes to allow the paste-over to begin to harden. If the leak is large (e.g., the port broke off of the concrete surface), it is a good idea to wait approximately 30 minutes, or longer as necessary, to allow the paste-over to cure more completely. Check to see that the paste-over is hard before reinjecting or the paste-over or ports may leak.

Another option for small leaks is to clean off the injection adhesive and use paraffin or crayon to seal the holes.

More polyurethane is being used than estimated.

This may indicate there is not enough water present to react with the polyurethane and generate foam. Introduce water into the port and continue to inject. Introduce water into subsequent ports prior to injection.

This may also indicate that the crack either expands or branches off below the surface. Continue to inject and fill these voids.

Less polyurethane is being used than estimated.

This may indicate that the crack is shallower than originally thought, or the polyurethane is not penetrating the crack sufficiently before moving to the next port.

Ensure polyurethane foam presents at the next injection port before moving to that port or fill the crack at the port until rejection.

Heli-Tie[™] Helical Wall Tie

The Heli-Tie helical wall tie is a stainless-steel tie used to anchor building façades to structural members or to stabilize brick walls.

The helical design allows the tie to be driven quickly and easily into a predrilled pilot hole (or embedded into mortar joints in new construction) to provide a mechanical connection between a masonry façade and its backup material. As it is driven, the fins of the tie undercut the masonry to provide an expansion-free anchorage that will withstand tension and compression loads.

The Heli-Tie wall tie is installed into a predrilled hole using a proprietary setting tool with an SDS-plus[®] shank rotohammer to drive and countersink the tie. Heli-Tie wall ties perform in concrete and masonry as well as wood and steel studs.

Features

- Installs quickly and easily with the rotohammer in hammer mode, the tie installs faster than competitive products.
- Provides an inconspicuous repair that preserves the appearance of the building. After installation, the tie is countersunk up to ½" below the surface, allowing the tie location to be patched.
 Larger core diameter provides higher torsional capacity, resulting in less deflection due to "uncoiling" under load.
- Fractionally sized anchor no metric drill bits required.
- Patented manufacturing process results in a more uniform helix along the entire tie, allowing easier driving and better interlock with the substrate.

Material: Type 304 stainless steel (Type 316 available by special order — contact Simpson Strong-Tie for details)

Test Criteria: CSA A370

Installation

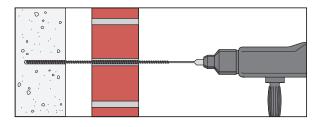
Restoration Solutions

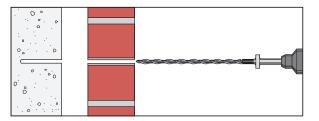
- Drill pilot hole through the façade material and into the backup material to the specified embedment depth + 1" using appropriate drill bit(s) in the chart below. Drill should be in rotation-only mode when drilling into soft masonry or into hollow backing material.
- Position blue end of the Heli-Tie fastener in the installation tool and insert the tie into the pilot hole.
- With the SDS-plus rotohammer in hammer mode, drive the tie until the tip of the installation tool enters the exterior surface of the masonry and countersinks the tie below the surface. Patch the hole in the façade with a matching masonry mortar.

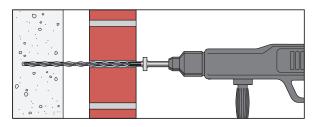
Heli-Tie Helical Wall Tie Product Data

Size	Model	Drill Bit Diameter	Quantity		
(in.)	No.	(in.)	Box	Carton	
3∕8 X 7	HELI37700A		50	400	
3∕8 X 8	HELI37800A		50	400	
3∕8 x 9	HELI37900A		50	400	
3∕≋ x 10	HELI371000A		50	200	
3∕8 x 11	HELI371100A	7/32	50	200	
3∕8 x 12	HELI371200A	0r 1⁄4	50	200	
3∕8 x 14	HELI371400A		50	200	
3∕≋ x 16	HELI371600A		50	200	
3∕% x 18	HELI371800A		50	200	
3∕8 x 20	HELI372000A		50	200	

Special order lengths are also available; contact Simpson Strong-Tie for details.







Watch how to install Heli-Tie helical wall tie at **strongtie.com/helitie**.

Installation Sequence

Heli-Tie[™] Design Information

Guide Tension Loads in	Various Base Materials
------------------------	------------------------

				Min.		Tension Load ¹		Caution: Loads are guide values based on laboratory testing. Onsite
Size in. (mm)	Base Material	Anchor Location	Drill Bit Diameter in.	Embed. Depth in. (mm)	Ultimate² lb. (kN)	Load at Max. Permitted Displ. ³ Ib. (KN)	Standard Deviation Ib. (kN)	testing shall be performed for verification of capacity since base material quality can vary widely.
		Mortar	7/32		570 (2.5)	240 (1.1)	79 (0.4)	
	Solid	bed joint	1⁄4		365 (1.6)	130 (0.6)	46 (0.2)	
	brick ⁴	Brick	7/32		1,310 (5.8)	565 (2.5)	84 (0.4)	
		face	1⁄4	3 (76)	815 (3.6)	350 (1.6)	60 (0.3)	
		Mortar bed joint	7/32		530 (2.4)	285 (1.3)	79 (0.4)	
	Hollow brick⁵	Brick	7/32		775 (3.4)	405 (1.8)	47 (0.2)	
		face	1⁄4		510 (2.3)	185 (0.8)	20 (0.1)	1. Tabulated loads are guide values based
		Center of	7/32		1,170 (5.2)	405 (1.8)	79 (0.4)	on laboratory testing. Onsite testing shall be performed for verification of capacity since base material quality car vary widely.
		face shell	1⁄4	2 ³ ⁄4 (70)	830 (3.7)	350 (1.6)	60 (0.3)	 Ultimate load is average load at failure of the base material. Heli-Tie fastener average ultimate steel strength is
	Grout-filled CMU ⁶	Web Mortar bed joint	7/32		1,160 (5.2)	440 (2.0)	56 (0.2)	 3,885 lb. and does not govern. Load at maximum permitted displacement is average load at
			1⁄4		810 (3.6)	330 (1.5)	100 (0.4)	displacement of 0.157 inches (4 mm). The designer shall apply a suitable factor of safety to these numbers to
³ ⁄8 (9.0)			7/32		720 (3.2)	320 (1.4)	71 (0.3)	derive allowable service loads.Solid brick values for nominal 4-inch- wide solid brick conforming to ASTM
			1⁄4		530 (2.4)	205 (0.9)	58 (0.3)	C62/C216, Grade SW. Type N mortar is prepared in accordance with IBC Section 2103.2.
		Center of face shell	7/32		790 (3.5)	305 (1.4)	56 (0.2)	 Hollow brick values for nominal 4-inc wide hollow brick conforming to AST C216/C652, Grade SW, Type HBS,
	Hollow		1⁄4		505 (2.2)	255 (1.1)	46 (0.2)	Class H40V. Mortar is prepared in accordance with IBC Section 2103.2. 6. Grout-filled CMU values for nominal
	CMU ⁷	Web	7/32		1,200 (5.3)	445 (2.0)	50 (0.2)	8-inch-wide lightweight, medium- weight and normal-weight concrete masonry units. The masonry units must
			1⁄4		675 (3.0)	385 (1.7)	96 (0.4)	be fully grouted. Values for nominal 8-inch-wide concrete masonry units (CMU) with a minimum specified
	Normal-weight		7/32	1 ¾ (44)	880 (3.9)	410 (1.8)	76 (0.3)	 compressive strength of masonry, f'm, at 28 days is 1,500 psi. 7. Hollow CMU values for 8-inch-wide
	concrete ⁸		1⁄4	2 ¾ (70)	990 (4.4)	380 (1.7)	96 (0.4)	lightweight, medium-weight and normal-weight concrete masonry units. 8. Normal-weight concrete values for
	2x4 wood	Center of	7/32	23⁄4	590 (2.6)	370 (1.6)	24 (0.1)	concrete with minimum specifiedcompressive strength of 2,500 psi.9. 2x4 wood stud values for nominal
	stud ^{9,11}	thin edge	1⁄4	(70)	450 (2.0)	260 (1.2)	6 (0.0)	2x4 Spruce-Pine-Fir. 10. Metal stud values for 20-gauge C-shape metal stud.
	Metal stud ^{10,11}	Center of	7/32	1	200 (0.9)	120 (0.5)	8 (0.0)	11. For retrofits, due to difficulty of locating center of 2x4 or metal stud flange, install Heli-Tie from interior of building.
		flange	1⁄4	(25)	155 (0.7)	95 (0.4)	2 (0.0)	 For new construction, anchor one end of tie into backup material. Embed other end into veneer mortar joint.

SIMPSO Strong-Ti

Restoration Solutions

- derive allowable service loads. 4. Solid brick values for nominal 4-inchwide solid brick conforming to ASTM C62/C216, Grade SW. Type N mortar is prepared in accordance with IBC Section 2103.2.
- Hollow brick values for nominal 4-inchwide hollow brick conforming to ASTM C216/C652, Grade SW, Type HBS, Class H40V. Mortar is prepared in accordance with IBC Section 2103.2.
- 6. Grout-filled CMU values for nominal 8-inch-wide lightweight, mediumweight and normal-weight concrete masonry units. The masonry units must be fully grouted. Values for nominal 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi
- 7. Hollow CMU values for 8-inch-wide lightweight, medium-weight and normal-weight concrete masonry units.
- 8. Normal-weight concrete values for concrete with minimum specified compressive strength of 2,500 psi.
- 9. 2x4 wood stud values for nominal 2x4 Spruce-Pine-Fir.
- 10. Metal stud values for 20-gauge C-shape metal stud.
- 11. For retrofits, due to difficulty of locating center of 2x4 or metal stud flange, install Heli-Tie from interior of building.
- 12. For new construction, anchor one end of tie into backup material. Embed other end into veneer mortar joint.

Heli-Tie[™] Design Information

Compression (Buckling) Loads¹

Size in. (mm)	Unsupported Length in. (mm)	Ultimate Compression Load¹ Ib. (kN)
¾ (9.0)	1 (25)	1,905 (8.5)
	2 (50)	1,310 (5.8)
	4 (100)	980 (4.4)
	6 (150)	785 (3.5)

1. The designer shall apply a suitable factor of safety to these numbers to derive allowable service loads.

Heli-Tie Fastener Installation Tool – Model HELITOOL37A

Required for correct installation of Heli-Tie wall ties. Speeds up installation and automatically countersinks the tie into the façade material.

HELITOOL37A

Heli-Tie Wall Tie Tension Tester – Model HELITEST37A

Recommended equipment for onsite testing to accurately determine load values in any specific structure, the Heli-Tie wall tie tension tester features a key specifically designed to grip the Heli-Tie fastener and provide accurate results. Replacement test keys sold separately (Model HELIKEY37A).

Contact Simpson Strong-Tie for Heli-Tie onsite testing procedures.

HELITEST37A

HELIKEY37A

For more information see strongtie.com/helitie.

Restoration Solutions

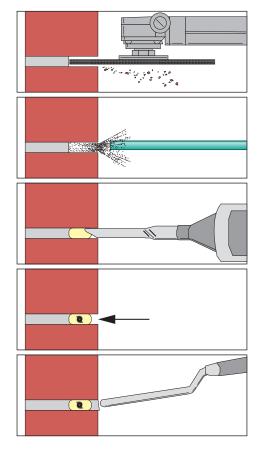
Heli-Tie[™] Helical Stitching Tie

The Simpson Strong-Tie Heli-Tie helical stitching tie provides a unique solution to the preservation and repair of damaged brick and masonry structures. Ties are grouted into existing masonry joints to repair cracks and increase strength with minimum disturbance. Made of Type 304 stainless steel, the Heli-Tie stitching tie features radial fins formed on the steel wire via cold rolling process, increasing the tensile strength of the tie.

HELIST254000

Features

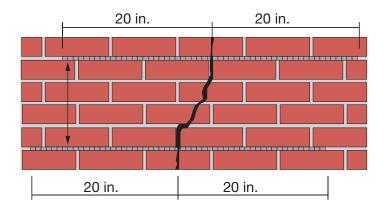
- Helical design distributes loads uniformly over a large surface area
- Installs into the mortar joint to provide an inconspicuous repair and preserve the appearance of the structure
- Type 304 stainless steel offers superior corrosion resistance to mild steel reinforcement
- Patented manufacturing process results in consistent, uniform helix configuration (US Patent 7,269,987)
- Batch number printed on each tie for easy identification and inspection


HELIST254000: 1/4" x 40" stitching tie (special lengths are available upon request)

Material: Type 304 stainless steel

Ordering Information: Sold in tubes of 10

Installation Instructions


- Chase bed joint 20" on either side of the affected area to a depth of approximately 1 ¼" with a rotary grinding wheel. Vertical spacing of installation sites should be 12" for red brick or "every other course" for concrete masonry units.
- Clear bed joint of all loose debris.
- Mix non-shrink repair grout or mortar per product instructions and place into the prepared bed joint, filling the void to approximately two-thirds of its depth. Simpson Strong-Tie RPS-263 Rapid-Hardening Vertical/Overhead Repair Mortar should be used.
- Embed the tie at one-half the depth of the void. Trowel displaced grout to fully encapsulate the tie.
- Fill any remaining voids and vertical cracks with non-shrink repair grout or other repair mortar to conceal repair site.

Watch how to install Heli-Tie helical

Installation Sequence

stitching tie at strongtie.com/helitie.

