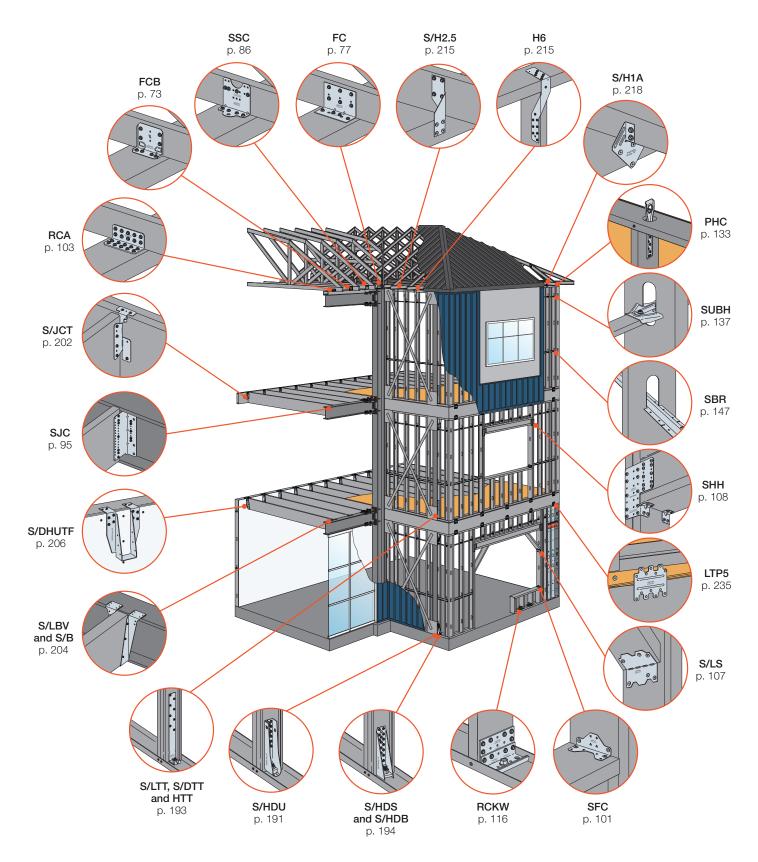
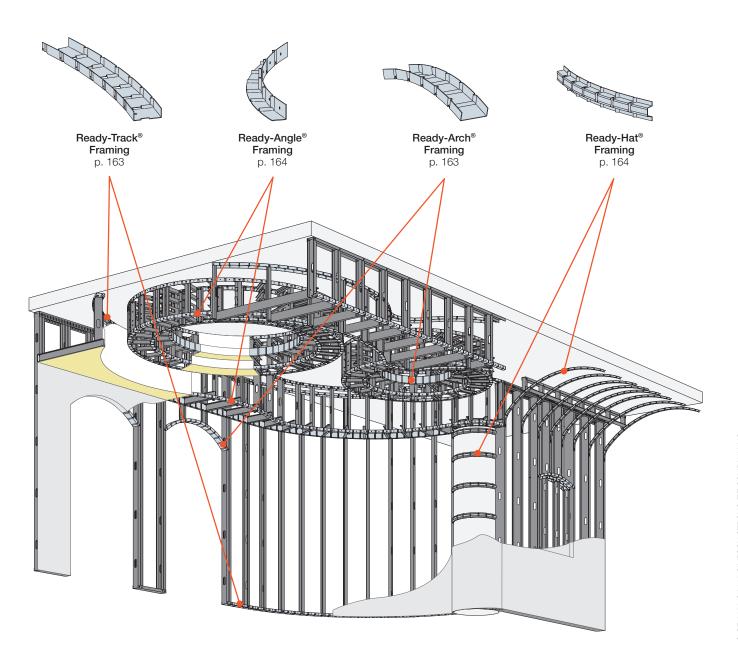

Connectors for Cold-Formed Steel Construction

SIMPSON
Strong-Tie


C-CF-2023 | (800) 999-5099 | strongtie.com

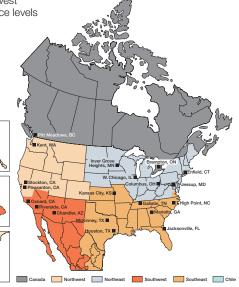

Commercial Connector Solutions

Mid-Rise Connector Solutions

Curved-Wall Solutions

Introduction

For more than 65 years, Simpson Strong-Tie has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong Tie is one of the largest suppliers of structural building products in the world. The Simpson Strong-Tie commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of its products and services.


For more information, visit the company's website at strongtie.com.

The Simpson Strong-Tie Company Inc. No-Equal Pledge® includes:

 Quality products value-engineered for the lowest installed cost at the highest-rated performance levels

- · The most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- National code agency listings
- The largest number of patented connectors in the industry
- Global locations with an international sales team
- In-house R&D and tool and die professionals
- In-house product testing and quality control engineers
- Support of industry groups including AISI, AITC, ASTM, ASCE, AWC, AWPA, ACI, AISC, CSI, CFSEI, ICFA, NBMDA, NLBMDA, SBCA, SDI, SETMA, SFA, SFIA, STAFDA, SREA, NFBA, TPI, WDSC, WIJMA,

WTCA and local engineering groups

The Simpson Strong-Tie Quality Policy

We help people build safer structures economically. We do this by designing, engineering and manufacturing No-Equal® structural connectors and other related products that meet or exceed our customers' needs and expectations. Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System.

Karen Colonias Chief Executive Officer

Getting Fast **Technical Support**

When you call for engineering technical support, having the following information on hand will help us to serve you promptly and efficiently:

- Which Simpson Strong-Tie® catalog are you using? (See the front cover for the catalog number.)
- Which Simpson Strong-Tie product are you using?
- · What are your application and load requirement?
- What are the carried and/or supporting members' size, gauge and strength?

You should consult a qualified design professional familiar with all applicable building codes each time you use a Simpson Strong-Tie product.

We Are ISO 9001 Registered

Simpson Strong-Tie is an ISO 9001 registered company. ISO 9001 is an internationally recognized quality management system that lets our domestic and international customers know they can count on the consistent quality of Simpson Strong-Tie products and services.

(800) 999-5099 strongtie.com

All rights reserved. This catalog may not be reproduced in whole or in part without the prior written approval of Simpson Strong-Tie Company Inc.

General Information	12-27
Deflection Connectors	28–55 ►
Drift Connectors	56-71 ▶
Rigid Connectors	72–135
Bridging, Bracing and Backing	136–161
Curved Hand-Bendable Framing	162–165 ►
Concrete Connectors	166–171 ►
Anchors	172-187
Fasteners	188–189
Holdowns and Tension Ties	190-199 ►
Joist Framing Connectors	200-211
Roof, Truss and Rafter Connectors, Ties and Straps	212-229
Lateral Connectors, Ties and Straps	230–235
Lateral Systems	236–239 ►
Miscellaneous	240–241

Alphabetical Index

ABS Anchor Bolt Stabilizer167	FC Bypass Framing Fixed-Clip Connector	LBP Bearing Plate168
ABL Anchor Bolt Locator170	FCB Bypass Framing Fixed-Clip	LS Skewable Angle107, 209, 227
AHEP Adjustable Hip-End Purlin227	Connector	LSTA Strap Tie231–233
Anchor Designer [™] Software187	FHA Strap Tie	▼LSTHD Strap Tie Holdown198–199
Anchor Solutions	FSB Bypass Framing Fixed-Clip	LSTI Strap Tie231–233
for CFS Construction173–174	Strut Connector81–82	▼ LSUBH Bridging Connector137–146
AnchorMate® Anchor Bolt Holder 167	H Hybrid Connectors216–217	LTA2 Masonry Connector224-225
BP/BPS Bearing Plates168	H Seismic and Hurricane Ties215	,
© CFS Designer ™ Software	H10S Seismic and	LTB Bridging159, 211
CMST Coiled Strap234	Hurricane Tie 215–217, 224–225	LTP5 Framing Anchor235
CMSTC Coiled Strap234	HETA Embedded Truss Anchor 220-221	LTS Twist Strap222
CNW Coupler Nut169	HHETA Embedded Truss Anchor 220-221	MASA Mudsill Anchor171
Code Listing Key Chart13	HPA Purlin Anchor	MASAP Mudsill Anchor171
	HRS Strap Tie231–233	META Embedded Truss Anchor 220-221
Conversion Charts — Imperial, Metric, Roof Pitch/Slope, Steel Gauge19	HSCNW High-Strength Coupler Nut 169	(
Wichie, Floor Fiter, Glope, Steel Gauge 10	11301W Filgh-Strength Couple Nut 109	MFCB Bypass Framing Fixed-Clip Connector73-76
Corrosion Information19–23	HTS Twist Strap222	
CS Coiled Strap158, 211, 234	HTSM Twist Strap219	▼ MSCB Bypass Framing Slide-Clip 29–31
ODBC Drywall	HTT Tension Tie	MSJC Steel-Joist Connector95–100, 201
Bridging Connector 156–157	HU Hanger208	Connector95–100, 201
▼ DBR Spacer Bracer147–154	Ü	MSSCKW Kneewall Connector 130-132
DSP Stud Plate Tie213	HUC Hanger	MST Strap Tie231–233
· · · · · · · · · · · · · · · · · · ·	WHWDC Head-of-Wall Drift-Clip	NOTA OLIVI T'
V DSSCB Bypass Framing Drift Strut Connector	Connector	MSTA Strap Tie231–233
	Y HWSC Head-of-Wall Slide-Clip	MSTC Strap Tie231–233
DTC Head-of-Wall Slide-Clip	Connector	
Application52		MSTI Strap Tie231–233
DTC Roof Truss Clip228	HYS Hybrid Strut44–47	▼ MSUBH Bridging Connector137–146
DTT1Z Tension Tie193	ICFVL Ledger Connector210	MTS Twist Strap222
	IDCB Drift-Clip	·
Fasteners for CFS Construction 189	Bypass Framing Connector57	MTSM Twist Strap219
Fastening Information24	L Skewable Angle209	PA Purlin Anchor196–197