Carbide Drill Bits

SDS-plus® Drill Bits

SDS-plus Shank Bits - Retail Packs

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Quantity (per pack)	Model No.
5/32	4	61⁄4	25	MDPL01506-R25
	2	41⁄4	25	MDPL01804-R25
	4	6¼	25	MDPL01806-R25
3/16	6	81⁄4	25	MDPL01808-R25
916	8	10	25	MDPL01810-R25
	10	12	25	MDPL01812-R25
	12	14	25	MDPL01814-R25
	4	6¼	25	MDPL02106-R25
7/32	6	81⁄4	25	MDPL02108-R25
	8	10	25	MDPL02110-R25
	2	41⁄4	25	MDPL02504-R25
1/4	4	6¼	25	MDPL02506-R25
'/4	6	81⁄4	25	MDPL02508-R25
	8	10	25	MDPL02510-R25
5⁄16	4	6¼	25	MDPL03106-R25
3%8	4	6¼	25	MDPL03706-R25
78	10	121⁄4	25	MDPL03712-R25
1/2	4	6¼	25	MDPL05006-R25
72	10	12¼	25	MDPL05012-R25
5%8	6	8	20	MDPL06208-R20

Carbide Drill Bits

SDS-plus® / SDS-max® Drill Bits

SDS-plus Shank Bit

SDS-plus bits use an asymmetrical-parabolic flute for efficient energy transmission and dust removal.

SDS-plus Shank Bits

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Model No.	
5/32	2	41⁄4	MDPL01504	
732	4	6¼	MDPL01506	
	4	6¼	MDPL01806	
	6	81⁄4	MDPL01808	0.00
3⁄16	8	10	MDPL01810	
	10	12	MDPL01812	61
	12	14	MDPL01814	1
	4	6¼	MDPL02106	(7.)
	6	81⁄4	MDPL02108	14
7/32	8	10	MDPL02110	41
	14	16	MDPL02116	(1)
	2	41/4	MDPL02504	
	4	61/4	MDPL02506	(2)
	6	81/4	MDPL02508	14
1⁄4	8	10	MDPL02510	41
	12	10	MDPL02510	(A)
	14	16	MDPL02516	(2)
5⁄16	4	61⁄4	MDPL03106	4
	10	12	MDPL03112	(L)
	4	61⁄4	MDPL03706	61
	8	101⁄4	MDPL03710	1
3⁄8	10	121⁄4	MDPL03712	(2)
	16	18	MDPL03718	4
	22	24	MDPL03724	22
7/16	4	6¼	MDPL04306	(1)
716	10	121⁄4	MDPL04312	
	4	61⁄4	MDPL05006	(2))
	8	101⁄4	MDPL05010	20
1/2	10	121⁄4	MDPL05012	Y.
	16	18	MDPL05018	
	22	24	MDPL05024	
	4	6¼	MDPL05606	SDS-plu
9⁄16	10	121⁄4	MDPL05612	Shank E
	16	18	MDPL05618	
	6	8	MDPL06208	
	10	12	MDPL06212	
5⁄8	16	18	MDPL06218	
	22	24	MDPL06224	
11/16	6	8	MDPL06808	
/ 10	6	8	MDPL07508	
			MDPL07508 MDPL07510	
3⁄4	8	10		
	10	12	MDPL07512	
	16	18	MDPL07518	
	22	24	MDPL07524	
	6	8	MDPL08708	
7⁄8	10	121⁄4	MDPL08712	
	16	18	MDPL08718	
1	8	10	MDPL10010	
	16	18	MDPL10018	

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Model No.
3⁄8	71⁄2	13	MDMX03713
1/	71⁄2	13	MDMX05013
1/2	15½	21	MDMX05021
9/16	71⁄2	13	MDMX05613
716	15½	21	MDMX05621
	71⁄2	13	MDMX06213Q
5⁄8	15½	21	MDMX06221Q
	301⁄2	36	MDMX06236Q
11/16	15½	21	MDMX06821Q
	8	13	MDMX07513Q
3⁄4	17	21	MDMX07521Q
	31	36	MDMX07536Q
13/16	17	21	MDMX08121Q
7/	8	13	MDMX08713Q
7⁄8	17	21	MDMX08721Q
	8	13	MDMX10013Q
1	17	21	MDMX10021Q
	31	36	MDMX10036Q
1 1⁄16	18	23	MDMX10623Q
	12	17	MDMX11217Q
11/8	17	21	MDMX11221Q
	31	36	MDMX11236Q
	10	15	MDMX12515Q
11⁄4	18	23	MDMX12523Q
	31	36	MDMX12536Q
12/	12	17	MDMX13717Q
1%	18	23	MDMX13723Q
1 1⁄2	18	23	MDMX15023Q
1¾	18	23	MDMX17523Q
2	18	23	MDMX20023Q

SDS-max and SDS-max Quad Head Shank Bits

Model numbers ending with "Q" denote Quad Head.

Quad Head Model numbers ending with "Q" denote quad head bits.

Carbide Drill Bits

SDS-max Shank Bit

いいいいい

SIMPSON Strong-Tie

Straight Shank Drill Bits

SIMPSON Strong-Tie

Straight Shank Bits

	Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Model No.	
	1⁄8	1%	3	MDB01203	
	³ ⁄16	4	6	MDB01806	
		21⁄8	4	MDB02504	
	1⁄4	4	6	MDB02506	4
		10	12	MDB02512	
	5⁄16	4	6	MDB03106	(2)
ľ		4	6	MDB03706	
	3⁄8	10	12	MDB03712	4
	7/16	4	6	MDB04306	
ĺ		4	6	MDB05006	4
	1/2	10	12	MDB05012	X
	5⁄8	31⁄2	6	MDB06206	K
	3⁄4	4	6	MDB07506	Straig

Straight Shank Bits - Retail Packs

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Quantity (per pack)	Model No.
3⁄16	4	6	25	MDB01806-R25
1/	21⁄8	4	25	MDB02504-R25
1⁄4	4	6	25	MDB02506-R25
5⁄16	4	6	25	MDB03106-R25
3⁄8	4	6	25	MDB03706-R25
1⁄2	4	6	25	MDB05006-R25

Straight Shank Bits - Retail Carded Packs

Model No.

MDB15312C1

MDB15412C1

MDB15512C1

MDB18312C1

MDB18412C1

MDB18512C1

1-Count Carded Pack

Packs per Carton

10

10

10

10

10

10

Size (in.)

⁵/з2 х З 1/2

⁵/з2 х 4 ½

5/32 X 51/2

3⁄16 X 3 1⁄2

3∕16 X 4 1⁄2

³⁄16 X 5¹⁄2

Shank Bit

4-Count Carded Pack

Model No.

MDB15412C4

MDB18412C4

Packs per Carton

10

10

Shank Bits Retail Packs

Straight Shank Bits Retail Carded Packs

Carbide Drill Bits

Core Bits

Simpson Strong-Tie core bits are made to the same exacting standards as our standard carbide-tipped drill bits. They utilize a centering bit to facilitate accurate drilling in combination hammer/drill mode.

Core Bits with Centering Bit - SDS-max® Shank

Diameter (in.)	Drilling Depth (in.)	Overall Length (in.)	Model No.				
2	6¼	22	CBMX20022				
2%	6¼	22	CBMX26222				
31⁄8	6¼	22	CBMX31222				
31⁄2	6¼	22	CBMX35022				
4	6¼	22	CBMX40022				
5	61⁄4	22	CBMX50022				

Note: With 1-piece bits, once coring is begun, the centering bit must be removed using ejector pin. Core bit bodies are $2^{11}/6"$ deep.

Core Bit Transfers Energy Efficiently

Core Bit Center Pilot Bit (CTRBTF04304)

Demolition Bits

Flat Chisels

General Concrete and Masonry Demolition

Shank Type	Head Width (in.)	Overall Length (in.)	Model No.
SDS-max [®]	1	12	CHMXF10012
SD2-III9X	1	18	CHMXF10018
Colina	1	12	CHSPF10012
Spline	1	18	CHSPF10018

Bull-Point Chisels General Concrete and

Masonry Demolition

Ground Rod Drivers

Driving in Ground Rods

Head Width

7⁄8

7⁄8

Shank Type	Overall Length (in.)	Model No.
SDS-plus®	10	CHPLBP10
SDS-max	12	CHMXBP12
	18	CHMXBP18
Spline	12	CHSPBP12
	18	CHSPBP18

Overall Length

101⁄4

101/4

Model No.

CHMXRD08710

CHSPRD08710

Bull-Point Chisel

Asphalt Cutters

Asphalt, Hardpan and Compacted Soil Cutting

Shank Type	Head Width (in.)	Overall Length (in.)	Model No.
SDS-max	31⁄2	16	CHMXAC35016

Asphalt Cutter

Scrapers

Removing Tiles, Flooring and Other Materials

Shank Type	Head Width (in.)	Overall Length (in.)	Model No.
SDS-plus	3⁄4	10	CHPLF07510
SDS-pius	1½	10	CHPLSC15010
SDS-max	2	12	CHMXSCP20012
Spline	2	12	CHSPSCP20012

Bushing Tools One Piece Concrete and Asphalt Surface Roughening

Shank
TypeHead
Width
(in.)Overall
Length
(in.)Model
No.SDS-max1¾9½CHMXBT17509Spline1¾9¼CHSPBT17509

Bushing Tool

Head

Scalers Removing Large Quantities of Material

SDS-max

Spline

Shank Type	Head Width (in.)	Overall Length (in.)	Model No.
	1½	12	CHMXSC15012
SDS-max	2	12	CHMXSC20012
	3	12	CHMXSC30012
Quiling	2	12	CHSPSC20012
Spline	3	12	CHSPSC30012

Ground Rod Driver

For additional carbide product availability, visit strongtie.com or see the current product guide (S-A-PG).

Appendix

61

And Consta

Appendix

Supplemental Topics for Anchors

I. Anchor Products for Corrosive Environments
II. Base Materials 234
III. Anchor Failure Modes
IV. Corrosion Resistance
V. Mechanical Anchors
VI. Adhesive Anchors

I. Anchor Products for Corrosive Environments

Trusted quality, code approved and innovative stainless-steel anchors that can be installed in exterior and corrosive environments.

When it comes to anchorage, specifying a material that can withstand the environment is critical. Proper protection comes from materials that are capable of resisting corrosion while maintaining their strength.

Most anchor products are made from carbon steel. This material is easy to form into a screw or an expansion anchor and can be heat treated to increase its strength and durability. Steel is versatile but can weaken in a corrosive environment. Left unprotected, the iron in the steel will react with oxygen and moisture to form iron oxide — also known as rust.

Environments

There are four levels of corrosive environments (as shown below).

Minimum Corrosion Resistance Recommendations

Corrosion Resistance Classification by Environment	Recommended Product Material or Coating	
Low Zinc plated		
Medium	Mechanically galvanized (ASTM B695 — Class 55)	
Medium	Hot-dip galvanized (ASTM A153 — Class C)	
High	Type 303 or 304 stainless steel	
Severe	Type 316 stainless steel	

Quick Guide to Choosing the Right Stainless-Steel Grade

High to Severe

A highly corrosive environment is a location where anchors are exposed to chemicals such as fertilizers, soil, acid rain and other corrosive elements. Examples of these environments include kitchens, industrial zones, food-processing facilities, wineries, breweries, outdoor facilities and severe exterior conditions.

Typical high-corrosive environment – central utility plants.

Typical high-corrosive environment – food-processing plants.

Typical severe-corrosive environment — wastewater treatment plants.

Medium

A medium-level corrosive environment is typically a general exterior location where chlorides or corrosive chemical elements are not present. Anchors installed in interior conditions where the anchor is attaching to treated lumber may also require a medium-level corrosive-resistive anchor. Examples of elements at risk to medium-exposure corrosion are stadium seating, exterior handrails, exterior facade anchorages and other components of outdoor facilities.

Typical medium-corrosive environment — outdoor seating.

Typical medium-corrosive environment – exterior anchorage.

Low

C-A-2023 © 2023 SIMPSON STRONG-TIE COMPANY INC.

Finally, low-corrosive environments consist of interior dry spaces. Examples of such applications are warehouse racking, machinery installations, facility catwalk anchorage, interior furniture anchorages and so forth.

Typical low-corrosive environment — interior warehouse.

Types 304, 316 and 410 stainless-steel products for your job.

Anchor — Stainless-Steel Products	Туре 304	Type 316	Type 410
Drop-In (DIA) internally threaded anchor	\checkmark	\checkmark	
Sleeve-All® sleeve anchor	~		
Stainless-steel Titen HD® heavy-duty screw anchor	\checkmark	\checkmark	
Strong-Bolt [®] 2 stainless-steel wedge anchor	\checkmark	\checkmark	
Titen [®] stainless-steel concrete and masonry screw			\checkmark

Stainless-Steel Titen HD Heavy-Duty Screw Anchor

Strong-Bolt 2 Stainless-Steel Wedge Anchor

Sleeve-All Sleeve Anchor

Stainless-Steel

Titen HD

Countersunk

Heavy-Duty Screw Anchor

Drop-In (DIA) Internally Threaded Anchor

Stainless-Steel Titen Concrete and Masonry Screw

Concrete Adhesives for Stainless-Steel Threaded Rod

SET-3G[™] **High-Strength Epoxy Adhesive**

- Installs in dry, water-saturated, submerged or water-filled holes in base materials with temperatures between 40°F and 100°F
- NSF/ANSI standard 61 • approved

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

ET-3G[™] **Epoxy Adhesive**

- Ideal for general doweling and threaded rod application
- NSF/ANSI standard 61 approved

ASTM A593 CW

(Types 304 and 316)

 \checkmark

ASTM A193,

Grade B8 and B8M

(Types 304 and 316)

 \checkmark

 \checkmark

 \checkmark

AT-3G[™] **High-Strength Hybrid** Acrylic Adhesive

- Can be used in cold temperatures as low as 23°F
- NSF/ANSI standard 61 approved

Adhesive Anchor – Stainless Steel Rod
SET-3G
ET-3G

AT-3G

Rods

	ASTM A193, Grade B6 (Type 410)
	\checkmark
	\checkmark
_	

SIMPSON Strong-Tie

When designing strong and durable anchorage solutions for high and severe corrosive environments, the two most commonly considered materials are Types 304 and 316 stainless steel.

Type 300 Series stainless-steel screw anchors have different corrosion-resistant properties for different environments. When matched to the appropriate environment and application, anchors made from Type 300 Series stainless steel will resist the effects of corrosion and maintain their strength and integrity. Type 316 is the optimal choice for applications in severe corrosive or extreme environments such as salt water, or when chemical or corrosive solutions are present. Type 304 is a cost-effective solution for high corrosive applications where the environment may be wet, moist or damp.

Type 316 Stainless Steel

- Wastewater treatment
- Fertilizer storage buildings
- Sill plates in coastal environments
- Marine/port restoration
- Light rail (transportation)
- Agricultural facilities

- Pulp and paper mills
- Parking structures
- Tunnels
- Balconies in coastal environments
- Outdoor railings in coastal environments

Type 304 Stainless Steel

- Stadium seating
- Curtain walls
- Clean rooms
- Central utility plant facilities
- Food-processing facilities
- Ledger bolts for decks
- DOT signs and fixtures
- Cooling towers

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Scaffolding
- Parking structures
- Balconies
- Refineries
- Breweries and wineries
- Fencing
- Outdoor railings

II. Base Materials

"Base material" is a generic industry term that refers to the element or substrate to be anchored to. Base materials include concrete, brick, concrete block (CMU) and structural tile, to name a few. The most common type of base material where adhesive and mechanical anchors are used is concrete.

Concrete

Concrete can be cast-in-place or precast concrete. Concrete has excellent compressive strength, but relatively low tensile strength. Cast-in-place (or sometimes called "poured in place") concrete is placed in forms erected on the building site. Cast-in-place concrete can be either normal-weight or lightweight concrete. Lightweight concrete is often specified when it is desirable to reduce the weight of the building structure.

Lightweight concrete differs from normal-weight concrete by the weight of aggregate used in the mixture. Normal-weight concrete has a unit weight of approximately 150 pounds per cubic foot compared to approximately 115 pounds per cubic foot for lightweight concrete.

The type of aggregate used in concrete can affect the tension capacity of an adhesive anchor. Presently, the relationship between aggregate properties and anchor performance is not well understood. Test results should not be assumed to be representative of expected performance in all types of concrete aggregate.

Prefabricated concrete is also referred to as "precast concrete". Precast concrete can be made at a prefabricating plant or site-cast in forms constructed on the job. Precast concrete members may be solid or may contain hollow cores. Many precast components have thinner cross sections than cast in place concrete. Precast concrete may use either normal or lightweight concrete. Reinforced concrete contains steel bars, cable, wire mesh or random glass fibers. The addition of reinforcing material enables concrete to resist tensile stresses which lead to cracking.

The compressive strength of concrete can range from 2,000 psi to over 12,000 psi, depending on the mixture and how it is cured. Most concrete mixes are designed to obtain the desired properties within 28 days after being cast.

Concrete Masonry Units (CMU)

Block is typically formed with large hollow cores. Block with a minimum 75% solid cross section is called solid block even though it contains hollow cores. In many parts of the country building codes require steel reinforcing bars to be placed in the hollow cores, and the cores to be filled solid with grout.

In some areas of the eastern United States, past practice was to mix concrete with coal cinders to make cinder blocks. Although cinder blocks are no longer made, there are many existing buildings where they can be found. Cinder blocks require special attention as they soften with age.

Brick

Clay brick is formed solid or with hollow cores. The use of either type will vary in different parts of the United States. Brick can be difficult to drill and anchor into. Most brick is hard and brittle. Old, red clay brick is often very soft and is easily over-drilled. Either of these situations can cause problems in drilling and anchoring. The most common use of brick today is for building facades (curtain wall or brick veneer) and not for structural applications. Brick facade is attached to the structure by the use of brick ties spaced at intervals throughout the wall. In older buildings, multiple widths, or "wythes" of solid brick were used to form the structural walls. Three and four wythe walls were common wall thicknesses.

Clay Tile

Clay tile block is formed with hollow cores and narrow cavity wall cross sections. Clay tile is very brittle, making drilling difficult without breaking the block. Caution must be used in attempting to drill and fasten into clay tile.

III. Anchor Failure Modes

Four different tension failure modes and three different shear failure modes are generally observed for post-installed anchors under tension loading.

Failure Modes

Tension	Shear
Steel Fracture Concrete Breakout Pullout (Mechanical Anchor) Bond Failure (Adhesive Anchor)	Steel Fracture Concrete Breakout Pryout

Breakout Failure — Breakout failure occurs when the base material ruptures, often producing a cone-shaped failure surface when anchors are located away from edges, or producing a spall when anchors are located near edges. Breakout failure can occur for both mechanical and adhesive anchors and is generally observed at shallower embedment depths, and for installations at less than critical spacings or edge distances.

Pullout Failure — Pullout failure occurs when a mechanical anchor pulls out of the drilled hole, leaving the base material otherwise largely intact.

Bond Failure — Bond failure occurs when an adhesive anchor pulls out of the drilled hole due to an adhesion failure at the adhesive-to-base-material interface, or when there is a cohesive failure within the adhesive itself. When bond failure occurs, a shallow cone-shaped breakout failure surface will often form near the base material surface. This breakout surface is not the primary failure mechanism.

Pryout Failure — Pryout failure occurs for shallowly embedded anchors when a base material failure surface is pried out "behind" the anchor, opposite the direction of the applied shear force.

Steel Fracture — Steel fracture occurs when anchor spacings, edge distances and embedment depths are great enough to prevent the base-material-related failure modes listed above and the steel strength of the mechanical anchor or adhesive anchor insert is the limiting strength.

IV. Corrosion Resistance

Many environments and materials can cause corrosion, including ocean salt air, fire-retardants, fumes, fertilizers, preservative-treated wood, de-icing salts, dissimilar metals and more. Metal fixtures, fasteners and anchors can corrode and lose load-carrying capacity when installed in corrosive environments or when installed in contact with corrosive materials.

The many variables present in a building environment make it impossible to accurately predict if, or when, corrosion will begin or reach a critical level. This relative uncertainty makes it crucial that specifiers and users are knowledgeable about the potential risks and select a product suitable for the intended use. It is also prudent that regular maintenance and periodic inspections are performed, especially for outdoor applications.

It is common to see some corrosion in outdoor applications. Even stainless steel can corrode. The presence of some corrosion does not mean that load capacity has been affected or that failure is imminent. If significant corrosion is apparent or suspected, then the fixtures, fasteners and connectors should be inspected by a qualified engineer or qualified inspector. Replacement of affected components may be appropriate.

Chemical Attack

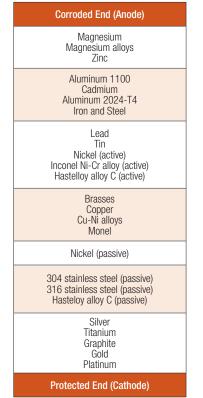
Chemical attack occurs when the anchor material is not resistant to a substance with which it is in contact. Chemical-resistant information regarding anchoring adhesives is found on pp. 242–243. Some wood-preservative chemicals and fire-retardant chemicals and retentions pose increased corrosion potential and are more corrosive to steel anchors and fasteners than others. Additional information on this subject is available at **strongtie.com**.

We have attempted to provide basic knowledge on the subject of corrosion here, but it is important to fully educate yourself by reviewing our technical bulletins on the topic (**strongtie.com/info**) and also by reviewing information, literature and evaluation reports published by others.

Galvanic Corrosion

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Galvanic corrosion occurs when two electrochemically dissimilar metals contact each other in the presence of an electrolyte (such as water) that acts as a conductive path for metal ions to move from the more anodic to the more cathodic metal. In the galvanic couple, the more anodic metal will corrode preferentially. The Galvanic Series of Metals table provides a qualitative guide to the potential for two metals to interact galvanically. Metals in the same group (see table) have similar electrochemical potentials. The farther the metals are apart on the table, the greater the difference in electrochemical potential, and the more rapidly galvanic corrosion will occur. Corrosion also increases with increasing conductivity of the electrolyte.


Good detailing practice, including the following, can help reduce the possibility of galvanic corrosion of anchors:

- Use of anchors and metals with similar electrochemical potentials
- · Separating dissimilar metals with insulating materials
- · Ensuring that the anchor is the cathode, when dissimilar materials are present
- Preventing exposure to and pooling of electrolytes.

Hydrogen-Assisted Stress-Corrosion Cracking

Some hardened fasteners may experience premature failure if exposed to moisture as a result of hydrogen-assisted stress-corrosion cracking. These fasteners are recommended specifically for use in dry, interior locations.

SIMPSON Strong-Tie

Guidelines for Selecting Corrosion-Resistant Anchors and Fasteners

Evaluate the Application

Consider the importance of the connection.

Evaluate the Exposure

Consider these moisture and treatment chemical exposure conditions:

- Dry Service: Generally INTERIOR applications and includes wall and ceiling cavities, raised floor applications in enclosed buildings that have been designed to prevent condensation and exposure to other sources of moisture. Prolonged exposure during construction should also be considered, as this may constitute a Wet Service or Elevated Service Condition.
- Wet Service: Generally EXTERIOR construction in conditions other than Elevated Service. These include Exterior Protected and Exposed and General Use Ground Contact as described by the AWPA UC4A.
- Elevated Service: Includes fumes, fertilizers, soil, some preservative-treated wood (AWPA UC4B and UC4C), industrial zones, acid rain and other corrosive elements.
- Uncertain: Unknown exposure, materials or treatment chemicals.
- Ocean/Water Front: Marine environments that include airborne chlorides and some splash. Environments with de-icing salts are included.
- Treatment Chemicals: See AWPA Use Category Designations. The preservative-treated wood supplier should provide all of the pertinent information about the wood being used. The information should include Use Category Designation, wood species group, wood treatment chemical and chemical retention. See appropriate evaluation reports for corrosion effects of treatment chemicals and fastener corrosion resistance recommendations.

Use the Simpson Strong-Tie Corrosion Classification Table

If the treatment chemical information is incomplete, Simpson Strong-Tie recommends the use of a Type 300 Series stainless-steel product. Also if the treatment chemical is not shown in the Corrosion Classification Table, then Simpson Strong-Tie has not evaluated it and cannot make any recommendations other than the use of coatings and materials in the Severe category. Manufacturers may independently provide test results of other product information; Simpson Strong-Tie expresses no opinion regarding such information.

Corrosion Resistance Classifications

	Material to Be Fastened						
Environment	Untreated	Preservative-Treated Wood				Fire-	
Environment	Wood or Other Material	SBX-DOT Zinc Borate	Chemical Retention ≤ AWPA, UC4A	Chemical Retention > AWPA, UC4A	ACZA	Other or Uncertain	Retardant- Treated Wood
Dry Service	Low	Low	Low	High	Medium	High	Medium
Wet Service	Medium	N/A	Medium	High	High	High	High
Elevated Service	High	N/A	Severe	Severe	High	Severe	N/A
Uncertain	High	High	High	Severe	High	Severe	Severe
Ocean/Waterfront	Severe	N/A	Severe	Severe	Severe	Severe	N/A

1. These are general guidelines that may not consider all application criteria. Refer to product-specific information for additional guidance.

 Type 316/305/304 stainless-steel products are recommended where preservative-treated wood used in ground contact has chemical retention level greater than those for AWPA UC4A; CA-C, 0.15 pcf; CA-B, 0.21 pcf; micronized CA-C, 0.14 pcf; micronized CA-B, 0.15 pcf; ACQ-Type D (or C), 0.40 pcf.

3. Testing by Simpson Strong-Tie following ICC-ES AC257 showed that mechanical galvanization (ASTM B695, Class 55), Quik Guard coating, and Double Barrier coating will provide corrosion resistance equivalent to hot-dip galvanization (ASTM A153, Class D) in contact with chemically-treated wood in dry service and wet service exposures (AWPA UC1 – UC4A, ICC-ES AC257 Exposure Conditions 1 and 3) and will perform adequately subject to regular maintenance and periodic inspection.

4. Mechanical galvanizations C3 and N2000 should not be used in conditions that would be more corrosive than AWPA UC3A (exterior, aboveground, rapid water runoff).

5. If uncertain about Use Category, treatment chemical, or environment, use Types 316/305/304 stainless steel, silicon bronze or copper fasteners.

6. Some treated wood may have excess surface chemicals making it potentially more corrosive than lower retentions. If this condition is suspected, use Types 316/305/304 stainless steel, silicon bronze or copper fasteners.

7. Types 316/305/304 stainless steel, silicon bronze or copper fasteners are the best recommendation for ocean salt-air and other chloride-containing environments. Hot-dip galvanized fasteners with at least ASTM A153, Class C protection can also be an alternate for some applications in environments with ocean air and/or elevated wood moisture content.

Corrosion Resistance Classification	Material or Coating			
Low	ZN			
LOW	Zinc plated			
	Zinc plating with baked-on ceramic coating			
	Mechanically galvanized (ASTM B695 – Class 65)			
Medium	Mechanically galvanized (ASTM B695 – Class 55)			
	Hot-dip galvanized (ASTM A153 – Class C)			
	Type 410 stainless steel with protective top coat			
High	Type 303 or 304 stainless steel			
Severe	Type 316 stainless steel			

Minimum Corrosion Resistance

Recommendations

V. Mechanical Anchors

Pre-Load Relaxation

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Expansion anchors that have been set to the required installation torque in concrete will experience a reduction in pre-tension (due to torque) within several hours. This is known as pre-load relaxation. The high compression stresses placed on the concrete cause it to deform which results in a relaxation of the pre-tension force in the anchor. Tension in this context refers to the internal stresses induced in the anchor as a result of applied torque and does not refer to anchor capacity. Historical data shows it is normal for the initial tension values to decrease by as much as 40–60% within the first few hours after installation. Retorquing the anchor to the initial installation torque is not recommended or necessary.