Alphabetical Index

PAB/PABH Pre-Assembled Anchor Bolts185–186
PDPA Powder-Driven Pin
PDPAT Powder-Driven Top-Hat Pin180–181
PHC Panel Hoist Clip133–134
PS Strap Tie231–233
PSPNZ Protecting Shield Plate241
RCA Rigid Connector Angle103–106
RCA-C Rigid Connector Angle for Concrete
RCKW Kneewall Connector116–129
▼ Ready Product Ready-Angle® Framing164
♥ Ready Product
Ready-Arch® Framing163
Ready-Arch® Framing
び Ready Product
▼ Ready Product Ready-Hat® Framing164 ▼ Ready Product
 ✓ Ready Product Ready-Hat® Framing
 ✓ Ready Product Ready-Hat® Framing
Ready Product Ready-Hat® Framing
V Ready Product 164 Neady Product 163 Ready Bender™ Ready Track™ 165 Bender Custom Framing Tool 165 Ready Bender™ Ready Trim™ 165 Ready Bender Traming Tool 165 RFB Retrofit Bolt 184 S/B Hanger 204–205 S/DHUTF Drywall Hanger 206 S/DTT Tension Tie 193

S/HDU Holdown191–192
S/HGAM Masonry Connector 224–225
▼S/HJCT Hanger202-203
S/HTC Heavy Truss Clip229
▼S/JCT Hanger202–203
S/LBV Hanger204–205
S/LS Skewable Angle107, 209, 227
S/LTT Tension Tie193
S/VGT2.5 Variable-Pitch Girder Tiedown
▼SB Anchor Bolts183
♥SBR Spacer Bracer147–154
SC Bypass Framing Slide-Clip Connector
♥ SCB Bypass Framing Slide-Clip 29-31
▼ SCHA Slide-Clip Connector for Horizontal Anchorage
SCS Seismic Bypass Framing Connector
SCW Head-of-Wall Slide-Clip Connector
▼ SFC Steel Framing Connector
SHH Header Hanger 108-111
♥ SJC Steel-Joist Connector 84–85, 95–100, 201
SP Stud Plate Tie214
Special Order Custom Clips and Connectors135
SSB Bypass Framing Slide-Clip Strut42–43

VSSC Steel-Stud Connector 86-94, 155

	SSP Stud Plate Tie213
V	SSTB® Anchor Bolt180
	ST Strap Tie231–230
	STC Roof Truss Clip228
	STCT Roof Truss Clip228
	Steel Strong-Wall® Shearwalls237
V	STHD Strap Tie Holdown198-199
	StrapMate® Strap Holder167
	Strong Frame® Special Moment Frame238-239
V	SUBH Bridging Connector 137-146
	TB Bridging21
	Titen HD® Heavy-Duty Screw Anchor175–179
	TJC Jack Truss and Rafter Connector
	TSP Stud Plate Tie213
	VGT Variable-Pitch Girder Tiedown223
	WBAC Wood Backing Steel Connector
	WP Hanger207

Version 5

Simpson Strong-Tie® CFS Designer™ Software

Simpson Strong-Tie CFS Designer gives cold-formed steel (CFS) designers the ability to design CFS beam-column members according to AISI specifications as well as analyze complex beam loading and span conditions. Intuitive design tools automate common CFS systems such as typical walls, openings, floor joists with unbalanced live-load combinations, low wall, spandrel, eight-story load-bearing systems and shearwalls up to eight stories. Version 5 is now equipped with a 2-span opening design.

See p. 25 for more information.

WBAC Wood Backing Steel Connector

The WBAC wood backing steel connector is the ideal solution for connecting wood backing to cold-formed steel studs. Perfect for cabinets, shelves, handrails, heavy wall hangings and more, this versatile connector installs easily and provides tested strength. The WBAC is designed to eliminate alignment issues and reduce installation time. Since stiffness and strength are critical for these applications, the fastening pattern into both steel and wood has been engineered to optimize performance.

See pp. 160-161 for more information.

HWDC Head-of-Wall Drift-Clip Connector

The head-of-wall drift-clip connector is used to secure the head of a wall to the bottom of a slab or beam. They are an optimal solution for adding strength to window or doorjambs at head-of-wall connections. The HWDC5.25 provides anchorage location options with a third slot providing a solution for clips overhanging beam flanges. The unique design allows anchor screws to be installed closer to the bend, providing a stronger and stiffer connection while also allowing horizontal and vertical movement during seismic and high-wind events.

See pp. 70-71 for more information.

MFCB Bypass Framing Fixed-Clip Connectors

The MFCB is part of the FCB bypass framing fixed-clip connector product line. The MFCB connector is made of 68 mil (14 ga.) steel thickness that provides a higher capacity for the use of cold-formed steel curtain wall framings and other variety applications. The connectors are tested and rated for tension, compression, shear and in-plane loads.

See pp. 73-76 for more information.

New Products for 2023

PHC Panel Hoist Clip

The PHC panel hoist clip allows easier installation and lifting of wall panels on the job and at assembly sites. The PHC clip features a small profile design to fit inside holes as small as 1½". Contractors can either drill holes in the track onsite or have the track manufactured with holes for easier installation of the clip through the top track. The rolled edges and rolled hoist-edge-hole provide greater strength and give the capacity needed for heavy panel projects. Maximum and minimum screw patterns give you options for heavier or lighter load needs.

See pp. 133-134 for more information.

RCA Rigid Connector Angles

The rigid connector angle is a general-purpose clip angle designed for a wide range of cold-formed steel construction applications such as with miscellaneous header/sill connections to jamb studs, jamb stud reinforcement at track, u-channel bridging, stud-blocking, bypass curtain-wall framing, joist connections and other versatile options. Easy to install, with prepunched holes for quick and accurate fastener attachment. We now have added two new sizes — RCA229 (9") and RCA 2211 (11").

See pp. 103-106 for more information.

RCA-C Rigid Connector Angle for Concrete

The RCA-C is an ideal solution for attaching stud framing to concrete supports. This connector provides the widest variety of anchor options for attaching to concrete in comparison to other similar connectors on the market. The connector's design includes holes for a $\frac{1}{2}$ -diameter anchor screw or bolt, or for two $\frac{1}{4}$ -diameter concrete screws, positioned in a wide array of fastening options — thus saving the installer the time and cost of drilling connector holes at the jobsite.

See pp. 112-115 for more information.

HWSC Head-of-Wall Slide-Clip Connector

The HWSC head-of-wall slide-clip connector is specifically designed for simplifying the panelization of 6" printed studs (e.g., FrameCAD®, Arkitech, Howick, Pinnacle and Scottsdale). The connector is designed to replace slotted track with a typical printed track at head-of-wall conditions and is assembly tested to provide optimal strength and performance.

See pp. 50-51 for more information.

RCKW3D and RCKW3DS Kneewall Connector

The RCKW3D and RCKW3DS are an extension of the popular RCKW product line of rigid connectors for cold-formed steel kneewalls. The RCKW3D is a 3"-wide RCKW connector similar to the RCKW3 but with two holes designed for ½" anchors. The RCKW3DS is a stiffener (sold separately) that nests in the RCKW3D for applications that require increased loads. Together, this line extension was created to enhance strength, resistance to overturning and anchor capacity for heavier load demands on 3½" and 35%" stud framing.

See pp. 116-129 for more information.

New Testing on Products

S/HDU Holdown

The S/HDU series of holdowns combines performance with ease of installation. The predeflected geometry virtually eliminates material stretch, resulting in low deflection under load. Installation using self-drilling tapping screws into the studs reduces installation time and saves labor cost. We have added new testing for single stud attachment for this popular holdown.

See pp. 191-192 for more information.

DSSCB Bypass Framing Drift Strut Connector

Simpson Strong-Tie has evaluated the DSSCB bypass framing drift strut connector with concert inserts embedded into concrete. Tested capacities for concrete inserts embedded into concrete for attachment of the DSSCB Bypass Framing Drift Strut Connector has been referenced in this catalog.

See pp. 58-69 for more information.

New Products for 2023

Connectors for Cross-Laminated Timber (CLT)

Tested capacities into cross-laminated timber (CLT) with Simpson Strong-Tie® Strong-Drive® screw.

DSSCB Bypass Framing Drift Strut Connector

Simpson Strong-Tie has evaluated the DSSCB bypass framing drift strut connector with the Strong-Drive SDHR31400 Combo-Head screw, a structural fastener designed for cross-laminated timber construction and mass timber construction. Capacities for F_1 , F_2 , F_3 and F_4 loads are provided.

See pp. 58-69 for more information.

SCS Seismic Bypass Framing Connector

Simpson Strong-Tie has evaluated the SCS seismic bypass framing connector with the Strong-Drive SDWH27400G Timber-Hex HDG screw into cross-laminated timber (CLT) supporting structures. Capacities for F_1 , F_2 , F_3 and F_4 loads are provided.

See pp. 32-37 for more information.

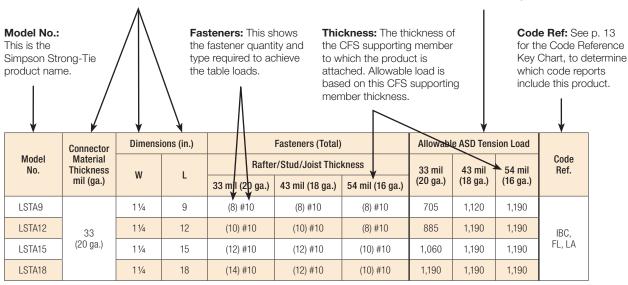
How to Use This Catalog

New Products

New products are shown with the symbol. There are also many new sizes within existing model series.

Value Engineered

This icon indicates a product that is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.


Extra Corrosion Protection

The teal arrow icon identifies products that are available with additional corrosion protection (ZMAX®, hot-dip galvanized or double-barrier coating). The SS teal arrow icon identifies products also available in stainless steel. Other products may also be available with additional protection; contact Simpson Strong-Tie for options. The end of the product name will indicate what type of extra corrosion protection is provided (Z = ZMAX, HDG = hot-dip galvanized or SS = stainless steel). Stainless products may need to be manufactured upon ordering. See pp. 19–23 for information on corrosion, and visit our website **strongtie.com/info** for more technical information on this topic.

Load Table Explanation

Dimensions: This shows the product dimensions (material thickness, length and width in this case.) The product drawing includes these callouts as a cross-reference.

Allowable Design Load: The maximum load imposed on a connection during the life of a structure. There may be multiple design loads acting in different directions (up, down, lateral, perpendicular, etc.) imposed on a connection. When connectors are attached to two CFS members of different thicknesses, the designer shall use the thinner of the two members for selecting allowable loads.

Other Catalog Definitions

Deflection: The distance a point moves when a load is applied.

Nominal Tension Load (Strength): The capacity of a structure or component to resist the effects of loads, as determined in accordance with AISI-S100 using specified material strengths and dimensions. Typically taken as the average value of at least three tests.