Anchors Adjacent to Abandoned Holes

Testing was performed on various anchor types including drop-in anchors, wedge-type anchors, screw anchors, and adhesive anchors adjacent to holes that have been abaondoned. Nominal anchor diameters of ¾ in. and smaller were included as part of this test program. The distance between the installed anchor and the abandoned hole(s) was measured as the center of the anchor to the center of the abandoned hole, as shown as distance "L" in Figure 1. The minimum distance "L" examined in these tests was two times the drilled hole diameter, "d." Figure 1: Example of Installed Anchor Adjacent to Abandoned Hole Based on the results of this test program, Simpson Strong-Tie suggests the following guidelines for tension performance of anchors near abandoned holes:

- 1. Anchors should not be installed closer than two times the drilled hole diameter (2d) away from an abandoned hole.
- 2. Anchors that are more than two inches away from abandoned holes do not require a reduction in capacity.
- 3. Expansion anchors, such as drop-in and wedge-type anchors, that are more than two times the drilled hole diameter (2d), but less than two inches from abandoned holes, should have a factor of 0.80 applied to their calculated tension capacity.
- 4. Concrete screws and adhesive anchors that are more than two times the drilled hole diameter (2d), but less than two inches from abandoned holes, should have a factor of 0.90 applied to their calculated tension capacity.
- 5. Where abandoned holes have been filled with a non-expansive grout or anchoring adhesive and allowed to completely cure, no reduction is necessary for anchors installed more than two times the drilled hole diameter (2d) away from the filled holes.

Summary of Capacity Reductions Due to Abandoned Holes

Anchor Type	Abandoned Hole Distance	Capacity Adjustment Factor
All types tested	L > 2"	1.0
Expansion anchors	2d < L ≤ 2"	0.8
Concrete screws and adhesive anchors	2d < L ≤ 2"	0.9
All types tested, with abadoned holes refilled as noted on item 5 above	$L \ge 2d$	1.0

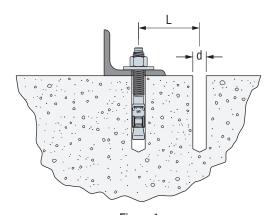


Figure 1 Example of Installed Anchor Adjacent to Abandoned Hole

VI. Adhesive Anchors

Installation into Green Concrete

The strength design data for adhesive anchors in this catalog are based on installations into concrete that is at least 21 days old. For anchors installed into concrete that has cured for less than 21 days, refer to the following modification factors that should be applied to the published adhesive bond strength.

Products	Concrete Age When Installed	Concrete Age When Loaded	Bond Strength Factor
SET-3G ET-3G AT-3G	14 days	21 days	1.0
	14 days	14 days	0.9
	Zidaya	21 days	1.0
	7 days	7 days	0.7

Oversized Holes

The performance data for adhesive anchors are based upon anchor tests in which holes were drilled with carbide-tipped drill bits of the same diameter listed in the product's load table. Additional static tension tests were conducted to qualify anchors installed with SET-3G[™], ET-3G[™] and AT-3G[™] adhesives for installation in holes with diameters larger than those listed in the load tables. The tables below indicate the acceptable range of drilled hole sizes and the corresponding tension-load reduction factor (if any). The same conclusions also apply to the published shear load values. Drilled holes outside of the accepted range shown in the charts are not recommended.

SET-3G Adhesive — Acceptable Hole Diameter

Insert Diameter (in.)	Acceptable Hole Diameter Range (in.)	Acceptable Load Reduction Factor
1⁄2	9⁄16—3⁄4	1.0
5⁄8	11/16-7/8	1.0
3⁄4	7⁄8–1	1.0
7⁄8	1-11/8	1.0
1	1 1⁄8—1 1⁄4	1.0
1 1⁄4	1 %	1.0

ET-3G Adhesive — Acceptable Hole Diameter

Insert Diameter (in.)	Acceptable Hole Diameter Range (in.)	Acceptable Load Reduction Factor
1/2	5/8-3/4	1.0
5/8	3/4-15/16	1.0
3/4	7/8-11/8	1.0
7/8	1–15⁄16	1.0
1	1 1/8-1 1/2	1.0
11⁄4	13⁄8—17⁄8	1.0

AT-3G Adhesive — Acceptable Hole Diameter

Insert Diameter (in.)	Acceptable Hole Diameter Range (in.)	Acceptable Load Reduction Factor
3⁄8	7/16-1/2	1.0
1/2	9⁄16—5⁄8	1.0
5%8	11/ ₁₆ —3/ ₄	1.0

Core-Drilled Holes

The performance data for adhesive anchors are based upon anchor tests in which holes were drilled with carbide-tipped drill bits. Additional static tension tests were conducted to qualify anchors installed with SET-3GTM, ET-3GTM and AT-3GTM anchoring adhesives for installation in holes drilled with diamond-core bits. In these tests, the diameter of the diamond-core bit matched the diameter of the carbide-tipped drill bit recommended in the product's load table. SET-3G, ET-3G and AT-3G anchoring adhesives require a reduction factor of 0.7 be applied to the characteristic uncracked concrete bond strength (τ_k). The same conclusions also apply to the published allowable shear loads. Tests conducted in core-drilled holes are for non-IBC jurisdictions.

Installation in Damp, Wet and Submerged Environments

SET-3G, ET-3G and AT-3G

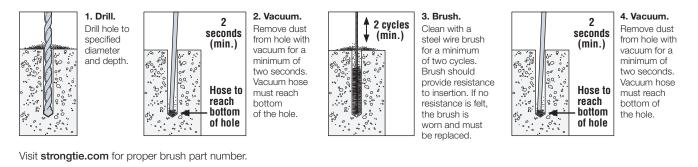
The performance data for adhesive anchors using SET-3G, ET-3G and AT-3G adhesives are based upon tests according to ICC-ES AC308. This criteria requires adhesive anchors that are to be installed in outdoor environments to be tested in water-saturated concrete holes that have been cleaned with less than the amount of hole cleaning recommended by the manufacturer. A product's sensitivity to this installation condition is considered in determining the product's "Anchor Category" (strength reduction factor).

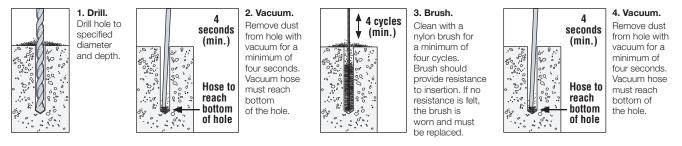
ET-3G may be installed in dry or water-saturated concrete.

AT-3G may be installed in dry, water-saturated or water-filled holes in concrete.

SET-3G may be installed in dry, water-saturated and submerged concrete, or water-filled holes in concrete.

Reliability Testing per ICC-ES AC308 is defined as:


- Dry Concrete Cured concrete whose moisture content is in equilibrium with surrounding non-precipitate atmospheric conditions.
- Water-Saturated Concrete Concrete that has been exposed to water over a sufficient length of time to have the maximum possible amount of absorbed water into concrete pores to a depth equal to the anchor embedment.
- Submerged Concrete Water-saturated concrete that is fully submerged at the time of hole drilling and anchor installation.
- Water-Filled Hole Drilled hole in water-saturated concrete that is clean yet contains standing water at the time of installation.


Use of Vacuum in Lieu of Compressed Air

Based on tension tests conducted by Simpson Strong-Tie at our ISO 17025-accredited laboratory, it has been determined that holes for SET-3G[™], ET-3G[™] and AT-3G[™] anchors may alternatively be cleared of concrete dust using a vacuum in place of compressed air. Note that the hose of the vacuum must be capable of reaching the bottom of the hole during vacuuming, similar to the compressed air nozzle. Additionally, the specified time duration for vacuuming must be the same as the time duration specified for compressed air. Lastly, the drilled holes must be brushed as is noted in the applicable evaluation reports. Please see the installation illustrations below for further details.

Hole Preparation - Horizontal, Vertical and Overhead Applications (SET-3G and AT-3G)

Hole Preparation — Horizontal, Vertical and Overhead Applications (ET-3G)

Visit strongtie.com for proper brush part number.

AT-3G[™] High-Strength Hybrid Acrylic Adhesive Installed at 0°F (-18°C)

The evaluation report for AT-3G adhesive (ICC-ES ESR-5026) specifies the concrete temperatures that are permitted during anchor installation, along with the corresponding gel times.

Based on the testing conducted by an independent testing and evaluation agency, the bond strength (τ_{κ}) published in the evaluation report shall be multiplied by a factor of 0.70 for installation temperatures that range between 0°F and 23°F (–18°C and –5°C).

The table below highlights the gel time and cure time associated with concrete temperatures between 0° F and 23° F (-18°C and -5°C). Installation instructions noted on the AT-3G cartridge label shall be followed.

AT-3G Cure Schedule

Concrete Temperature Range		Gel Time	Cure Time	
°F	°C	(minutes)	(hr.)	
0 to 23	−18 to −5	75	24	

It is noted that the temperature of the AT-3G cartridge shall be at least 65°F (18°C) when used for anchor installations into concrete that is between 0°F and 23°F (-18° C and -5° C).

Epoxy-Coated Reinforcing Bar Installed with SET-3G[™], ET-3G[™] and AT-3G Anchoring Adhesives into Cracked and Uncracked Concrete. (For Anchorage Design in Accordance with ACI 318-19 Chapter 17 / ACI 318-14 Chapter 17 / ACI 318-11 Appendix D)

The evaluation reports for SET-3G (ICC-ES ESR-4057), ET-3G (ICC-ES ESR-FPO) and AT-3G (ICC-ES ESR-5026) present the characteristic bond strength of the adhesives for uncoated reinforcing bar (rebar) installations in concrete. These values are based on testing in accordance with ACI 355.4 and the values are to be used in conjunction with ACI 318 Anchoring to Concrete provisions.

Based on testing conducted by Simpson Strong-Tie at our IAS accredited laboratory (accreditation number TL-284), it has been determined that SET-3G, ET-3G and AT-3G adhesives may be used with epoxy-coated rebar when a factor of 0.85 is applied to the published characteristic bond strength (τ_k) published in the evaluation report for uncoated rebar.

SIMPSON Strong-Tie

Chemical Resistance of Adhesive Anchors

- Samples of Simpson Strong-Tie anchoring adhesives were immersed in the chemicals shown here until they exhibited minimal weight change (indicating saturation) or for a maximum of three months.
- The samples were then tested according to ASTM D543 Standard Practices for Evaluating the Resistance of Plastics to Chemical Changes, Procedures I & II, and either ASTM D790 Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials or ASTM D695 Standard Test Method for Compressive Properties of Rigid Plastics.
- In cases where mild chemicals were evaluated, the exposure was accelerated per ASTM D3045 Standard Practice for Heat Aging of Plastics Without Load.
- Samples showing no visible damage and demonstrating statistically equivalent strength and elastic modulus as compared to control samples were classified as "Resistant" (R).
 - These adhesives are considered suitable for continuous exposure to the identified chemical when used as a part of an adhesive anchor assembly.
- Samples exhibiting slight damage, such as swelling or crazing, or not demonstrating both statistically equivalent strength and elastic modulus as compared to control samples were classified a "Non-Resistant" (NR).
 - These adhesives are considered suitable for periodic exposure to the identified chemical if the chemical will be diluted and washed away from the adhesive anchor assembly after exposure, or if only emergency contact with the chemical is expected and subsequent replacement of the anchor would be undertaken.
 - Some manufacturers refer to this as "limited resistance" or "partial resistance" in their literature.
- Samples that were completely destroyed by the chemical, or that demonstrated a significant loss in strength after exposure were classified as "Failed" (F).
 - These adhesives are considered unsuitable for exposure to the identified chemical.

Note: In most actual service conditions, the majority of the anchoring adhesive is not exposed to the chemical and thus some period of time is required for the chemical to saturate the entire adhesive. An adhesive anchor would be expected to maintain bond strength and creep resistance until a significant portion of the adhesive is saturated.

Chemical	Concentration	SET-3G [™]	ET-3G™
	Glacial	F	F
Acetic Acid	5%	F	F
Acetone	100%	F	F
Aluminum Ammonium Sulfate (Ammonium Alum)	10%	R	R
Aluminum Chloride	10%	R	R
Aluminum Potassium Sulfate (Potassium Alum)	10%	R	R
Aluminum Sulfate (Alum)	15%	NR	R
	28%	R	R
Ammonium Hydroxide	10%	R	R
(Ammonia)	pH = 10	R	R
Ammonium Nitrate	15%	R	R
Ammonium Sulfate	15%	R	R
Automotive Antifreeze	50%	R	R
Aviation Fuel (JP5)	100%	R	R
	100%	B	NR
Brake Fluid (DOT3) Calcium Hydroxide	100%	R	R
Calcium Hypochlorite (Chlorinated Lime)	15%	R	R
Calcium Oxide (Lime)	5%	R	R
Carbolic Acid	10%	F	F
	5%	NR	F
Carbon Tetrachloride	100%	R	R
Chromic Acid	40%	R	NR
Citric Acid	10%	R	R
Copper Sulfate	10%	R	R
Detergent (ASTM D543)	100%	R	R
Diesel Oil	100%	R	R
Ethanol, Aqueous	95%	NR	F
Lunanoi, Aqueous	50%	R	NR
Ethanol, Denatured	100%	F	F
Ethylene Glycol	100%	R	R
Fluorosilicic Acid	25%	R	R
Example Activ	Concentrated	F	F
Formic Acid	10%	F	F
Gasoline	100%	R	R
	Concentrated	F	F
Hydrochloric Acid	10%	NR	NR
	pH = 3	R	R
	30%	NR	F
Hydrogen Peroxide	3%	R	R
Iron (II) Chloride (Ferrous Chloride)	15%	R	R
Iron (III) Chloride (Ferric Chloride)	15%	R	R
Iron (III) Sulfate (Ferric Sulfate)	10%	NR	R
Isopropanol	100%	R	F
ιουρισματισι	85%	F	F
Lactic Acid			F
Maakina Oil	10%	NR	
Machine Oil	100%	R	R
Methanol	100%	F	F
Methyl Ethyl Ketone	100%	F	F

Chemical	Concentration	SET-3G™	ET-3G™
Methyl Isobutyl Ketone	100%	NR	NR
Mineral Oil	100%	R	R
Mineral Spirits	100%	R	R
Mixture of Amines ¹	100%	F	F
Mixture of Aromatics ²	100%	R	NR
Motor Oil (5W30)	100%	R	R
N,N-Diethyaniline	100%	R	R
	Concentrated	F	F
	40%	F	F
Nitric Acid	10%	NR	R
	pH = 3	R	R
	85%	F	F
	40%	F	F
Phosphoric Acid	10%	F	F
	pH = 3	R	R
	40%	R	R
Potassium Hydroxide	10%	R	R
	pH = 13.2	R	R
Potassium Permanganate	10%	R	R
Propylene Glycol	100%	R	R
Seawater (ASTM D1141)	100%	R	R
Soap (ASTM D543)	100%	R	R
Sodium Bicarbonate	10%	R	R
Sodium Bisulfite	15%	R	R
Sodium Carbonate	15%	R	R
Sodium Chloride	15%	R	R
Sodium Fluoride	10%	R	R
Sodium Hexafluorosilicate			
(Sodium Silicon Fluoride)	5%	R	R
Sodium Hydrosulfide	10%	R	R
	60%	R	R
Sodium Hydroxide	40%	R	R
Sourian Hydroxide	10%	R	R
	pH = 10	R	R
Sodium Hypochlorite (Bleach)	25%	R	R
	10%	R	R
Sodium Nitrate	15%	R	R
Sodium Phosphate (Trisodium Phosphate)	10%	R	R
Sodium Silicate	50%	R	R
	Concentrated	F	F
Sulfuric Acid	30%	F	NR
	3%	NR	NR
	pH = 3	R	R
Toluene	100%	R	F
Triethanol Amine	100%	R	NR
Turpentine	100%	R	R
Water	100%	R	R
Xylene	100%	R	NR

"R" - Resistant, "NR" - Non-Resistant, "F" - Failed, "-" - Not tested

1. Triethanol amine, n-butylamine, N,N-dimethylamine

2. Toluene, methyl naphthalene, xylene

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON Strong-Tie

Glossary

ACI - American Concrete Institute

 $\ensuremath{\mathsf{ACRYLIC}}$ — Polymer based on resins prepared from a combination of acrylic and methacrylic esters.