The Nominal Tension Load should not be compared against design loads (ASD, LRFD), but used only where the AISI Lateral Design Standard requires the holdown to have nominal tension load (strength) to resist the lesser of the amplified seismic load or the maximum force the system can deliver.

Strong-Tie

Code Reference Column in Load Tables

Product evaluation agencies play an important role in the building industry providing an independent third-party review of architectural and structural products. Evaluations use publicly developed criteria to determine if the product meets the intent of the building code. Building officials can use product evaluation reports, often referred to as "code reports," to review and approve product use on a project.

The most prominent architectural and structural building product certification companies are ICC Evaluation Service (ICC-ES) and IAPMO Uniform Evaluation Service (IAPMO UES), which are both ANSI-accredited to ISO Guide 65 "General Requirements for Bodies Operating Product Certification Systems" as product certification entities. Simpson Strong-Tie currently maintains more than 60 ICC-ES ESR and IAPMO UES ER reports evaluated to the 2006, 2009, 2012,

2015 and 2018 International Building Code® (IBC) and International Residential Code® (IRC). We continue to submit product information to evaluation agencies in order to update reports or receive additional reports for products in compliance with the latest codes. Simpson Strong-Tie also has reports for the City of Los Angeles, California and the State of Florida.

We have simplified our code references to make this catalog easier to use. You can quickly determine whether a product has a code report by looking in the Code Reference column of the product load tables. A summary of the code references used is in the table below.

To determine which specific code report applies to a product and download a copy of the code report, you can use our Code Report Finder at strongtie.com/codes.

Code Reference Evaluation Agency Building Code Coverage		Building Code Coverage
IBC	ICC-ES IAPMO UES	International Building Code (IBC) International Residential Code (IRC)
FL	Florida Statewide Product Approval	Florida Building Code Visit strongtie.com/codes or floridabuilding.org for accurate and up-to-date product approval and evaluation reports.
LA	City of Los Angeles Department of Building Safety	Los Angeles Building Code and Los Angeles Residential Code These products may have either a City of LA Research Report or a City of LA supplement to their ICC-ES or IAPMO UES evaluation reports.
PR	Prescriptive	Products that meet prescriptive or conventional construction requirements.
_	None	No evaluation report listing. Products are tested and calculated per code. See "How We Determine Allowable Loads" below.

How We Determine Allowable Loads

Allowable loads in this catalog are determined by calculations and test criteria established by industry, such as ICC-ES Acceptance Criteria, IAPMO UES Evaluation Criteria, and AISI or ASTM test standards.

Cold-formed steel connectors are typically evaluated in accordance with ICC-ES AC261 — Acceptance Criteria for Connectors Used with Cold-Formed Steel Structural Members. Evaluation is based on a minimum of three static load tests in CFS assemblies or structural steel jigs. The published allowable load is the lower of the tested ultimate with a safety factor, load at 1/8" defection or the fastener calculation limits. Safety factors for ASD and resistance factors for LRFD are in accordance with AISI-S100 Section F.

Cast-in-place concrete products are tested in accordance with ICC-ES AC398 — Cast-in-Place, Cold-Formed Steel Connectors in Concrete

for Light-Frame Construction or AC399 — Cast-in-Place Proprietary Bolts in Concrete for Light-Frame Construction. Tapping screw fasteners are evaluated per AC118 — Acceptance Criteria for Tapping Screw Fasteners Used in Steel-to-Steel Connections.

Where a test standard is unavailable, testing is conducted per sound engineering principles. Some tests include only portions of a product, such as purlin anchor tests, wherein only the embedded hook is tested, not the nailed or bolted section of the strap, which is calculated. Testing to determine allowable loads in this catalog is not done on connection systems in buildings. Testing is conducted in an IAS-accredited laboratory.

For detailed information regarding how Simpson Strong-Tie tests specific products, contact Simpson Strong-Tie.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

General Notes

These notes are provided to ensure proper installation of Simpson Strong-Tie® products and must be followed fully.

- Simpson Strong-Tie Company Inc. reserves the right to change specifications, designs and models without notice or liability for such changes.
- Steel used for each Simpson Strong-Tie product is individually selected based on the product's steel specifications, including strength, thickness, formability, finish, and weldability. Contact Simpson Strong-Tie for steel information on specific products.
- Unless otherwise noted, dimensions are in inches and loads are in pounds.
- d. Unless otherwise noted, welds, bolts, screws and nails may not be combined to achieve highest load value.
- e. Unless otherwise noted, catalog loads are based on cold-formed steel members having a minimum yield strength, Fy, of 33 ksi and tensile strength, Fu, of 45 ksi for 43 mil (18 ga.) and thinner, and a minimum yield strength, Fy, of 50 ksi and tensile strength, Fu, of 65 ksi for 54 mil (16 ga.) and thicker.
- f. Simpson Strong-Tie Company Inc. will manufacture non-catalog products provided prior approval is obtained and an engineering drawing is included with the order. Steel specified on the drawings as 1/8", 1/16", and 1/4" will be 11 gauge (0.120"), 7 gauge (0.179"), and 3 gauge (0.239"), respectively. The minimum yield and tensile strengths are 33 ksi and 52 ksi, respectively.
- g. All references to bolts are for structural quality through bolts (not lag screws or carriage bolts) equal to or better than ASTM Standard A307, Grade A.
- Unless otherwise noted, bending steel in the field may cause fractures at the bend line. Fractured steel will not carry load and must be replaced.
- Top flange hangers may cause unevenness. Possible remedies should be evaluated by a professional and include using a face mount hanger or cutting the subfloor to accommodate the top flange thickness.
- j. Built-up members (multiple members) must be fastened together to act as one unit to resist the applied load (excluding the connector fasteners). This must be determined by the designer or Engineer of Record.

- k. Do not overload. Do not exceed catalog allowable loads, which would jeopardize the connection.
- I. Some model configurations may differ from those shown in this catalog. Contact Simpson Strong-Tie for details.
- m. Some combinations of hanger options are not available. In some cases, combinations of these options may not be installable. Horizontal loads induced by sloped joists must be resisted by other members in the structural system. A qualified designer must always evaluate each connection, including carried and carrying member limitations, before specifying the product. Fill all fastener holes with fastener types specified in the tables, unless otherwise noted. Hanger configurations, height and fastener schedules may vary from the tables depending on joist size, skew and slope. See the allowable table load for the non-modified hanger, and adjust as indicated. Material thickness may vary from that specified depending on the manufacturing process used. W hangers normally have single stirrups; occasionally, the seat may be welded. S/B, S/LBV, W and WP hangers for sloped seat installations are assumed backed.
- n. Simpson Strong-Tie will calculate the net height for a sloped seat.
 The customer must provide the H1 joist height before slope.
- o. Do not weld products listed in this catalog unless this publication specifically identifies a product as acceptable for welding, or unless specific approval for welding is provided in writing by Simpson Strong-Tie. Some steels have poor weldability and a tendency to crack when welded. Cracked steel will not carry load and must be replaced.
- p. Steel for the framing members must comply with ASTM A1003 Grade 33 minimum. Reference General Note "e" for additional requirements.
- q. Consideration should be given to the screw head specified as this may affect the attached materials.
- r. Do not add fastener holes or otherwise modify Simpson Strong-Tie products. The performance of modified products may be substantially weakened. Simpson Strong-Tie will not warrant or guarantee the performance of such modified products.

Warning

Simpson Strong-Tie Company Inc. structural connectors, anchors, and other products are designed and tested to provide specified design loads. To obtain optimal performance from Simpson Strong-Tie Company Inc. products and achieve maximal allowable design load, the products must be properly installed and used in accordance with the installation instructions and design limits provided by Simpson Strong-Tie Company Inc. To ensure proper installation and use, designers and installers must carefully read the following General Notes, General Instructions to the Installer and General Instructions to the Designer, as well as consult the applicable catalog pages for specific product installation instructions and notes.

Proper product installation requires careful attention to all notes and instructions, including these basic rules:

- Be familiar with the application and correct use of the connector.
- Follow all installation instructions provided in the applicable catalog, website, *Installer's Pocket Guide* or any other Simpson Strong-Tie publications.
- 3. Install all required fasteners per installation instructions provided by Simpson Strong-Tie Company Inc.: (a) use proper fastener type; (b) use proper fastener quantity; (c) fill all fastener holes; (d) do not overdrive or underdrive nails, including when using powder nailers; and (e) ensure screws are completely driven.

- 4. Only bend products that are specifically designed to be bent. For those products that require bending (such as strap-type holdowns, straight-end twist straps, etc.), do not bend more than one full cycle.
- Cut joists to the correct length, do not "short-cut." The gap between the end of the joist and the header material should be no greater than %" unless otherwise noted.

Failure to follow all of the notes and instructions provided by Simpson Strong-Tie Company Inc. may result in improper installation of products. Improperly installed products may not perform to the specifications set forth in this catalog and may reduce a structure's ability to resist the movement, stress and loading that occurs from gravity loads as well as impact events such as earthquakes and high-velocity winds.

Simpson Strong-Tie Company Inc. does not guarantee the performance or safety of products that are modified, improperly installed or not used in accordance with the design and load limits set forth in this catalog.

Important Information

In addition to following the basic rules provided above as well as all notes, warnings and instructions provided in the catalog, installers, designers, engineers and consumers should consult the Simpson Strong-Tie Company Inc. website at **strongtie.com** to obtain additional design and installation information.

General Instructions to the Installer

These general instructions to the installer are provided to ensure proper selection and installation of Simpson Strong-Tie® products and must be followed carefully. These general instructions are in addition to the specific installation instructions and notes provided for each particular product, all of which should be consulted prior to and during installation of Simpson Strong-Tie products.

- All specified fasteners must be installed according to the instructions in this catalog. Incorrect fastener quantity, size, type, material, or finish may cause the connection to fail.
- b. Holes for ½" diameter or greater bolts shall be no more than a maximum of 1/16" larger than bolt diameter per AISI S100 Table E3.
- c. Install all specified fasteners before loading the connection.
- d. Some hardened fasteners may have premature failure if exposed to moisture. The fasteners are recommended to be used in dry interior applications.
- e. Use proper safety equipment.
- f. When installing a joist into a connector with a seat, the joist shall bear completely on the seat. The gap between the end of the joist and the connector or header shall not exceed 1/8" per ICC-ES AC261, ASTM D1761 and ASTM D7147 test standards, unless otherwise noted.
- g. For holdowns, anchor bolt nuts should be finger-tight plus 1/2 to 1/2 turn with a hand wrench. Care should be taken to not over-torque the nut and impact wrenches should not be used. This may preload the holdown.

- h. Holdowns and tension ties may be raised off the track as dictated by field conditions to accommodate an anchor mislocated no more than 1½". The holdown shall be raised off the bottom track at least 3" for every ¼" that the anchor is offset from the model's centerline. Anchor bolt slope shall be no greater than 1:12 (or 5 degrees). Contact the designer if the holdown anchor is offset more than 1½" or raised more than 18". Raised holdown height is measured from the top of the concrete to the top of the holdown bearing plate.
- i. All screws shall be installed in accordance with the screw manufacturer's recommendations. All screws shall penetrate and protrude through the attached materials a minimum of three full exposed threads per AISI S200 General Provisions Section D1.3.
- j. Welding galvanized steel may produce harmful fumes; follow proper welding procedures and safety precautions. Welding should be in accordance with American Welding Society (AWS) standards. Unless otherwise noted, Simpson Strong-Tie connectors cannot be welded.
- Temporary lateral support for members may be required during installation.

General Instructions to the Designer

These general instructions to the designer are provided to ensure proper selection and installation of Simpson Strong-Tie Company Inc. products and must be followed carefully. These general instructions are in addition to the specific design and installation instructions and notes provided for each particular product, all of which should be consulted prior to and during the design process.

- Allowable loads are determined per the AISI S100 unless otherwise specified. Other code agencies may use different methodologies.
- b. The allowable load is typically limited to an average test load at 1/8" deflection, or an average or lowest test value (nominal load) divided by a safety factor or the calculation value. The safety factor is prescribed by Section K2.1 of the AISI S100.
- c. To achieve the loads shown in this catalog, the designer must verify that the self-drilling screws used for connector installation have $\mathsf{P}_{\mathsf{SS}}/\Omega$ and $\mathsf{P}_{\mathsf{tS}}/\Omega$ values greater than or equal to the values given in the table, Minimum ASD Loads for Screws (lb.), per p. 24 of this catalog.
- d. Allowable simultaneous loads in more than one direction on a single connector must be evaluated as follows:
 - Design Uplift/Allowable Uplift + Design Lateral Parallel to Track/ Allowable Lateral Parallel to Track + Design Lateral Perpendicular to Track/Allowable Lateral Perpendicular to Track ≤ 1.0.

The three terms in the unity equation are due to the three possible directions that exist to generate force on a connector. The number of terms that must be considered for simultaneous loading is at the sole discretion of the designer and is dependent on their method of calculating wind forces and the utilization of the connector within the structural system.

- The term "designer" used throughout this catalog is intended to mean a licensed/certified building design professional, a licensed professional engineer, or a licensed architect.
- All connected members and related elements shall be designed by the designer.
- g. Unless otherwise noted, member strength is not considered in the loads given and, therefore, one should reduce allowable loads when member strength is limiting.
- h. The average ultimate breaking strength for some models is listed under "nominal tension load."
- Simpson Strong-Tie strongly recommends the following addition to construction drawings and specifications: "Simpson Strong-Tie

- connectors and fasteners are specifically required to meet the structural calculations of plan. Before substituting another brand, confirm load capacity based on reliable published testing data or calculations. The designer or Engineer of Record should evaluate and give written approval for substitution prior to installation."
- j. Verify that the dimensions of the supporting member are sufficient to receive the specified fasteners, and develop the top flange bearing length.
- k. Most of the allowable loads published in this catalog are for use when utilizing the traditional Allowable Stress Design (ASD) methodology. A method for using Load and Resistance Factor Design (LRFD) for cold-formed steel is also included in AISI S100. When designing with LRFD, the nominal connector strength multiplied by the resistance factor must be used. If not listed or noted in a table footnote, contact Simpson Strong-Tie for the LRFD values of products listed in this catalog.
- All steel-to-steel connector screws must comply with ASTM C1513.
- m. Screw strength shall be calculated in accordance to AISI S100 Section J4 or shall be based upon the manufacturer's design capacity determined from testing.
- Simpson Strong-Tie recommends that hanger height be at least 60% of joist height for stability against rotation while under construction prior to sheathing install.
- Local and/or regional building codes may require meeting special conditions. Building codes often require special inspection of anchors installed in concrete and masonry. For compliance with these requirements, it is necessary to contact the local and/or regional building authority. Except where mandated by code, Simpson Strong-Tie products do not require special inspection.
- p. When connectors are attached to two CFS members of different thicknesses, the designer shall use the thinner of the two members for selecting allowable loads.

Additional Instructions for the Installer for Hybrid (Steel-to-Wood) Connections

- a. Bolt holes into wood members shall be at least a minimum of ½2" and no more than a maximum of ½6" larger than the bolt diameter (per the 2015 NDS 12.1.3.2 and AISI S100 Table J3-1, if applicable).
- b. Joist shall bear completely on the connector seat, and the gap between the joist end and the header shall not exceed 1/8" per ICC-ES AC261, ASTM D1761 and ASTM D7147 test standards (unless specifically noted otherwise).
- c. For holdowns, anchor bolt nuts should be finger-tight plus 1/2 to 1/2 turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut and impact wrenches should not be used. This may preload the holdown.

Additional Important Information and General Notes for Hybrid (Steel-to-Wood) Connections

These notes are in addition to the previous notes for steel-to-steel connections and are provided to ensure proper installation of Simpson Strong-Tie® products and must be followed fully.

a. Unless otherwise noted, allowable loads are for Douglas Fir–Larch under continuously dry conditions. Allowable loads for other species or conditions must be adjusted according to the code. The section from the AC13 criteria indicating the range of specific gravity reads as follows: 3.2.3 The species of lumber used shall have a specific gravity not greater than 0.55 as determined in accordance with the NDS. This chart shows specific gravity and perpendicular to grain compression capacities for the different wood species:

Species	Fc⊥	Specific Gravity
Douglas Fir-Larch (DFL)	625 psi	0.50
Southern Pine (SP)	565 psi	0.55
Spruce-Pine-Fir (SPF)	425 psi	0.42
Spruce-Pine-Fir South (SPF-S)	335 psi	0.36
Hem Fir (HF)	405 psi	0.43
Glulam	650 psi	0.50
LVL (DF/SP)	750 psi	0.50
LSL (E = 1.3×10^6)	680 psi	0.50
LSL (E ≥ 1.5 x 10 ⁶)	880 psi	0.50
Parallam® PSL	625 psi	0.50
Western Cedar	425 psi	0.36

- For face-mount hangers and straight straps, use 0.86 of Douglas Fir table loads for Spruce-Pine-Fir.
- A fastener that splits the wood will not take the design load.
 Evaluate splits to determine if the connection will perform as

- required. Dry wood may split more easily and should be evaluated as required. If wood tends to split, consider pre-boring holes with diameters not exceeding 0.75 of the nail diameter (2015/2018 NDS 12.1.5.3).
- d. Wood shrinks and expands as it loses and gains moisture, particularly perpendicular to its grain. Take wood shrinkage into account when designing and installing connections. Simpson Strong-Tie manufactures products to fit common dry lumber dimensions. If you need a connector with dimensions other than those listed in this catalog, Simpson Strong-Tie may be able to vary connector dimensions; contact Simpson Strong-Tie. The effects of wood shrinkage are increased in multiple lumber connections, such as floor-to-floor installations. This may result in the vertical rod nuts becoming loose, requiring post-installation tightening. (Reference ICC-ES ESR-2320 for information on Take-up Devices.)
- e. Top flange hangers may cause unevenness. Possible remedies should be evaluated by a professional and include using a face mount hanger, and notching the beam or cutting the subfloor to accommodate the top flange thickness.
- f. Built-up lumber (multiple members) must be fastened together to act as one unit to resist the applied load (excluding the connector fasteners). This must be determined by the designer.

Additional Instructions for the Designer for Hybrid (Steel-to-Wood) Connections

- Loads are based on the AISI S100 and the 2015 AF National Design Specifications (NDS), unless otherwise specified. Other code agencies may use different methodologies.
- b. Duration of load adjustments for fasteners into wood as specified by the code are as follows:
 - Do not alter installation procedures from those set forth in this catalog.
 - "FLOOR" and "DOWN" (100) no increase for duration of load. "SNOW" (115) 115% of design load for 2-month duration of load.
 - "ROOF LOAD" (125) 125% of design load for 7-day duration of load.
 - "EARTHQUAKE/WIND" (160) 160% of design load for earthquake/wind loading.
- c. Some catalog illustrations show connections that could cause cross-grain tension or bending of the wood during loading if not sufficiently reinforced. In this case, mechanical reinforcement should be considered.
- d. Most of the allowable loads published in this catalog are for use when utilizing the traditional Allowable Stress Design (ASD)

- methodology. A method for using Load and Resistance Factor Design (LRFD) for cold-formed steel is also included in AISI S100. When designing with LRFD, the nominal connector strength multiplied by the resistance factor must be used. If not listed or noted in a table footnote, contact Simpson Strong-Tie for the LRFD values of products listed in this catalog. A method for using Load and Resistance Factor Design (LRFD) for wood has been published in ASTM D5457. For more information, refer to the 2015/2018 NDS Appendix N, which contains a conversion procedure that can be used to derive LRFD capacities. When designing with LRFD, reference lateral resistances must be used.
- e. Pneumatic or powder-actuated fasteners may deflect and injure the operator or others. Unless otherwise noted, powder-actuated fasteners should not be used to install connectors. Pneumatic nail tools may be used to install connectors, provided the correct quantity and type of fasteners are properly installed in the fastener holes. Tools with fastener hole-locating mechanisms should be used. Follow the manufacturer's instructions and use the appropriate safety equipment. Over driving fasteners may reduce allowable loads. Contact Simpson Strong-Tie as needed.

Limited Warranty

For the Limited Warranty that applies to Simpson Strong-Tie products, please consult **strongtie.com/limited-warranties**. See p. 242 for the Limited Warranty in effect when this catalog was first published. To obtain a copy of the current Limited Warranty, contact us at **limited_warranty@strongtie.com**, (800) 999-5099 or Simpson Strong-Tie Company Inc., 5956 West Las Positas Boulevard, Pleasanton, CA 94588.

The Limited Warranty contains important disclaimers, limitations and exclusions, and applies only if the products have been properly specified, installed, maintained, and used in accordance with the design limits and the structural, technical, and environmental specifications in the Simpson Strong-Tie Documentation. All future purchases of Simpson Strong-Tie products are subject to the terms of the Limited Warranty in effect as of the purchase date.