ADHESIVE ANCHOR — Typically, a threaded rod or rebar that is installed in a predrilled hole in a base material with a two-part chemical compound.

ADMIXTURE — A material other than water, aggregate or hydraulic cement used as an ingredient of concrete and added to concrete before or during its mixing to modify its properties.

AERATED CONCRETE — Concrete that has been mixed with air-entraining additives to protect against freeze-thaw damage and provide additional workability.

AGGREGATE — A granular material, such as sand, gravel, crushed stone and iron blast-furnace slag, used with a cementing medium to form a hydraulic cement concrete or mortar.

AISC - American Institute of Steel Construction

ALLOWABLE LOAD — The maximum design load that can be applied to an anchor. Allowable loads for mechanical and adhesive anchors are based on applying a factor of safety to the average ultimate load.

ALLOWABLE STRESS DESIGN (ASD) — A design method in which an anchor is selected such that service loads do not exceed the anchor's allowable load. The allowable load is the average ultimate load divided by a factor of safety.

AMINE CURING AGENT — Reactive ingredient used as a setting agent for epoxy resins to form highly crosslinked polymers.

ANCHOR CATEGORY — The classification for an anchor that is established by the performance of the anchor in reliability tests such as sensitivity to reduced installation effort for mechanical anchors or sensitivity to hole cleaning for adhesive anchors.

ANSI - American National Standards Institute

ASTM - American Society for Testing and Materials

 $\mbox{BASE MATERIAL}$ — The substrate (concrete, CMU, etc.) into which adhesive or mechanical anchors are to be installed.

 ${\rm BOND}\ {\rm STRENGTH}\ -$ The mechanical interlock or chemical bonding capacity of an adhesive to both the insert and the base material.

BRICK — A solid masonry unit of clay or shale formed into a rectangular prism while plastic and burned or fired in a kiln that may have cores or cells comprising less than 25% of the cross sectional area.

CAMA — Concrete and Masonry Anchor Manufacturer's Association

CAST-IN-PLACE ANCHOR — A headed bolt, stud or hooked bolt installed into formwork prior to placing concrete.

CHARACTERISTIC DESIGN VALUE — The nominal strength for which there is 90% confidence that there is a 95% probability of the actual strength exceeding the nominal strength.

CONCRETE — A mixture of Portland cement or any other hydraulic cement, fine aggregate, coarse aggregate and water, with or without admixtures. Approximate weight is 150 pcf.

CONCRETE BLOCK — A solid concrete masonry unit (CMU) made from Portland cement, water, and aggregates.

 $\begin{array}{l} \textbf{CONCRETE COMPRESSIVE STRENGTH (f'_c)} & - \text{ The specified} \\ \textbf{compressive load carrying capacity of concrete used in design,} \\ \textbf{expressed in pounds per square inch (psi) or megapascals (MPa).} \end{array}$

CONCRETE MASONRY UNIT (CMU) — A hollow or solid masonry unit made from cementitious materials, water and aggregates.

CORE DRILL — A method of drilling a smooth wall hole in a base material using a special drill attachment.

CREEP — Displacement under a sustained load over time.

CURE TIME — The elapsed time required for an adhesive anchor to develop its ultimate carrying capacity.

DESIGN LOAD — The calculated maximum load that is to be applied to the anchor for the life of the structure.

DESIGN STRENGTH — The nominal strength of an anchor calculated per ACI 318, ICC-ES AC193 or ICC-ES AC308 and then multiplied by a strength reduction factor (ϕ).

DROP-IN ANCHOR — A post-installed mechanical anchor consisting of an internally-threaded steel shell and a tapered expander plug. The bottom end of the steel shell is slotted longitudinally into equal segments. The anchor is installed in a pre-drilled hole using a hammer and a hand-setting tool. The anchor is set when the tapered expander plug is driven toward the bottom end of the anchor such that the shoulder of the hand-setting tool makes contact with the top end of the anchor. A drop-in anchor may also be referred to as a displacement controlled expansion anchor.

 $\mbox{DUCTILITY}$ — A material under tensile stress with an elongation of at least 14% and an area reduction of at least 30% prior to rupture.

DUCTILE ANCHOR SYSTEM — The behavior of an anchor system where a ductile steel insert governs the design over concrete breakout, pullout and adhesive bond.

DYNAMIC LOAD — A load whose magnitude varies with time.

EDGE DISTANCE:

EDGE DISTANCE (C) — The measure between the anchor centerline and the free edge of the concrete or masonry member.

CRITICAL EDGE DISTANCE (C_{cr} or C_{ac}) — The least edge distance at which the allowable load capacity of an anchor is applicable without reductions.

 $\mbox{MINIMUM EDGE DISTANCE}\ (\mbox{C}_{min})$ — The least edge distance at which the anchors are tested for recognition.

EFFECTIVE EMBEDMENT DEPTH — The dimension measured from the concrete surface to the deepest point at which the anchor tension load is transferred to the concrete.

EMBEDMENT DEPTH — The distance from the top surface of the base material to the installed end of the anchor. In the case of a post-installed mechanical anchor, the embedment depth is measured prior to application of the installation torque.

EPOXY RESIN — A viscous liquid containing epoxide groups that can be crosslinked into final form by means of a chemical reaction with a variety of setting agents.

Glossary of Terms

Glossary

EXPANSION ANCHOR — A mechanical fastener placed in hardened concrete or assembled masonry, designed to expand in a self-drilled or predrilled hole of a specified size and engage the sides of the hole in one or more locations to develop shear and/or tension resistance to applied loads without grout, adhesive or drypack.

FATIGUE LOAD TEST — A test in which the anchor is subjected to a specified load magnitude for 2 x 10^6 cycles in order to establish the endurance limit of the anchor.

GEL TIME — The elapsed time at which an adhesive begins to increase in viscosity and becomes resistant to flow.

GROUT — A mixture of cementitious material and aggregate to which sufficient water is added to produce pouring consistency without segregation of the constituents.

GROUTED MASONRY (or GROUT-FILLED MASONRY) -

Hollow-unit masonry in which the cells are filled solidly with grout. Also, double or triple-wythe wall construction in which the cavity(s) or collar joint(s) is filled solidly with grout.

HOT-DIP GALVANIZED — A part coated with a relatively thick layer of zinc by means of dipping the part in molten zinc.

IAPMO UES — IAPMO Uniform Evaluation Service. An ISO 17065 ANSI-accredited company that issues evaluation reports expressing a professional opinion as to a product's building code compliance.

IBC — International Building Code.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

ICC-ES — ICC Evaluation Service. An ISO 17065 ANSI-accredited company that issues evaluation reports expressing a professional opinion as to a product's building code compliance.

LEGACY ACCEPTANCE CRITERIA — A past version of an ICC-ES anchor qualification criteria. These are no longer current standards, but are the basis for legacy allowable load data for anchors in concrete. These standards have been replaced by modern standards such as ICC-ES AC193 and AC308.

LIGHTWEIGHT CONCRETE — Concrete containing lightweight aggregate. The unit weight of lightweight concrete is not to exceed 115 pcf.

MASONRY — Brick, structural clay tile, stone, concrete masonry units or a combination thereof bonded together with mortar.

MECHANICALLY GALVANIZED — A part coated with a layer of zinc by means of mechanical impact. The thickest levels of mechanical galvanizing (ASTM B695, Class 55 or greater) are considered to be alternatives to hot-dip galvanizing and provide a medium level of corrosion resistance.

MORTAR — A mixture of cementitious materials, fine aggregate and water used to bond masonry units together.

NOMINAL STRENGTH — The strength of an element as calculated per ACI 318, ICC-ES AC193 or ICC-ES AC308.

NORMAL WEIGHT CONCRETE — Concrete containing normal weight aggregate. The unit weight of normal weight concrete is approximately 150 pcf.

 $\ensuremath{\textbf{OBLIQUE LOAD}}$ — A load that is applied to an anchor, which can be resolved into tension and shear components.

PLAIN CONCRETE — Structural concrete with no reinforcement or with less reinforcement than the minimum specified for reinforced concrete.

PORTLAND CEMENT — Hydraulic cement consisting of finely pulverized compounds of silica, lime and alumina.

POST-INSTALLED ANCHOR — Either a mechanical or adhesive anchor installed in a pre-drilled hole in the base material.

 $\ensuremath{\text{POSTTENSIONING}}$ — A method of prestressing in which tendons are tensioned after concrete has hardened.

 $\ensuremath{\mathsf{POT}}$ LIFE — The length of time a mixed adhesive remains workable (flowable) before hardening.

PRECAST CONCRETE — A concrete structural element cast elsewhere than its final position in the structure.

PRESTRESSED CONCRETE — Structural concrete in which internal stresses have been introduced to reduce potential tensile stresses in concrete resulting from loads.

PRETENSIONING — A method of prestressing in which tendons are tensioned before concrete is placed.

REBAR — Deformed reinforcing steel which comply with ASTM A615.

REINFORCED CONCRETE — Structural concrete reinforced with no less than the minimum amount of prestressed tendons or nonprestressed reinforcement specified in ACI 318.

REINFORCED MASONRY — Masonry units and reinforcing steel bonded with mortar and/or grout in such a manner that the components act together in resisting forces.

REQUIRED STRENGTH — The factored loads and factored load combinations that must be resisted by an anchor.

SCREEN TUBE — Typically a wire or plastic mesh tube used with adhesives for anchoring into hollow base materials to prevent the adhesive from flowing uncontrolled into voids.

SCREW ANCHOR — A post-installed anchor that is a threaded mechanical fastener placed in a predrilled hole. The anchor derives its tensile holding strength from the mechanical interlock of the fastener threads with the grooves cut into the concrete during the anchor installation.

 $\ensuremath{\mathsf{SHEAR LOAD}}-\ensuremath{\mathsf{A}}\xspace$ load applied perpendicular to the axis of an anchor.

 $\label{eq:shortcrete} \begin{array}{l} \textbf{SHOTCRETE} - \textbf{Concrete that is pneumatically projected onto} \\ \textbf{a surface at high velocity. Also known as gunite.} \end{array}$

SLEEVE ANCHOR — A post-installed mechanical anchor consisting of a steel stud with nut and washer, threaded on the top end and a formed uniform tapered mandrel on the opposite end around which a full length expansion sleeve formed from sheet steel is positioned. The anchor is installed in a predrilled hole and set by tightening the nut by torquing thereby causing the expansion sleeve to expand over the tapered mandrel to engage the base material.

Glossary

SIMPSON Strong-Tie

SPACING:

 $\ensuremath{\mathsf{SPACING}}(\ensuremath{\mathsf{S}})$ — The measure between anchors, centerline-to-centerline distance.

CRITICAL SPACING (S_{cr}) — The least anchor spacing distance at which the allowable load capacity of an anchor is applicable such that the anchor is not influenced by neighboring anchors.

 $\mbox{MINIMUM SPACING ($S_{min}$)}$ — The least anchor spacing at which the anchors are tested for recognition.

STAINLESS STEEL — A family of iron alloys containing a minimum of 12% chromium. Type 316 stainless steel provides greater corrosion resistance than Type 303 or 304.

STANDARD DEVIATION — As it pertains to this catalog, a statistical measure of how widely dispersed the individual test results were from the published average ultimate loads.

 $\ensuremath{\mathsf{STATIC}}\xspace$ LOAD — A load whose magnitude does not vary appreciably over time.

STRENGTH DESIGN (SD) — A design method in which an anchor is selected such that the anchor's design strength is equal to or greater than the anchor's required strength.

STRENGTH REDUCTION FACTOR (ϕ **)** — A factor applied to the nominal strength to allow for variations in material strengths and dimensions, inaccuracies in design equations, required ductility and reliability, and the importance of the anchor in the structure.

TENDON — In pretensioned applications, the tendon is the prestressing steel. In posttensioned applications, the tendon is a complete assembly consisting of anchorages, prestressing steel, and sheathing with coating for unbonded applications or ducts with grout for bonded applications.

TENSION LOAD — A load applied parallel to the axis of an anchor.

THIXOTROPIC — The ability of a fluid to become less viscous (resistant to flow) under shear, then thicken when the shear force is removed.