Although products are designed for a wide variety of uses, Simpson Strong-Tie assumes no liability for confirming that any product is appropriate for an intended use, and each intended use of a product must be reviewed and approved by qualified professionals. Each product is designed for the load capacities and uses listed in the Simpson Strong-Tie Documentation, subject to the limitations and other information set forth therein. Due to the particular characteristics of potential impact events such as earthquakes and high velocity winds, the specific design and location of the structure, the building materials used, the quality of construction, or the condition of the soils or substrates involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie's specifications and the products are properly installed in accordance with applicable building codes, laws, rules and regulations.

Terms and Conditions of Sale

Product Use

Products in this catalog are designed and manufactured for the specific purposes shown, and should not be used with other connectors not approved by a qualified licensed/certified building design professional, a licensed professional engineer or licensed architect ("designer"). You should review our website and consult a qualified designer familiar with all applicable building codes each time you use a Simpson Strong-Tie product.

Indemnity

Any designer or other person who modifies any products, changes any installation procedures or designs any non-catalog products for fabrication by Simpson Strong-Tie Company Inc. shall, regardless of specific instructions to the user, indemnify, defend, and hold harmless Simpson Strong-Tie Company Inc. for any and all claimed loss or damage occasioned in whole or in part by such products.

Non-Catalog and Modified Products

Modifications to products or changes in installation procedures should only be made by a qualified professional designer. The performance of such modified products or altered installation procedures is the sole responsibility of the designer. Any person modifying Simpson Strong-Tie products must provide the installer with specific instructions on the modified products' specifications, installation and use.

Consult Simpson Strong-Tie Company Inc. for applications for which there is no catalog product, or for connectors for use in hostile environments, with excessive wood shrinkage, or with abnormal loading or erection requirements.

Non-catalog products must be designed by a qualified designer and will be fabricated by Simpson Strong-Tie in accordance with customer specifications.

Any modified, special order or non-catalog products, or any products that are not installed strictly in accordance with Simpson Strong-Tie installation procedures, are provided "AS IS" and without any representation or warranty of any kind.

Strong-Tie

Conversion Charts

Metric Conversion

Imperial	Metric	
1 in.	25.40 mm	
1 ft.	0.3048 m	
1 lb.	4.448N	
1 Kip	4.448 kN	
1 psi	6,895 Pa	

Bolt Diameter

in.	mm
3/8	9.5
1/2	12.7
5/8	15.9
3/4	19.1
7/8	22.2
1	25.4

Use these Roof Pitch to Hip/Valley Rafter Roof Pitch conversion tables only for hip/ valley rafters that are skewed 45° right or left. All other skews will cause the slope to change from that listed.

If Common Rafter Roof Pitch is...

1/12 5° 2/12 10° 3/12 14° 4/12 18° 5/12 23° 6/12 27° 7/12 30° 8/12 34° 9/12 37° 10/12 40°	Rise/Run	Slope	
3/12 14° 4/12 18° 5/12 23° 6/12 27° 7/12 30° 8/12 34° 9/12 37° 10/12 40°	1/12	5°	
4/12 18° 5/12 23° 6/12 27° 7/12 30° 8/12 34° 9/12 37° 10/12 40°	2/12	10°	
5/12 23° 6/12 27° 7/12 30° 8/12 34° 9/12 37° 10/12 40°	3/12	14°	
6/12 27° 7/12 30° 8/12 34° 9/12 37° 10/12 40°	4/12	18°	
7/12 30° 8/12 34° 9/12 37° 10/12 40°	5/12	23°	
8/12 34° 9/12 37° 10/12 40°	6/12	27°	
9/12 37° 10/12 40°	7/12	30°	
10/12 40°	8/12	34°	
	9/12	37°	
11/10 //00	10/12	40°	
11/12 42	11/12	42°	
12/12 45°	12/12	45°	

Then Hip/Valley Rafter Roof Pitch becomes...

Rise/Run	Slope	
1/17	3°	
2/17	7°	
3/17	10°	
4/17	13°	
5/17	16°	
6/17	19°	
7/17	22°	
8/17	25°	
9/17	28°	
10/17	30°	
11/17	33°	
12/17	35°	

US Standard Steel Gauge Equivalents in Nominal Dimensions

Equivalente in Normina Dimensions					
Min. Thick.	Design Thick.	Ref.	Thickness of Steel Sheets (in.)		
mil	in.	Ga. ²	Uncoated Steel	Galvanized Steel (G90)	ZMAX® (G185)
229	0.2405	3	0.239	_	_
171	0.1795	7	0.179	0.186	_
155	0.1668	8	_	0.167	0.169
118	0.1240	10	0.134	0.138	0.140
111	0.1163	11	0.120	0.123	0.125
97	0.1017	12	0.105	0.108	0.110
68	0.0713	14	0.075	0.078	0.080
54	0.0566	16	0.060	0.063	0.065
43	0.0451	18	0.048	0.052	0.054
33	0.0346	20	0.036	0.040	0.042
27	0.0283	22	0.030	0.033	0.035

- 1. Steel thickness may vary according to industry mill standards.
- 2. Gauge numbers shown are for reference only.

Corrosion Information

Understanding the Corrosion Issue

Metal connectors, fasteners and anchors can corrode and lose carrying capacity when installed in corrosive environments or when installed in contact with corrosive materials. The many variables present in a building environment make it impossible to predict accurately whether, or when, corrosion will begin to reach a critical level. This relative uncertainty makes it crucial that specifiers and users be knowledgeable about the potential risks and select a product suitable for the intended use. When there is any uncertainty about the possible corrosion risks of any installation, a qualified professional should be consulted. Because of the risks posed by corrosion, periodic inspections should be performed by a qualified engineer or qualified inspector and maintenance performed accordingly.

It's common to see some corrosion in outdoor applications. Even stainless steel can corrode. The presence of some corrosion does not mean that load capacity has been affected or that failure is imminent.

If significant corrosion is apparent or suspected, then the wood, fasteners, anchors, and connectors should be inspected by a qualified engineer or qualified inspector. Replacement of affected components may be appropriate.

Because of the many variables involved, Simpson Strong-Tie cannot provide estimates of the service life of connectors, anchors, and fasteners. We suggest that all users and specifiers obtain recommendations on corrosion from the suppliers of the materials that will be used with Simpson Strong-Tie products, in particular, treated wood or concrete. We have attempted to provide basic knowledge on the subject here, and have additional information in our technical bulletins on the topic (strongtie.com/info). The Simpson Strong-Tie website should always be consulted for the latest information.

Corrosion Information

Corrosion Conditions

Corrosion can result from many combinations of environmental conditions, materials, construction design, and other factors, and no single guideline addresses all corrosion possibilities. Nevertheless, important corrosion information can be obtained from the American Wood Protection Association (AWPA), the International Building Code (IBC), International Residential Code (IRC), and local building codes. The following discussion provides general guidelines and approaches for the selection of Simpson Strong-Tie products for various construction conditions, but is not intended to supersede the guidelines of the AWPA, IBC, IRC, or local building codes.

Corrosion issues for Simpson Strong-Tie products generally fall into five categories:

1. Environmental and Construction Factors

Many environments and materials can cause corrosion, including ocean salt air, condensation, duration of wetness, fire retardants, fumes, fertilizers, chlorides, sulfates, preservative-treated wood, de-icing salts, dissimilar metals, soils, and more. Designers must take all of these factors into account when deciding which Simpson Strong-Tie products to use with which corrosion-resistant coatings or materials.

The design, quality of construction, and misinstallation can directly affect the corrosion resistance of products. A product intended and installed for use in dry-service environment may corrode if the structure design or building materials allow moisture intrusion, or expose the product to corrosive conditions, such as moisture or chemicals contained in the construction materials, soils, or atmospheres.

2. Chemically Treated Lumber

Some wood-preservative or fire-retardant chemicals or chemical retention levels create increased risk of corrosion and are corrosive to steel connectors and fasteners. For example, testing by Simpson Strong-Tie has shown that ACQ-Type D is more corrosive than Copper Azole, Micronized Copper Azole, or CCA-C. At the same time, other tests have shown that inorganic boron treatment chemicals, specifically SBX-DOT, are less corrosive than CCA-C.

Because different chemical treatments of wood have different corrosion effects, it's important to understand the relationship between the wood treatment chemicals and the coatings and base metals of Simpson Strong-Tie products.

The preservative-treated wood supplier should provide all of the pertinent information about the treated wood product. The information should include the AWPA Use Category Designation, wood species group, wood treatment chemical, and chemical retention. See building code requirements and appropriate evaluation reports for corrosion effects of wood treatment chemicals and for fastener corrosion resistance recommendations.

With Fire-Retardant (FRT) Wood, the 2015 and 2018 IBC Section 2304.10.5, 2021 IBC Section 2304.10.6, and 2015, 2018 and 2021 IRC Section R317.3.4 refer to the manufacturers for fastener corrosion reqirements. In the absence of recommendations from the FRT manufacturer, the building codes require fasteners to be hot-dip galvanized, stainless steel, silicon bronze or copper. Simpson Strong-Tie further requires that the fastener is compatible with the metal connector hardware. Fastener shear and withdrawal allowable loads may be reduced in FRT lumber. Refer to the FRT manufacturer's evaluation report for potential reduction factors.

3. Dissimilar Metals and Galvanic Corrosion

Galvanic corrosion occurs when two electrochemically dissimilar metals contact each other in the presence of an electrolyte (such as water) that acts as a conductive path for metal ions to move from the more anodic to the more cathodic metal. Good detailing practice, including the following, can help reduce the possibility of galvanic corrosion of fasteners and connectors:

- Use fasteners or anchors and connectors with similar electrochemical properties
- Use insulating materials to separate dissimilar metals
- Ensure that the fastener or anchor is the cathode when dissimilar connector metals are present
- Prevent exposure to and pooling of electrolytes

Galvanic Series of Metals

Corroded End (Anode) Magnesium, Magnesium alloys, Zinc Aluminum 1100, Cadmium, Aluminum 2024-T4, Iron and Steel Lead, Tin, Nickel (active), Inconel Ni-Cr alloy (active), Hastelloy alloy C (active) Brasses, Copper, Cu-Ni alloys, Monel Nickel (passive) 304 stainless steel (passive), 316 stainless steel (passive), Hasteloy alloy C (passive) Silver, Titanium, Graphite, Gold, Platinum

If you are uncertain about the galvanic corrosion potential of any installation, always consult with a corrosion expert. See the product pages for particular parts for more information regarding what coating systems are recommended or required for use with the parts in question.

4. Hydrogen-Assisted Stress Corrosion Cracking

Some hardened fasteners may experience premature failure from hydrogen-assisted stress-corrosion cracking if exposed to moisture. These fasteners are recommended for use only in dry-service conditions.

5. Indoor Swimming Pools

Indoor swimming pool environments are extremely corrosive to steel products. And some stainless steel is highly susceptible to stress corrosion cracking (SCC) under sustained loads in this environment. SCC can result in sudden failures. Instead of stainless steel, it is advised to use a duplex coated, post-hot-dip galvanized or ZMAX® coated low carbon steel for any load-bearing components used in swimming pool environments. Regular maintenance is strongly advised. See **strongtie.com/corrosion** for additional information.

Corrosion Information

Guidelines for Selecting Materials and Coatings

In the discussion and charts of this section, Simpson Strong-Tie presents a three-step system to determine which product coatings and base metals to use in a range of corrosion conditions. These are general guidelines that may not consider all relevant application criteria. Refer to product-specific information for additional guidance.

Simpson Strong-Tie evaluated the AWPA Use Categories (See AWPA U1-16) and ICC-ES AC257 Exposure Conditions and developed a set of corrosion resistance recommendations. These recommendations

address the coating systems and materials used by Simpson Strong-Tie for fastener, connector, and anchor products. Although the AWPA Use Categories and ICC-ES AC257 Exposure Conditions specifically address treated-wood applications and some common corrosion agents, Simpson Strong-Tie believes that its recommendations may be applied more generally to other application conditions, insofar as the service environments discussed are similar. You should consult with a corrosion engineer concerning the application where advisable.

Step 1 — Evaluate the Corrosion Conditions

- Dry Service: Generally INTERIOR applications including wall and ceiling cavities, and in raised floor applications in enclosed buildings that have been designed to prevent condensation and exposure to other sources of moisture. Prolonged periods of wetness during construction should also be considered, as this may constitute a Wet Service or Elevated Service condition. Dry Service is typical of AWPA UC1 and UC2 for wood treatment and AC257 Exposure Condition 1. Keep in mind that dry-service environment may contain airborne salts. AC257 Exposure Condition 2 reflects the presence of airborne salt in a dry-service environment and corrosion hazard to exposed metal surfaces. It does not include effects of treatment chemicals. This condition is generally considered in Elevated and Uncertain assessments.
- Wet Service: Generally EXTERIOR construction in conditions other than elevated service. These include Exterior Protected and Exposed and General Use Ground Contact as described by AWPA UC4A. The AWPA U1 standard classifies exterior above-ground
- treatments as Use Categories UC3 (A and B) depending on moisture run-off; and for exterior ground-contact levels of protection, it has Use Categories UC4 (A-C). ICC-ES AC257 considers the exterior exposure to be limited by the presence of treatment chemicals, and corrosion accelerators. In general, the AC257 Exposure Condition 1 includes AWPA Use Categories UC1 (interior/dry) and UC2 (interior/damp), while Exposure Condition 3 is a surrogate to UC3A, 3B, and 4A (exterior, above-ground and ground-contact, general use). The ICC-ES AC257 Exposure Conditions 2 and 4 are exposures that are salt environments.
- Elevated Service: Includes fumes, fertilizers, soil, some preservative-treated wood (AWPA UC4B and UC4C), industrial-zone atmospheres, acid rain, salt air, and other corrosive elements.
- Uncertain: Unknown exposure, materials, or treatment chemicals.
- Ocean/Water Front Service: Marine environments that include airborne chlorides, salt air, and some salt splash. Environments with de-icing salts are included.

Step 2 — Determine Your Corrosion Resistance Classification

Corrosion Resistance Classifications

			Mater	ial to Be Fas	tened			
	Untreated							
Environment	Wood or Other Material	SBX-DOT Zinc Borate	Chemical Retention ≤ AWPA, UC4A	Chemical Retention > AWPA, UC4A	ACZA	Other or Uncertain	FRT Wood	
Dry Service	Low	Low	Low	High	Medium	High	Medium	
Wet Service	Medium	N/A	Medium	High	High	High	High	
Elevated Service	High	N/A	Severe	Severe	High	Severe	N/A	
Uncertain	High	High	High	Severe	High	Severe	Severe	
Ocean/Water Front	Severe	N/A	Severe	Severe	Severe	Severe	N/A	

Additional Considerations

- Always consider the importance of the connection as well as the cost of maintenance and replacement.
- 2. If the information about treatment chemicals in an application is incomplete, or if there is any uncertainty as to the service environment of any application, Simpson Strong-Tie recommends the use of a Type 300 Series stainless steel. Simpson Strong-Tie has evaluated the corrosion effects of various formulations of wood treatment chemicals ACZA, ACQ, CCA, MCA, CA, and salt as corrosion accelerators. Simpson Strong-Tie has not evaluated all formulations and retentions of the named wood treatment chemicals other than to use coatings and materials in the severe category. Manufacturers may independently provide test results or other product information. Simpson Strong-Tie expresses no opinion regarding such information.
- 3. Type 316/305/304 stainless-steel products are recommended where preservative-treated wood used in ground contact has a chemical retention level greater than those for AWPA UC4A; CA-C, 0.15 pcf (pounds per cubic foot); CA-B, 0.21 pcf; micronized CA-C, 0.14 pcf; micronized CA-B, 0.15 pcf; ACQ-Type D (or C), 0.40 pcf. When wood treated with micronized CA-C and micronized CA-B with treatment retentions up to UC4B is in dry service, hot-dip galvanized fasteners and connectors may be suitable.

- Mechanical galvanizations C3 and N2000 should not be used in conditions that would be more corrosive than AWPA UC3A (exterior, above ground, rapid water run off).
- Some chemically treated wood may have chemical retentions greater than specification, particularly near the surface, making it potentially more corrosive than chemically treated wood with lower retentions. If this condition is suspected, use Type 316/305/304 stainless-steel, silicon bronze, or copper fasteners.
- 6. Some woods, such as cedars, redwood, and oak, contain water-soluble tannins and are susceptible to staining when in contact with metal connectors and fasteners. According to the California Redwood Association (calredwood.org), applying a quality finish to all surfaces of the wood prior to installation can help reduce staining.
- 7. Anchors, fasteners and connectors in contact with FRT lumber shall be hot-dip galvanized or stainless steel, unless recommended otherwise by the FRT manufacturer. Many FRT manufacturers permit low-corrosion-resistant connector and fastener coatings for dry-service conditions.
- 8. Simpson Strong-Tie does not recommend painting stainless-steel anchors, fasteners or connectors. Imperfections or damage to the paint can facilitate collection of dirt and water that can degrade or block the passive formation of the protective chromium oxide film. When this happens, crevice corrosion can initiate and eventually become visible as a brown stain or red rust. Painting usually does not improve the corrosion resistance of stainless steel.

Corrosion Information

Guidelines for Selecting Materials and Coatings (cont.)

Step 3 — Match Your Corrosion Resistance Classification to the Coatings and Materials Available

Not all products are available in all finishes. Contact Simpson Strong-Tie for product availability, ordering information and lead times.

Coatings and Materials Available for Connectors

Level of Corrosion Resistance	Coating or Material	Description			
		Connectors	Fastener Material or Finish		
	Gray or Black Paint	Organic paint intended to protect the product while it is warehoused and in transit to the jobsite.	Distri		
Low	Powder Coating	Baked-on paint finish that is more durable than standard paint.	Bright, Hot-Dip Galvanized, Mechanically Galvanized, or Double-Barrier Coating		
	Galvanized	Standard (G90) zinc-galvanized coating containing 0.90 oz. of zinc per square foot of surface area (total both sides).	or Bouble Burner Country		
	7/MAX G185	Galvanized (G185) 1.85 oz. of zinc per square foot of surface area (hot-dip galvanized per ASTM A653) total for both sides. Products with a powder-coat finish over a ZMAX® base have the same level of corrosion resistance.	Hot-Dip Galvanized, Mechanically Galvanized, or Double-Barrier Coating		
Medium	HOTPIPD (G GALVANIZED®	Products are hot-dip galvanized after fabrication (14 ga. and thicker). The coating weight increases with material thickness. The minimum average coating weight is 2.0 oz./ft.² (per ASTM A123) total for both sides. Anchor bolts are hot-dip galvanized per ASTM F2329.	* Bright fasteners may be used with ZMAX or HDG connectors where low corrosion resistance is allowed.		
High/Severe	Type 316 Stainless Steel	Type 316 stainless steel is a nickel-chromium austenitic grade of stainless steel with 2–3% molybdenum. Type 316 stainless steel is not hardened by heat treatment and is inherently nonmagnetic. It provides a level of corrosion protection suitable for severe environments, especially environments with chlorides.	Type 316 Stainless Steel		

Dry Service

Wet Service

Elevated Service / Severe

SIMPSON Strong-Tie

Guidelines for Selecting Materials and Coatings (cont.)

Step 3 — Match Your Corrosion Resistance Classification to the Coatings and Materials Available (cont.)

Not all products are available in all finishes. Contact Simpson Strong-Tie for product availability, ordering information and lead times.