TORQUE — The measure of the force applied to produce rotational motion usually measured in foot-pounds. Torque is determined by multiplying the applied force by the distance from the pivot point to the point where the force is applied.

ULTIMATE LOAD — The average value of the maximum loads that were achieved when five or more samples of a given product were installed and statically load tested to failure under similar conditions. The ultimate load is used to derive the allowable load by applying a factor of safety.

UNDERCUT ANCHOR — A post-installed anchor that develops its tensile strength from the mechanical interlock provided by undercutting of the concrete at the embedded end of the anchor.

UNREINFORCED MASONRY (URM) — A form of clay brick masonry bearing wall construction consisting of multiple wythes periodically interconnected with header courses. In addition, this type of wall construction contains less than the minimum amounts of reinforcement as defined for reinforced masonry walls.

WEDGE ANCHOR — A post-installed mechanical anchor consisting of a steel stud with nut and washer, threaded on the top end and a formed uniform tapered mandrel on the opposite end around which an expansion clip formed from sheet steel is positioned. The anchor is installed in a predrilled hole and set by tightening the nut by torquing, thereby causing the expansion clip to expand over the tapered mandrel to engage the base material. A wedge anchor may also be referred to as a torque controlled expansion anchor.

WYTHE — A continuous vertical section of masonry one unit in thickness.

ZINC PLATED — A part coated with a relatively thin layer of zinc by means of electroplating.