Coatings and Materials Available for Fasteners

Level of Corrosion Resistance	Coating or Material	Description	
		Fasteners	Applicable Products
	Bright	No surface coating.	Nails
Low	Electrocoating (E-Coat™)	Electrocoating utilizes electrical current to deposit the coating material on the fastener. After application, the coating is cured in an oven. Electrocoating provides a minimum amount of corrosion protection and is recommended for dry, low-corrosive applications.	Strong-Drive® SDWF, SDW and SDWV Screws
	Clear and Bright Zinc, ASTM F1941	Zinc coatings applied by electrogalvanizing processes to fasteners that are used in dry service and with no environmental or material corrosion hazard.	SD8 Wafer Head Screw
	Zinc Plating with Baked-On Ceramic Coating	A baked ceramic barrier coating applied over top of electroplated zinc provides increased protection in mildly corrosive environments.	Titen Turbo™ Concrete and Masonry Screw
	HOTPIPD G GALVANIZED® ASTM A153, Class D	Hot-dip galvanized fasteners %" and smaller in diameter in accordance with ASTM A153, Class D. Hot-dip galvanized fasteners are compliant with the 2015, 2018 and 2021 IRC and IBC.	Strong-Drive SCN CONNECTOR Nail
	Quik Guard® Coating	Quik Guard coatings are proprietary coating systems that consist of an electroplated zinc base layer and organic top coats. The corrosion resistance is equivalent to hot-dip galvanization (ASTM A153, Class D) in some exposures and in most non-marine environments, and described by ICC-ES, AC257 Exposures 1 and 3.	Strong-Drive XL LARGE-HEAD METAL Screw
Medium	Type 410 Stainless Steel with Protective Top Coat	Carbon martensitic grade of stainless steel that is inherently magnetic, with an added protective top coat. This material can be used in mild atmospheres and many mild chemical environments.	Titen Stainless-Steel Concrete and Masonry Screw
	Mechanically Galvanized Coating, ASTM B695, Class 55	Simpson Strong-Tie® Strong-Drive SD Connector screws are manufactured with a mechanically applied zinc coating in accordance with ASTM B695, Class 55, with a supplemental overcoat. These fasteners are compatible with painted and zinc-coated (G90 and ZMAX) connectors and are recognized in evaluation reports that can be found on strongtie.com .	Strong-Drive SD CONNECTOR Screw
	Double-Barrier Coating	Simpson Strong-Tie Strong-Drive SDS Heavy-Duty Connector screws and Outdoor Accents® structural wood screws are manufactured with double-barrier coating that provides a level of corrosion protection equaling that provided by HDG coating and are recognized in evaluation reports that can be found on strongtie.com.	Strong-Drive SDS HEAVY-DUTY CONNECTOR Screw Outdoor Accents Connector Screw and Structural Wood Screw
	HOTDIPD G GALVANIZED® ASTM A153, Class C	Simpson Strong-Tie Strong-Drive Timber-Hex screws are hot-dip galvanized in accordance with ASTM A153, Class C. These hot-dip galvanized fasteners have a minimum average of 1.25 oz./ft.² of zinc coating and are compliant with the 2015, 2018 and 2021 IRC (R317.3) and IBC.	Strong-Drive TIMBER-HEX HDG Screw
High/Severe	Type 316 Stainless Steel	Type 316 stainless steel is a nickel-chromium austenitic grade of stainless steel with 2-3% molybdenum. It provides a level of corrosion protection suitable for severe environments, especially environments with chlorides. Type 316 stainless-steel fasteners are compliant with the 2015, 2018 and 2021 IRC and IBC.	Strong-Drive SCNR CONNECTOR Nail Strong-Drive SDS HEAVY-DUTY CONNECTOR Screw Strong-Drive SD CONNECTOR SS Screw Strong-Drive SDWS TIMBER SS Screw

Fastening Information

Round Holes

Purpose: To fasten a

To fasten a connector.

Fill Requirements: Always fill, unless noted otherwise.

Obround Holes

Purpose:

To make fastening a connector in a tight location easier.

Fill Requirements: Always fill, unless noted otherwise.

Hexagonal Holes

Purpose:

To fasten a connector to concrete or masonry.

Fill Requirements: Always fill when fastening a connector to concrete or masonry.

Triangular Holes

Purpose:

To increase a connector's strength or to achieve max. strength.

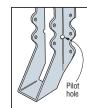
Fill Requirements: When the designer specifies max. nailing.

Diamond Holes

Purpose:

To temporarily fasten a connector to make installing it easier.

Fill Requirements:



Square Holes

Purpose:

To provide fastening option for unique custom designs

Fill Requirements:
Only when specified by designer.

Pilot Holes

Tooling holes for manufacturing purposes. No fasteners required.

To achieve the loads shown in this catalog, the designer must verify that the self-drilling screws used for connector installation have P_{SS}/Ω and P_{tS}/Ω values greater than or equal to the values tabulated in this table.

Hex head screws shown are required for connectors in this catalog. Where sheathing or finishes will be applied over the screws and low-profile heads are needed (such as with bracing connectors, hurricane ties and stud-plate ties), the designer is to ensure that the minimum screw head diameter complies with ASME B18.6.4.

Minimum ASD Loads for Screws (lb.)

Screw No. Diameter Diameter Designation	Nominal Washer	Snear	All	owable She (P	ear Connec ns/Ω, Pss/!		jth	Allowable	Allowable Tensile Pull-Out Strength $(P_{not}/\Omega, P_{ts}/\Omega)$					
	Diameter		Steel Thickness mil (ga.)				Screw Tension	Steel Thickness mil (ga.)						
	Strength (P_{SS}/Ω)	33-33	43-43	54-54	68-68	97–97	Strength (P_{ts}/Ω)	33	43	54	68	97		
		(20-20)	(18–18)	(16-16)	(14-14)	(12–12)		(20)	(18)	(16)	(14)	(12)		
#8	0.164	0.318	470	165	245	470	470	470	630	70	95	170	215	305
#10	0.190	0.375	540	175	265	535	540	540	820	85	110	200	250	355
#12	0.216	0.375	840	190	280	570	805	840	845	95	125	225	285	405
#14	0.242	0.500	1,045	200	295	605	850	1,045	1,220	105	140	250	320	455

- 1. Allowable loads are per AISI S-100 and are for use when utilizing the traditional Allowable Stress Design methodology. The tabulated loads may be multiplied by a Factor of Safety (Ω) of 3 to determine the screw nominal strength. The LRFD load may be determined by multiplying the nominal screw load by a Resistance Factor (Φ) of 0.50.
- 2. Allowable loads may not be increased for wind or seismic load unless otherwise noted.
- 3. Allowable loads are based on cold-formed steel members with a minimum yield strength, F_y, of 33 ksi and tensile strength, F_u, of 45 ksi for 43 mil (18 ga.) and thinner, and a minimum yield strength of 50 ksi and tensile strength of 65 ksi for 54 mil (16 ga.) and thicker.
- 4. Allowable loads are based on design steel thickness for 33 mil = 0.0346°, 43 mil = 0.0451°, 54 mil = 0.0566°, 68 mil = 0.0713°, and 97 mil = 0.1017° per AISI S240, Table A5-1.
- Self-drilling tapping screw fasteners for steel-to-steel connections used for connectors in this catalog shall be in compliance with ASTM C1513.
- 6. Minimum required screw length is the greater of ¾" and the minimum length required for the screw to extend through the steel connection a minimum of (3) exposed threads per AISI S240, Section C4.1 General Provisions Standard, Sect. D1.3.
- 7. Screw diameters per AISI S240, Table C-B1.5.1.1-1.
- 8. Size 1/4"-diameter self-tapping screws may be substituted for #14 screws.

#8x¾" #10x¾" #12x¾" #14x1" Shown Actual Size

See the current Fastening Systems catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

Screw Suitability

Screw Point	Screw	Maximum Mate	rial Thickness ^{1,2}	
Type	Size	(in.)	(mm)	
	#6	0.100	2.54	
#2	#8	0.100	2.54	
	#10	0.100	2.54	
	#7	0.125	3.18	
	#8	0.140	3.56	
#3	#10	0.175	4.45	
	#12	0.210	5.33	
	#14	0.220	5.59	
#4	#12	0.250	6.35	
#4	#14	0.250	6.35	
#5	#12	0.500	12.70	
#3	#14	0.500	12.70	

- Total thickness of all steel, including any spacing between layers.
 Drill and tap capacities
- may vary.

 3. Table is guideline only; see individual product for specific maximum material thickness.

CFS Framing Member

Mil	Cougo	Design T	hickness	Minimum	Thickness
IVIII	Gauge	(in.)	(mm)	(in.)	(mm)
18	25	0.0188	0.48	0.0179	0.45
27	22	0.0283	0.72	0.0269	0.68
30	20 (drywall)	0.0312	0.79	0.0296	0.75
33	20 (structural)	0.0346	0.88	0.0329	0.84
43	18	0.0451	1.14	0.0428	1.09
54	16	0.0566	1.44	0.0538	1.37
68	14	0.0713	1.81	0.0677	1.72
97	12	0.1017	2.58	0.0966	2.45

1. One "mil" is 1/1000 (0.001) of an inch. Mil thickness measures the uncoated base material.

CFS DESIGNERSoftware Solutions

Overview

Efficient, accurate, AISI-compliant design of cold-formed steel (CFS) structures is made possible by Simpson Strong-Tie CFS Designer software. Powerful tools automate the design of common CFS systems, complicated AISI provisions, complex loading scenarios and more. A modern development platform and intuitive user interface enable fast input and simplify file management, as multiple systems can be saved within a single job file. Output is generated in PDF files that can be saved separately, if needed.

Features

Wall Framing design tools to design load-bearing framing and non-load-bearing curtain walls. Modules include:

- Wall stud
- Kneewall
- 1-span opening
- Stacked wallSpandrel
- 2-span opening

Joist Framing design tools for floor that automate pattern loading, and rafter design that designs load combinations and pinched axial loads. Modules include:

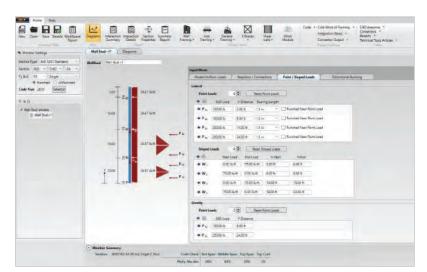
- Floor joist
- Rafters

General Framing design tools for general design. Modules include:

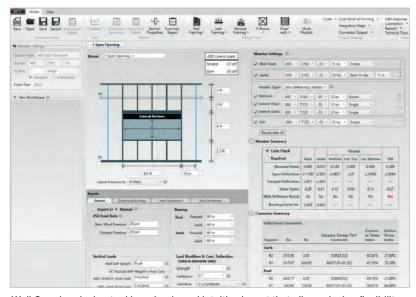
- · General interaction
- · Beam input

X-Bracing design tools to design elements and components with simple and robust design for LFRS (lateral force resisting system) up to eight stories that incorporate AISI S240 and S400. Modules include:

• Simple


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

• LFRS


Shearwall design tools to design elements and components with simple and robust design for LFRS up to eight-story shearwall design that incorporate AISI S240 and S400 with the LFRS module. Modules inlcude:

- Simple
- LFRS

Wind Module design tools to design components and cladding loads for walls and roof. Wind module can be imported to wall modules.

Wall Stud design tool allows up to three-span beam with overhangs on each end, importing of wind loads, additional sloped or point loads and design connections.

Wall Opening design tool is a simple and intuitive layout that allows design flexibility in all framing components of the opening.

Visit **strongtie.com/cfsdesigner** to download the CFS Designer software or call your Simpson Strong-Tie representative at **(800) 999-5099** for more information.

General Information and Notes

General Information and Notes for Curtain-Wall Framing Connectors

Slide-clip and fixed-clip curtain-wall framing connectors represent key components that comprise a continuous load path between curtain-wall steel-stud framing and primary building structure.