Alphabetical Index of Products

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

AMNI prov Moing Nozin209ARCAdhesive Relatining Caps54AT-3G"High-Strength Hybrid Acrylic Adhesive42-47ATRAll Thread Red59COCiring Drive*Anchor161-164CI-6VBel-Viscosity Injection Epory200-201CI-LPLLow Vaccesity Injection Epory108-139CI-LVLow Vaccesity Injection Epory108-139CI-LVLow Vaccesity Injection Epory109-6197CI-LVSigner-Low Vaccesity Injection Epory109-6197CI-LVSigner-Low Vaccesity Injection Epory109-6197CI-LVSigner-Low Vaccesity Injection Epory109-6197CI-LVSigner-Low Vaccesity Injection Epory109-201CI-LVSigner-Low Epory109-201CI-LVSigner-Low Epory202-203C	3GWSP	Opti-Mesh Adhesive Screen Tube	55–56
AF-3G*High-Strength Hybrid Acrylic Adhesive4.247ATRAll Thread Red9.9CDChirp Drive* Anchor101-11-64CI-GVGen-Viscosity Injection Epoxy108-199CI-LVLow-Viscosity Injection Epoxy108-199CI-LVLow-Viscosity Injection Epoxy108-199CI-LV FSLow-Viscosity Injection Epoxy108-197CI-LV FSPaster-Over and Structural Repair Epoxy200-201CI-LV FSPaster-Over Adhesive and Crack Sealart203-801CI-LV FSPresidie Paster-Over Adhesive and Crack Sealart204-205CSDCountersamk Split Drive Anchor108-186CSD VWRAPPresidie Paster-Over Adhesive and Crack Sealart204-205CSD VCountersamk Split Drive Anchor108-186CSD VWRAPProposite Strengthening Systems108-187DIABDrop-In Internally Threaded Anchor104-142DIASDisplac-Head Split Drive Anchor203CBTInjection Fitting30-301CBTDisplac-Head Split Drive Anchor203CBTDisplac-Head Split Drive Anchori203CBTDisplac-Hea	AMN	Epoxy Mixing Nozzle	209
ARAll Thread Rod59CDGrimp Drive® Anchor161-164CI-EQGel-Viscosily lipiction Epony200-201CI-LQLow-Viscosily lipiction Epony198-199CI-LQLow-Viscosily lipiction Epony198-199CI-LV FSLow-Viscosily lipiction Epony198-197CI-LV FSLow-Viscosily lipiction Epony198-197CI-LV FSSuper-Low-Viscosily lipiction Epony208-207CI-LV FSSuper-Low-Viscosily lipiction Epony208-207CI-SUSuper-Low-Viscosily lipiction Epony208-207CI-SUCountersamk Spill Drive Anchor208-205CSDCountersamk Spill Drive Anchor185-166CSS V-WIRAPProp-In Internally Threaded Anchor144-148DIASDrop-In Statiless-Steel Internally Threaded Anchor209DIASDrop-In Statiless-Steel Internally Threaded Anchor209CI-LFIpony-In Statiless-Steel Internally Threaded Anchor209EIFIpony-In Statiless-Steel Internally Threaded Anchor209EIFIpony-In Statiless-Steel Internally Threaded Anchor209EIFIpony-In Statiless-Steel Internally Threaded An	ARC	Adhesive Retaining Caps	54
CDCdimp Drive* Anchor161-164CI-GVGet Viscosity Injection Epoxy200-201CI-LPLLow-Viscosity Injection Epoxy198-199CI-LYLow-Viscosity Injection Epoxy194-195CI-LY FSLow-Viscosity Injection Epoxy206-207CI-LY FSSuper-Low-Viscosity Injection Epoxy206-207CI-SLYSuper-Low-Viscosity Injection Epoxy206-207CI-SLYCountersurk Split Drive Anchor206-205CISDCountersurk Split Drive Anchor165-166CISS U-VIRAP*IPOro-In Internally Threaded Anchor1014-148DIASDrop-In Stainless-Steel Internally Threaded Anchor209EIFInjection Fritting209EIFInjection Fritting209EIFInjection Port209EIFInjection Port209EIFInjection Ryton Brush — Standard52EIFInjection Ryton Eusen — Standard202-203EIFInjection Ryton Brush — Standard202-203EIF <t< td=""><td>AT-3G™</td><td>High-Strength Hybrid Acrylic Adhesive</td><td>42–47</td></t<>	AT-3G™	High-Strength Hybrid Acrylic Adhesive	42–47
CI-EVGet-Viscosity Injection Epoxy200-201CI-LPLLow-Viscosity Long-Pot-Life Injection Epoxy198-199CI-LVLow-Viscosity Injection Epoxy194-195CI-LV FSLow-Viscosity Fast-Setting Injection Epoxy206-207CI-SUSuper-Low-Viscosity Injection Epoxy206-207CI-SUSuper-Low-Viscosity Injection Epoxy206-207CI-SUSuper-Low-Viscosity Injection Epoxy206-207CI-SUSuper-Low-Viscosity Injection Epoxy206-207CI-SUSuper-Low-Viscosity Injection Epoxy206-207CI-SUCack-Pac® Flex-H20" Polyurethane Cack Sealert208CIPFHCack-Pac® Flex-H20" Polyurethane Cack Sealert206-207CISUCountersunk Split Drive Anchor198-197DIABDrog-In Internally Threaded Anchor198-197DIASDrog-In Internally Threaded Anchor194-152DIASDrog-In Stantilses-Steel Internally Threaded Anchor209EIFInjection Fitting209EIFInjection Fitting209EIFInjection Fitting209EIFInjection Fitting209EIFInjection Stantard52ETBIcon-Cleaning With Brush — Standard52ETBAVeloe-Cleaning With Brush — Standard52ETBASteel Anhesity — Standard52ETBASteel Anhesity — Standard53ETBASteel Anhesity — Standard53ETBASteel Anhesity — Standard53ETBASteel Anhesity — Standard<	ATR	All Thread Rod	59
CI-LPLLow-Viscosity Long-Pot-Life hijection Epoxy196–199CI-LYLow-Viscosity hijection Epoxy194–195CI-LY FSLow-Viscosity hijection Epoxy206–207CI-POPaste-Over and Structural Repair Epoxy206–207CI-SLVSuper-Low-Viscosity hijection Epoxy192–193CIP-FFlexble Paste-Over Adhesive and Crack Sealart208CPFHCrack-Pace® Flex-H20® Polyurethane Crack Sealart204–205CSDCountersunk Split Drive Anchor165–166CSS V-WRAP®FRP Composite Strengthening Systems166–187DASDrop-In Internally Threaded Anchor144–148DASDrop-In Short Internally Threaded Anchor149–152DASDrop-In Short Internally Threaded Anchor209EIFInjection Fitting209EIFInjection Fitting209EIFInjection Fitting209EIFHole-Cleaning Mjon Brush — Standard52ETBRHole-Cleaning Mjon Brush — Standard52ETBASteel Adhesive-Anchoring Screen Tube57EISSteel Adhesive-Anchoring Screen Tube57EVSPSteel Adhesive-Anchoring Screen Tube55–56EZQEasy-Set Pin-Drive Expansion Anchor123EYInjection System209ET-Sick*Injection System209ETSSteel Adhesive-Anchoring Screen Tube55–56EZQEasy-Set Pin-Drive Expansion Anchor123EYInjection System209EYInjection System2	CD	Crimp Drive [®] Anchor	161–164
CI-LVLow-Viscosity lipection Epoxy194-195CI-LV FSLow-Viscosity Fast-Setting lipection Epoxy196-197CI-POPaste-Over and Structural Repair Epoxy206-207CI-SLVSuper-Low-Viscosity lipection Epoxy192-193CIP-FFlextble Paste-Over Adhesive and Crack Sealart208CPFHCrack-Pac® Flex-H20" Polyurethane Crack Sealart208CSDCountersunk Split Drive Anchor1165-166CSS V-WRAP"FRP Composite Strengthening Systems1144-148DASDrop-In Internally Threaded Anchor1149-152DASDrop-In Short Internally Threaded Anchor1165-166SSDDuplex-Head Split Drive Anchor1165-166DASDrop-In Statnless-Steel Internally Threaded Anchor1065-166EIFInjection Fitting209EIFStatnless-Steel Internally Threaded Anchor209EIFInjection Fitting209EIFSpoxy Mixing Nozzle209EIFSpoxy Mixing Nozzle209EIFAHole-Cleaning Nylon Brush — Standard32ETBAHole-Cleaning Nylon Brush — Standard32ETBAHole-Cleaning Nylon Brush — Standard32EIFACourcete Repair and Paste-Over Epoxy208ETFASteel Adhesive-Anchoring Screen Tube57ETSASteel Adhesive-Anchoring Screen Tube57EISAOpti-Mesh Epoxy Adhesive Screen Tube57EISASteel Adhesive-Anchoring Screen Tube32EIFAOpti-Mesh Epoxy Adhesive Screen Tube <td>CI-GV</td> <td>Gel-Viscosity Injection Epoxy</td> <td>200–201</td>	CI-GV	Gel-Viscosity Injection Epoxy	200–201
CI-LV FSLow-Viscosity Fast-Setting Injection Epoxy196–197CI-POPaste-Over and Structural Repair Epoxy206-207CI-SLVSuper-Low-Viscosity Injection Epoxy182–183CIP-FFlexible Paste-Over Adhesive and Crack Sealant208CPFHCrack-Pac® Flex-H20" Polyurethane Crack Sealart204-205CSDCountersunk Spilt Drive Anchor186–187DIABDrop-In Internally Threaded Anchor144–148DIASDrop-In Internally Threaded Anchor144–148DIASDrop-In Short Internally Threaded Anchor165–166EIFInjection Fiting209EIFInjection Fiting209EIFInjection Fiting209EIFInjection Port209EIFSpoxy Marking Mozzle209EIFHole-Cleaning Nyon Brush — Standard32ETBRHole-Cleaning Nyon Brush — Standard32ETBRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube55–56EXAExay-Set Plin-Drive Expansion Anchor123ETSSteel Adhesive-Anchoring Screen Tube55–56EXAEasy-Set Plin-Drive Expansion Anchor123ET-SCIKInjection System209ET-SCIKInjection System209ETACEasy-Set Plin-Drive Expansion Anchor123ETACSteel Adhesive-Anchoring Screen Tube55–56EXAEasy-Set Plin-Drive Expansion Anchor123ETACInjection System209<	CI-LPL	Low-Viscosity Long-Pot-Life Injection Epoxy	198–199
CI-POPaste-Over and Structural Repair Epoxy206-207CI-SLVSuper-Low-Viscosity Injection Epoxy192-193CIP-FFlex/ble Paste-Over Adhesive and Crack Sealant208CPFHCrack-Pac® Flex/H20" Polyurethane Crack Sealart204-205CSDCountersumk Split Drive Anchor10165-166CSS V-WRAP"FRP Composite Strengthening Systems10161-167DIASDrop-In Internally Threaded Anchor1144-148DIASDrop-In Short Internally Threaded Anchor1149-152DIASDrop-In Stainless-Steel Internally Threaded Anchor10153-155DIASDuplex-Head Split Drive Anchor209EIFInjection Fitting209EIFInjection Fitting209EIFInjection Fitting209EIRHole-Cleaning Nyon Brush — Standard34-41ETBHole-Cleaning Nyon Brush — Standard32ETBRHole-Cleaning Nyon Brush — Standard202-203ETRACoracte Repair and Paste-Over Epoxy208ETSStel Adhesive-Anchoring Screen Tube55-66EXCEasy-Set Pin-Drive Expansion Anchor123ETACInjection System123ETACInjection System32ETACInjection System32ETACInjection System32ETACInjection System32ETACInjection System32ETACInjection System32ETACInjection System32ETACInjection System32 <t< td=""><td>CI-LV</td><td>Low-Viscosity Injection Epoxy</td><td>194–195</td></t<>	CI-LV	Low-Viscosity Injection Epoxy	194–195
CI-SLVSuper-Low-Viscasity Injection Epoxy192–193CIP-FFlexible Paste-Over Adhesive and Crack Sealant208CPFHCrack-Pac® Flex-H20" Polyurethane Crack Sealart204–205CSDCountersunk Spilt Drive Anchor165–166CSS V-WRAP"FRP Composite Strengthening Systems186–187DABDrop-In Internally Threaded Anchor144–148DASDrop-In Short Internally Threaded Anchor143–152DIASDrop-In Stainless-Steel Internally Threaded Anchor165–166EIFInjection Fitting209EIPInjection Port209EIPInjection Port209EIREpoxy Anchoring Adhesive34–41ETBHole-Cleaning Nyton Brush — Standard52ETBRHole-Cleaning Nyton Brush — Standard52ETRACrack-Pac® Injection Epoxy202-203ETRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube55–56EXCEasy-Set Pin-Drive Expansion Anchor123ET-Click*Injection System209	CI-LV FS	Low-Viscosity Fast-Setting Injection Epoxy	196–197
CIP-F Flexible Paste-Over Adhesive and Crack Sealant 208 CPFH Crack-Pac® Flex-H20" Polyurethane Crack Sealer 204-205 CSD Countersunk Split Drive Anchor 165-166 CSS V-WRAP" FRP Composite Strengthening Systems 186-187 DIAB Drop-In Internally Threaded Anchor 144-148 DIAS Drop-In Short Internally Threaded Anchor 1449-152 DIAS Drop-In Stainless-Steel Internally Threaded Anchor 165-166 EIF Injection Fitting 209 EIF Injection Fitting 209 EIF Injection Fitting 209 EIF Injection Port 209 EIF Hole-Cleaning Nylon Brush — Rebar 202 EIF Injection System Instendard 52	CI-PO	Paste-Over and Structural Repair Epoxy	206–207
OPFH Grack-Pac [®] Flex-H20 [®] Polyurethane Crack Sealer 204–205 CSD Grack-Pac [®] Flex-H20 [®] Polyurethane Crack Sealer 204–205 CSD Countersunk Split Drive Anchor 165–166 CSS V-WRAP [®] FRP Composite Strengthening Systems 186–187 DIAB Drop-In Internally Threaded Anchor 144–148 DIAS Drop-In Stahless-Steel Internally Threaded Anchor 165–165 DIAS Duplex-Head Split Drive Anchor 165–166 EIF Injection Port 209 EIP Injection Port 209 EIN Epoxy Mixing Nozzle 209 EIB Hole-Cleaning Nylon Brush — Standard 34–41 ETBR Hole-Cleaning Nylon Brush — Standard 320 ETBR Hole-Cleaning Nylon Brush — Standard 320 ETBR Hole-Cleaning Wree Brush — Standard 320 ETBR Concrete Repair and Past-Over Epoxy 320 ETRA Concrete Repair and Past-Over Epoxy 320 ETS Steel Adhesive-Anchoring Screen Tube 55–56 EWSP Injection System <td< td=""><td>CI-SLV</td><td>Super-Low-Viscosity Injection Epoxy</td><td>192–193</td></td<>	CI-SLV	Super-Low-Viscosity Injection Epoxy	192–193
CSDCountersunk Split Drive Anchor165–166CSS V-WRAPPFRP Composite Strengthening Systems186–187DIABDrop-In Internally Threaded Anchor144–148DIASDrop-In Stant Internally Threaded Anchor149–152DIASDrop-In Stainless-Steel Internally Threaded Anchor165–166DIASDuplex-Head Split Drive Anchor165–166EIFInjection Fitting209EIPInjection Port209EIPEpoxy Mixing Nozzle209ET-SG**Ptole-Cleaning Nylon Brush — Standard52ETBHole-Cleaning Nylon Brush — Standard52ETBHole-Cleaning Nylon Brush — Standard202-203ETRCorack-Pace* Injection Epoxy202ETSSteel Adhesive-Anchoring Screen Tube55-56EXPJoht-Mesh Epoxy Adhesive Screen Tube55-56EZACEasy-Set Pin-Drive Expansion Anchor123EZ-Click**Injection System209GAdhesive-Anchoring Screen Tube52-56EZACGas-Actuated Concrete Nailer123	CIP-F	Flexible Paste-Over Adhesive and Crack Sealant	208
CSS V-WRAP FRP Composite Strengthening Systems 186–187 DIAB Drop-In Internally Threaded Anchor 144-148 DIAS Drop-In Short Internally Threaded Anchor 149–152 DIAS Drop-In Stainless-Steel Internally Threaded Anchor 165–166 DIAS Drop-In Stainless-Steel Internally Threaded Anchor 165–166 DIAS Drop-In Stainless-Steel Internally Threaded Anchor 209 EIF Injection Fitting 209 EIP Injection Fort 209 EIN Epoxy Mixing Nozzle 34-41 ETB Hole-Cleaning Mylon Brush — Standard 52 ETBR Hole-Cleaning Mylon Brush — Rebar 34-203 ETIRAC Concrete Repair and Paste-Over Epoxy 208 ETS Steel Adhesive-Anchoring Screen Tube 57 EXP Opti-Mesh Epoxy Adhesive Screen Tube 55-56 EXA Easy-Set Pin-Drive Expansion Anchor 123 EZ-Click** Injection System 209	CPFH	Crack-Pac [®] Flex-H20 [™] Polyurethane Crack Sealer	204–205
DIABDrop-In Internally Threaded Anchor144–148DIASDrop-In Short Internally Threaded Anchor149–152DIASDrop-In Stainless-Steel Internally Threaded Anchor153–155DIASDuplex-Head Split Drive Anchor165–166BFInjection Fitting209EIFInjection Fort209EIPInjection Port209ETAG**Epoxy Mixing Nozzle34–41ETBHole-Cleaning Nylon Brush — Standard32ETBHole-Cleaning Nylon Brush — Standard32ETBRHole-Cleaning Wrom Brush — Standard32ETBRConcrete Repair and Paste-Over Epoxy202–203ETRSteel Adhesive-Anchoring Screen Tube55–56EXPSOpti-Mesh Epoxy Adhesive Careen Tube31ETACLingetion System320EZACLICK**Injection System320Injection System320320	CSD	Countersunk Split Drive Anchor	165–166
DIASDrop-In Short Internally Threaded Anchor149–152DIASSDrop-In Stainless-Steel Internally Threaded Anchor153–155DSDDuplex-Head Split Drive Anchor165–166EIFInjection Fitting209EIPInjection Port209EMNEpoxy Mixing Nozzle34-41ETBHole-Cleaning Nylon Brush — Standard52ETBRHole-Cleaning Nylon Brush — Standard52ETBSHole-Cleaning Nylon Brush — Standard52ETBRCrack-Pac® Injection Epoxy202-203ETRSteel Adhesive-Anchoring Screen Tube57ETSSteel Adhesive Screen Tube55-56EZCCEasy-Set Pin-Drive Expansion Anchor123EZCAGas-Actuated Concrete Nailer174	CSS V-WRAP™	FRP Composite Strengthening Systems	186–187
DASSDrop-In Stainless-Steel Internally Threaded Anchor163–155DSDDuplex-Head Split Drive Anchor165–166EIFInjection Fitting209EIPInjection Port209EMNEpoxy Mixing Nozzle209ET-3G**Fpoxy Anchoring Adhesive34–41ETBHole-Cleaning Nylon Brush—Standard52ETBRHole-Cleaning Nylon Brush—Rebar52ETBRHole-Cleaning Nylon Brush—Standard52ETBRIchocrete Repair and Paste-Over Epoxy202–203ETRSteel Adhesive-Anchoring Screen Tube57EXSPOpti-Mesh Epoxy Adhesive Screen Tube55–56EZACInjection System123EZ-Click**Injection System209Gas-Actuated Concrete Nailer174	DIAB	Drop-In Internally Threaded Anchor	144–148
DSDDuplex-Head Split Drive Anchor165–166DSDDuplex-Head Split Drive Anchor165–166EIFInjection Fitting209EIPInjection Port209EIPEpoxy Mixing Nozzle209ET-3G**Epoxy Anchoring Adhesive34–41ETBHole-Cleaning Nylon Brush — Standard52ETBRHole-Cleaning Nylon Brush — Rebar52ETBRHole-Cleaning Nylon Brush — Rebar202–203ETBRCrack-Pac® Injection Epoxy202–203ETRConcrete Repair and Paste-Over Epoxy202–203ETSOpti-Mesh Epoxy Adhesive Screen Tube55–56EXACEasy-Set Pin-Drive Expansion Anchor123E-2-Click**Injection System209GaGas-Actuated Concrete Nailer174	DIAS	Drop-In Short Internally Threaded Anchor	149–152
EIFinjection Fitting209EIPinjection Port209EINEpoxy Mixing Nozele209ET-3G**Epoxy Anchoring Adhesive34-41ETBHole-Cleaning Nylon Brush — Standard52ETBRHole-Cleaning Nylon Brush — Rebar52ETBRHole-Cleaning Nylon Brush — Rebar52ETBRIndie-Cleaning Nylon Brush — Rebar202-203ETBRIndie-Cleaning Nylon Brush — Rebar202-203ETBROncrete Repair and Paste-Over Epoxy202ETSSteel Adhesive-Anchoring Screen Tube55-56EZACEasy-Set Pin-Drive Expansion Anchor123EZACInjection System209Gas-Actuated Concrete Nailer174	DIASS	Drop-In Stainless-Steel Internally Threaded Anchor	153–155
EIPInjection Port209EINEpoxy Mixing Nozzle209ET-36"Epoxy Anchoring Adhesive34-41ETBHole-Cleaning Nylon Brush — Standard352ETBRHole-Cleaning Nylon Brush — Rebar52ETBSHole-Cleaning Wire Brush — Standard3202-203ETPACCrack-Pac® Injection Epoxy202-203ETRSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55-56EZACEasy-Set Pin-Drive Expansion Anchor123ET-Click**Injection System209Gas-Actuated Concrete Nailer174	DSD	Duplex-Head Split Drive Anchor	165–166
EMNEpoxy Mixing Nozzle209ET-3G**Epoxy Anchoring Adhesive209ET-3G**Apple-Cleaning Nylon Brush — Standard34-41ETBHole-Cleaning Nylon Brush — Standard52ETBRHole-Cleaning Wire Brush — Standard52ETBSAble-Cleaning Wire Brush — Standard202-203ETPACCrack-Pac® Injection Epoxy202-203ETRSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55-56EZACEasy-Set Pin-Drive Expansion Anchor123ET-Click**Injection System209GasGas-Actuated Concrete Nailer174	EIF	Injection Fitting	209
ET-3GTMEpoxy Anchoring Adhesive34-41ETBHole-Cleaning Nylon Brush — Standard52ETBRHole-Cleaning Nylon Brush — Rebar52ETBSHole-Cleaning Wire Brush — Standard52ETBACrack-Pac® Injection Epoxy202-203ETRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube57EVSPOpti-Mesh Epoxy Adhesive Screen Tube55-56EZACEasy-Set Pin-Drive Expansion Anchor123G3Gas-Actuated Concrete Nailer174	EIP	Injection Port	209
FTBHole-Cleaning Nylon Brush — Standard62FTBRHole-Cleaning Nylon Brush — Rebar52FTBRHole-Cleaning Wire Brush — Standard52FTBSHole-Cleaning Wire Brush — Standard2002–203FTIPACCrack-Pac® Injection Epoxy2002–203FTRSteel Adhesive-Anchoring Screen Tube55–56FEXPOpti-Mesh Epoxy Adhesive Screen Tube55–56FZACInjection System209G3Gas-Actuated Concrete Nailer174	EMN	Epoxy Mixing Nozzle	209
ETBRHole-Cleaning Nylon Brush — Rebar52ETBSHole-Cleaning Wire Brush — Standard52ETIPACCrack-Pac® Injection Epoxy202–203ETRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55–56EZACEasy-Set Pin-Drive Expansion Anchor123G3Gas-Actuated Concrete Nailer174	ET-3G™	Epoxy Anchoring Adhesive	34–41
FTBSHole-Cleaning Wire Brush — Standard52ETIPACCrack-Pac® Injection Epoxy202–203ETRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55–56EZACEasy-Set Pin-Drive Expansion Anchor123F-Z-Click™Injection System209G3Gas-Actuated Concrete Nailer174	ETB	Hole-Cleaning Nylon Brush — Standard	52
FTIPACCrack-Pac® Injection Epoxy202–203ETRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55–56EZACEasy-Set Pin-Drive Expansion Anchor123E-Z-Click™Injection System209G3Gas-Actuated Concrete Nailer174	ETBR	Hole-Cleaning Nylon Brush — Rebar	52
FTRConcrete Repair and Paste-Over Epoxy208ETSSteel Adhesive-Anchoring Screen Tube57EWSPOpti-Mesh Epoxy Adhesive Screen Tube55–56EZACEasy-Set Pin-Drive Expansion Anchor123E-Z-Click [™] Injection System209G3Gas-Actuated Concrete Nailer174	ETBS	Hole-Cleaning Wire Brush — Standard	52
ETS Steel Adhesive-Anchoring Screen Tube 57 EWSP Opti-Mesh Epoxy Adhesive Screen Tube 55–56 EZAC Easy-Set Pin-Drive Expansion Anchor 123 E-Z-Click [™] Injection System 209 G3 Gas-Actuated Concrete Nailer 174	ETIPAC	Crack-Pac [∞] Injection Epoxy	202–203
EWSP Opti-Mesh Epoxy Adhesive Screen Tube 55–56 EZAC Easy-Set Pin-Drive Expansion Anchor 123 E-Z-Click™ Injection System 209 G3 Gas-Actuated Concrete Nailer 174	ETR	Concrete Repair and Paste-Over Epoxy	208
EZACEasy-Set Pin-Drive Expansion Anchor123E-Z-Click™Injection System209G3Gas-Actuated Concrete Nailer174	ETS	Steel Adhesive-Anchoring Screen Tube	57
E-Z-Click™ Injection System 209 G3 Gas-Actuated Concrete Nailer 174	EWSP	Opti-Mesh Epoxy Adhesive Screen Tube	55–56
G3 Gas-Actuated Concrete Nailer 174	EZAC	Easy-Set Pin-Drive Expansion Anchor	123
	E-Z-Click [™]	Injection System	209
GAC Gas-Actuated Angle Clip Pin 174, 176, 180	G3	Gas-Actuated Concrete Nailer	174
	GAC	Gas-Actuated Angle Clip Pin	174, 176, 180

SIMPSON Strong-Tie

Alphabetical Index of Products

GCC	Gas-Actuated Conduit Clip Pin	174
GCL	Gas-Actuated Conduit Clamp Pin	174
GCT	Gas-Actuated Tie-Strap Holder Pin	174
GDP	Gas-Actuated Pin	174–175, 178–179, 181–183
GDPS	Stepped-Shank Gas-Actuated Pin	174, 182–183
GDPSK	Spiral-Knurled Gas-Actuated Pin	174, 183
GFC	Gas Fuel Cell	174
GTH	Gas-Actuated Top-Hat Pin	174–175, 178–179, 181
GTS	Gas-Actuated Threaded Stud Pin	174
GW	Gas-Actuated Washer Pin	174–175, 178–179, 181–183
HDIA	Hollow Drop-In Internally Threaded Anchor	156–159
HELI	Heli-Tie [™] Helical Wall and Stitching Tie	216–219
P22AC	0.22-Caliber "A" Crimp Loads — Single Shot	173
P25SL	0.25-Caliber Plastic, 10-Shot Strip Loads	173
P27LVL	0.27-Caliber Single-Shot Loads — Long	173
P27SL	0.27-Caliber Plastic, 10-Shot Strip Load	173
PBXDP	BX Cable Strap	170, 172
PCC	Conduit Clip	170, 172
PCL	Ceiling Clip	171
PCLDPA	Pre-Assembled Ceiling Clip	170–171, 176, 180
PDPA	0.157" Shank Diameter Drive Pin	170–171, 175, 178–179, 181–183
PDPAS	0.157" Shank Diameter Drive Pin	170–171
PDPAT	0.157" Shank Diameter Top-hat Fastener	170–171, 175, 178–179, 181–183
PDPAWL	0.157" Shank Diameter with 1" Metal Washer	170–171, 175, 177–179, 181–183
PECLDPA	Pre-Assembled Ceiling Clip	170–171, 176, 180
PHBC	Highway Basket Clip	170, 172
PHD	0.140" Shank Diameter Drive Pin	172
PHT-38	Manual Hammer Tool	172
PINW	100 through 300 – 0.300" Headed Pin with $17\!\!/_{\text{F6}}$ Washer	170, 172, 175, 178–179, 181–183
PINWP	100 through 300 – 0.300" Headed Pin with $17\!\!/_{\text{16}}$ Plastic Washer	170, 172, 175, 178–179, 181–183
РКР	8 mm-Headed Concrete Forming Pin	170, 172
PP	Piston Plug	53–54
PSLV3	%"-Headed Fasteners / Threaded Stud	170, 172, 175, 178, 182–183
PT-22A	0.22 Cal. Powder-Actuated Tool	170–171
PT-22HA	Hammer-Activated Powder Tool	170–171

Alphabetical Index of Products

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

PT-27	General Purpose 0.27 Cal. Powder-Actuated Tool	170–171
PTP-27L	Premium 0.27 Cal. Powder-Actuated Tool	170–171
PTRHA	0.157" Shank Diameter Threaded Rod Hanger	170, 172, 176, 180
RFB	Retrofit Bolt	58
RND	Rod Hanger Nut Driver	140
RPS-70-9	Epoxy Coating	188
RPS-207	Slurry Seal	189
RPS-263	Rapid-Hardening Vertical/Overhead Repair Mortar	191
RPS-406	Zinc-Rich Primer	190
RPS-505	Water-Based Acrylic Coating	189
RPS-752	Epoxy Bonding Agent	190
RPS-792LPL	Long Pot Life Epoxy Bonding Agent	191
RSH	Steel Rod Hanger Threaded Rod Anchor System- Horizontal	140–141
RSV	Steel Rod Hanger Threaded Rod Anchor System- Vertical	140–141
RWH	Wood Rod Hanger Threaded Rod Anchor System – Horizontal	142–143
RWV	Wood Rod Hanger Threaded Rod Anchor System - Vertical	142–143
SET-3G™	High-Strength Epoxy Adhesive	24–31
SL	Sleeve-All® Sleeve Anchor	118–122
STB2	Strong-Bolt $^{\odot}$ 2 Wedge Anchor — Zinc-Plated Carbon Steel	96–106
STB2 MG	$Strong\operatorname{-Bolt}^{\scriptscriptstyle \otimes}2$ Wedge Anchor — Mechanically Galvanized	107–109
STB2 SS	Strong-Bolt® 2 Wedge Anchor — Stainless-Steel	110–117
SWN	Sure Wall [™] Anchor – Nylon	167
SWZ	Sure Wall™ Anchor – Zinc	167
THD	Titen HD® Heavy-Duty Screw Anchor	62–79
THD-CS	Titen HD® Countersunk Heavy-Duty Screw Anchor	63, 65
THD-CS-SS	Stainless-Steel Titen HD® Countersunk Heavy-Duty Screw Anchor	81–82
THD-RC	Titen HD® Rod Coupler	92–94
THD-MG	Titen HD® Heavy-Duty Screw Anchor — Mechanically Galvanized	66–67
THD-RH	Titen HD® Threaded Rod Hanger	136–139
THD-SS	Stainless-Steel Titen HD® Heavy-Duty Screw Anchor	80–91
THD-WH	Titen HD® Washer-Head Heavy-Duty Screw Anchor	63, 65
TNT	Titen Turbo™ Concrete and Masonry Screw Anchor	126–133
TTNSS	Titen® Stainless-Steel Concrete and Masonry Screw	134–135
TW	Tie-Wire Wedge Anchor	124–125
ZN	Zinc Nailon [™] Pin Drive Anchor	160

SIMPSON

Strong-Tie

Simpson Strong-Tie Limited Warranty

Effective Date: March 18, 2021

This Limited Warranty applies to all Simpson Strong-Tie products ("Products") purchased after the Effective Date while this Limited Warranty remains in effect, other than those Simpson Strong-Tie products that have a separate Limited Warranty applicable to such products. For purchases after the Effective Date, please consult strongtie.com/limited-warranties, as this Limited Warranty may be updated by Simpson from time to time. All future purchases of Products are subject to the terms of the Limited Warranty in effect as of the purchase date.

This Limited Warranty must be read in conjunction with all applicable General Notes, General Instructions for the Installer, General Instructions for the Designer, Building Codes, Corrosion Information, and Terms & Conditions of Sale, along with any other information or specifications published by Simpson Strong-Tie Company Inc. ("Simpson") or available on the strongtie.com website ("Website") or on the product package, label or product manual. All of this information is referred to collectively as the "Simpson Strong-Tie Documentation." All applicable Simpson Documentation must be carefully reviewed each time any Product is used.

Simpson Strong-Tie warrants, to the original purchaser only, that each Product will be free from substantial defects in materials, manufacturing and design if properly specified, installed, and maintained, and when used in accordance with the design limits and the structural, technical, and environmental specifications in the Simpson Strong-Tie Documentation. This Limited Warranty is void and does not apply to any (a) Product purchased from an unauthorized dealer, retailer or distributor, (b) Product deterioration or damage due to environmental conditions or inadequate or improper handling, transportation, storage or maintenance, (c) cosmetic defects, including discoloration, (d) failure or damage caused by improper installation, application, mixing or preparation, (e) use of a Product in temperatures or environmental conditions outside the ranges specified for such Product in the Simpson Strong-Tie Documentation, (f) use of a Product outside of its shelf-life specifications, (g) normal wear and tear, (h) failure or damage caused by the use of a Product with any fasteners, pins, screwstrips, products or accessories other than authentic Simpson Strong-Tie products, (i) Product that was subjected to negligence or excessive or improper use, including any use not in accordance with the Simpson Strong-Tie Documentation, (j) failure or damage caused by the building site, foundation, or any third-party products, building materials or components, (k) failure or damage caused by use of a Product in a structure that has a design or other defect or that does not comply with all applicable building codes, laws, rules and regulations, (I) modified Product, or any nonstandard use or application of a Product, (m) failure or damage caused by corrosion, termites or other wood destroying organisms, animal or insect activity, wood fungal decay, rot, mold, mildew, exposure to chemicals or other hazardous substances, a corrosive environment or materials, inadequate moisture protection, or premature deterioration of building materials, (n) failure or damage caused by an act of God, including any hurricane, earthquake, tornado, lightning, ice, snow, high wind, flood or other severe weather or natural phenomena, (o) installation services or workmanship, including any failure or damage caused by installation of any Product, whether or not in accordance with the Simpson Strong-Tie Documentation, or (p) failure or damage caused by the gross negligence, willful misconduct, or other acts or omissions of the builder, general contractor, installer or any third party, including the building owner. Notwithstanding the foregoing, Simpson Strong-Tie disclaims and does not provide any warranty related to the design of any custom-order or non-catalog Product.

Although Products are designed for a wide variety of uses, Simpson Strong-Tie assumes no liability for confirming that any Product is appropriate for an intended use, and each intended use of a Product must be reviewed and approved by qualified professionals. Each Product is designed for the load capacities and uses listed in the Simpson Strong-Tie Documentation, subject to the limitations and other information set forth in the Simpson Strong-Tie Documentation.

Due to the particular characteristics of potential impact events such as earthquakes and high velocity winds, the specific design and location of the structure, the building materials used, the quality of construction, or the condition of the soils or substrates involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie's specifications and the Products are properly installed in accordance with applicable building codes, laws, rules and regulations.

Product demonstrations, training, operator examinations, technical and customer support and other services provided by Simpson Strong-Tie are based on Simpson Strong-Tie's present knowledge and experience, are

conducted for illustrative or instructive purposes only, do not constitute a warranty of Product capabilities, specifications or installation and do not modify the applicable Limited Warranty for Products set forth herein. Any services provided by Simpson Strong-Tie are provided without any representation or warranty of any kind, and Simpson Strong-Tie assumes no liability for any representations or statements made as part of such Product demonstrations, training, operator examinations or other services. In the event of any inconsistency between any information provided during any such demonstration or service, and the information in any applicable Simpson Strong-Tie Documentation, the information in the Simpson Strong-Tie Documentation provided on the Website, and the information in any other Simpson Strong-Tie Documentation, the information on the Website shall govern.

SIMPSOI

Strong-Tie

ALL WARRANTY OBLIGATIONS OF SIMPSON STRONG-TIE SHALL BE LIMITED, AT SIMPSON STRONG-TIE'S ABSOLUTE DISCRETION, TO EITHER REPAIRING THE DEFECTIVE PRODUCT OR PROVIDING A REPLACEMENT FOR THE DEFECTIVE PRODUCT. THIS REMEDY CONSTITUTES SIMPSON STRONG-TIE'S SOLE OBLIGATION AND LIABILITY AND THE SOLE AND EXCLUSIVE REMEDY OF PURCHASER AND, WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, EXCLUDES ANY LABOR OR OTHER COSTS INCURRED IN CONNECTION WITH A WARRANTY CLAIM. PURCHASER ASSUMES ALL RISK AND LIABILITY ASSOCIATED WITH ANY USE OF THE PRODUCT, INCLUDING BUT NOT LIMITED TO SUITABILITY FOR ITS INTENDED USE.

THE LIMITED WARRANTY HEREIN IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, AND, WHERE LAWFUL, SIMPSON STRONG-TIE DISCLAIMS ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND WARRANTIES ARISING FROM COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE. IN NO EVENT WILL SIMPSON STRONG-TIE BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR SPECIAL DAMAGES OR DIRECT OR INDIRECT LOSS OF ANY KIND, INCLUDING BUT NOT LIMITED TO PROPERTY DAMAGE, DEATH AND PERSONAL INJURY. SIMPSON STRONG-TIE'S ENTIRE LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE DEFECTIVE PRODUCT. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, OR THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

To obtain warranty service, you must contact Simpson Strong-Tie promptly at (800) 999-5099 or at Simpson Strong-Tie Company Inc., 5956 West Las Positas Boulevard, Pleasanton, CA 94588, regarding any potential claim, no later than sixty (60) days after you discover the potential claim. Upon request by Simpson Strong-Tie, you must provide Simpson Strong-Tie with: (a) proof of purchase and written records evidencing, in reasonable detail, the date and manner of installation, application, mixing and preparation of the Products, as applicable, (b) a reasonable opportunity to inspect the site where the Product was installed, and (c) samples of the Products from the actual installation in sufficient quantities in order for Simpson Strong-Tie to perform testing to determine whether or not the Product failed as set forth herein. Simpson Strong-Tie may, in its absolute discretion, request that you return the allegedly defective Products to Simpson Strong-Tie, in which case Simpson Strong-Tie will issue a Return Materials Authorization (RMA), which must be completed and returned to Simpson Strong-Tie with the Product. Simpson Strong-Tie is not responsible for any costs or expenses incurred in connection with any inspection (other than by Simpson Strong-Tie employees) or in connection with the return of Products to Simpson Strong-Tie, but Simpson Strong-Tie shall bear all costs and expenses incurred in connection with the shipment of replacement Products in the event that Simpson Strong-Tie determines that the Product should be replaced in accordance with this Limited Warranty. If Simpson Strong-Tie elects to repair or replace the Product, Simpson Strong-Tie shall have a reasonable time to do so.

No one is authorized to change or add to this Limited Warranty. If at any time Simpson Strong-Tie does not enforce any of the terms, conditions or limitations stated in this Limited Warranty, Simpson Strong-Tie shall not have waived the benefit of said term, condition or limitation and can enforce it at any time. This Limited Warranty is extended only to the original purchaser and is not transferrable. It is not intended nor shall it be construed to create rights in any third party.

Strength runs in the family.

SCREW ANCHORS

The Titen® family of concrete and masonry anchoring solutions from Simpson Strong-Tie. Our broad range of versatile and innovative screw anchors is designed for maximum ease and efficiency — ensuring a quick, smooth installation every time. And our skilled field support teams are always available to assist on the jobsite.

To learn more about our full line of easy-to-install Titen solutions, visit **go.strongtie.com/titenfamily** or call (800) 999-5099.

C-A-2023 Effective 6/1/2023 Expires 6/30/2026 © 2023 Simpson Strong-Tie Company Inc.

V-COURS LAIAY

N