In light-frame cold-formed steel construction, primary building structures typically consist of structural steel or structural concrete base material. Hence, connectors for curtain-wall framing are designed to anchor to steel or concrete to resist tension and compression load, perpendicular to wall, due to wind pressure, shear load due to gravity weight of the CFS framing, and in-plane load, parallel to wall due to earthquake or high wind force.

General Notes

- Allowable loads are for use when utilizing the traditional Allowable Stress Design methodology. Contact Simpson Strong-Tie for LRFD loads unless otherwise noted.
- 2. Allowable loads may not be increased for wind or earthquake load.
- Allowable loads are based on cold-formed steel members with a minimum yield strength, Fy, of 33 ksi and tensile strength, Fu, of 45 ksi for 43 mils (18 ga.) and thinner, and a minimum yield strength of 50 ksi and tensile strength of 65 ksi for 54 mils (16 ga.) and thicker. (U.O.N.)
- 3. Clips do not replace lateral or stability bracing. Design of bracing is the responsibility of the designer.
- 4. It is the responsibility of the designer to verify the adequacy of the stud. Allowable loads are based on clips installed an adequate distance away from penetrations, notches, ends of studs and other conditions that may affect the clip performance.
- It is the responsibility of the designer to check the adequacy of the supporting structure for loads imposed by connectors.
- Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, use these products in dry and non-corrosive environments only.

Anchorage to Structural Steel

Anchor to structural steel using self-drilling screws, powder-actuated fasteners, or welding are based on installation in a minimum $\%_6$ " thick structural steel with $F_y = 36$ ksi. (U.O.N.)

- 1. Allowable loads for #12-24 self-drilling screws are based on a minimum nominal shear strength, P_{SS} , of 2,520 lb. and nominal tension strength, P_{tS} , of 2,535 lb. It is the responsible of the designer to select the proper length fasteners based on installation need. Screw length must ensure fastener extends through the connection a minimum of three exposed threads.
- 2. Allowable loads for Simpson Strong-Tie® PDPAT-62KP powder-actuated "tophat" fasteners also apply to alternate fasteners with a minimum shank 0.157", a minimum head diameter of 0.300", a minimum allowable shear of 410 lb. and tension strength of 260 lb. for A36 steel, and a minimum allowable shear of 420 lb. and tension strength of 305 lb. for A572 or A992 steel per ESR-2138. "Tophat" fasteners are recommended to ensure adequate clamping force and consistent installations.
- 3. Allowable loads for welded connections require E70XX electrodes with a minimum throat size equal to the clip thickness. Welding shall be in compliance with AWS D1.3. Welding galvanized steel may produce harmful fumes; follow proper welding procedures and precautions.

Anchorage to Structural Concrete

Anchor to concrete or masonry such as Titen Turbo $^{\text{\tiny M}}$ screws, Titen HD $^{\text{\tiny M}}$ screw anchor, Strong-Bolt $^{\text{\tiny M}}$ 2, or various type of epoxy for post installed are based on installation in concrete with a minimum $f'_{\text{\tiny C}}=2,500$ psi and a maximum $f'_{\text{\tiny C}}=4,000$ psi. Reference the current *Anchoring, Fastening, Restoration and Strengthening Systems for Concrete and Masonry* catalog at **strongtie.com** for more information.

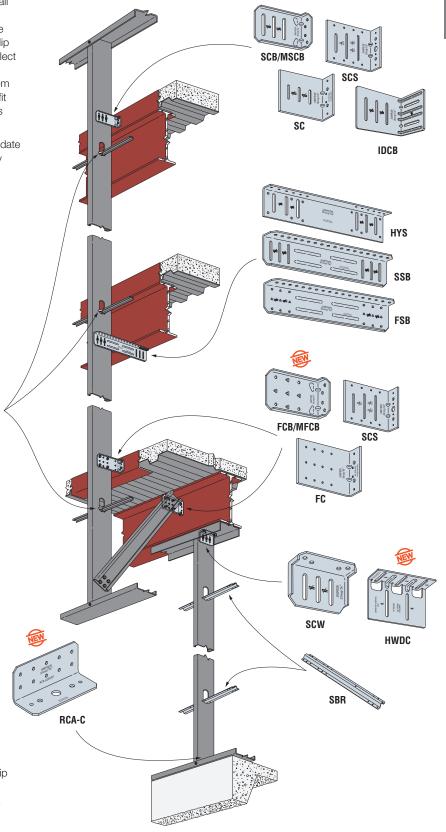
- 1. Titen Turbo is a screw anchor for use in uncracked concrete as well as uncracked masonry. Titen Turbo is available in ¼" diameter and it includes a drill bit in each box.
- 2. Titen HD is a heavy-duty screw anchor for use in cracked and uncracked concrete as well as uncracked masonry. Titen HD is available in ¼", %" and ½" diameter for anchorage used in curtain-wall framing.
- 3. Strong-Bolt 2 is a wedge-type expansion anchor designed for optimal performance in cracked and uncracked concrete as well as uncracked masonry. Strong-Bolt 2 is available in ¼", ¾" and ½" diameter for anchorage.

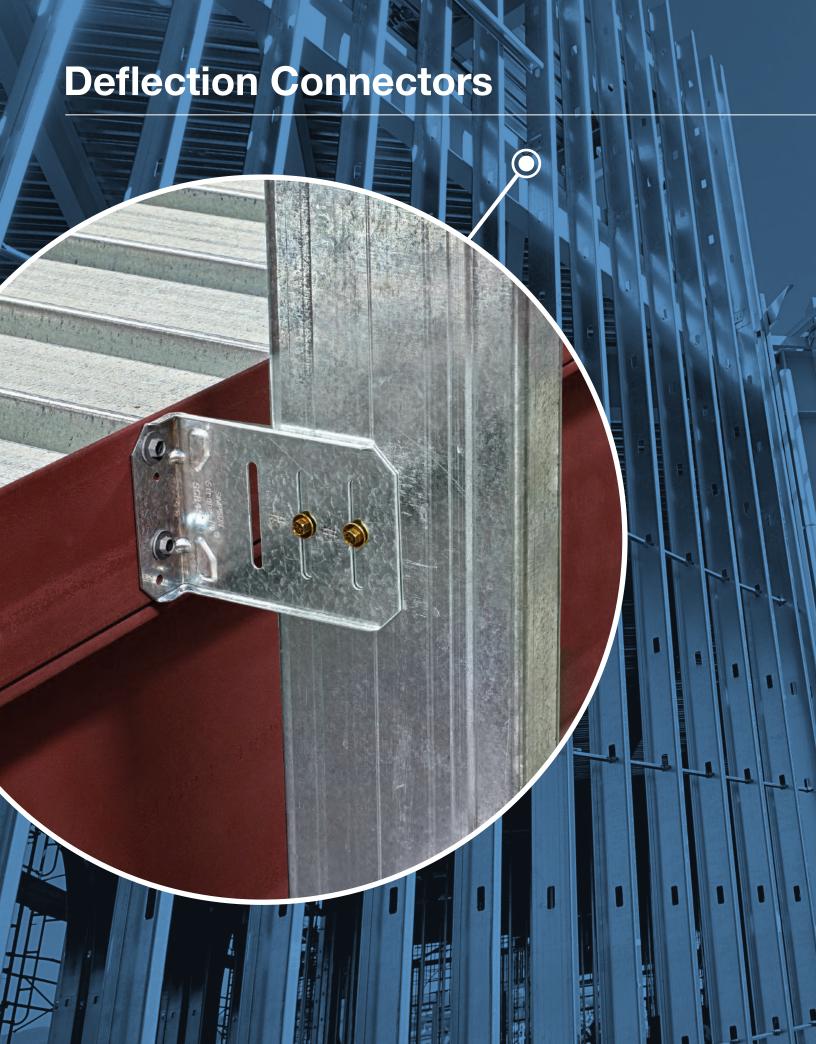
Innovative Solutions for Curtain-Wall Framing

SUBH

Simpson Strong-Tie has developed a line of connectors for use with curtain-wall steel stud framing. Curtain-wall projects require a variety of connectors that provide a load path from the curtain wall to the primary structure for wind loads, seismic loads and dead loads. Slide-clip connectors enable the structural building frame to deflect independently of the curtain-wall system. Fixed-clip connectors support the dead load of a curtain wall from the structural frame. Fixed clips have the added benefit of providing connector solutions for load-bearing walls and for roof systems utilizing steel trusses and rafters.

Our connectors for curtain-wall construction accommodate many different bypass framing applications in a variety of standoff conditions. We also offer connectors for head-of-wall and strut applications.


Tailored to Your Design


Our standard slide clips accommodate either 3/4" or 1" of both upward and downward movement, equivalent to an L/360 live-load deflection for a 30' span. Our standard clips also accommodate standoffs as large as 25". For deflections greater than 1", or job-specific conditions, Simpson Strong-Tie can provide custom clips to suit most framing needs (see p. 135).

Complete, Tested Solutions

Designers of curtain walls will often know the capacity of a connector, but since the capacity does not take into account the way in which the connector is anchored to the supporting structure, the designer must then manually calculate this important aspect of the connection design. These calculations are complicated by considerations of eccentric and prying forces that often exist but are difficult to predict. Through comprehensive testing Simpson Strong-Tie provides total, code-listed connector solutions. Our testing extends from the capacity of the connector and its attachment to the framing, to the anchorage of the connector to the primary structure. By providing complete data on the entire connection system, we save the designer time and ensure that all forces, including eccentric and prying forces, are adequately considered.

As with all Simpson Strong-Tie® products, our slide-clip and fixed-clip connectors for curtain-wall steel stud framing carry our promise of quality and performance, and are backed by prompt, knowledgeable service.

SCB/MSCB Bypass Framing Slide-Clip Connector

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The SCB/MSCB slide-clip connectors are high-performance connectors for bypass framing applications designed to reduce design time and overall installed cost. Various anchorage methods have been tested, and the resulting allowable loads eliminate the need to design connector anchorage. The SCB/MSCB can accommodate applications that typically require two parts with a single connector, reducing material and labor cost. These connectors are manufactured in five different lengths to accommodate a variety of standoff conditions and steel-stud sizes.

Features:

- Provides a full 1" of both upward and downward movement
- The precision-manufactured shouldered screws provided with the SCB/MSCB connector are designed to prevent overdriving and to ensure the clip functions properly
- Strategically placed stiffeners, embossments and anchor holes maximize connector performance
- Simpson Strong-Tie® No-Equal® stamps mark the center of the slots to help ensure correct shouldered-screw placement

Material: SCB — 54 mil (16 ga.); MSCB — 68 mil (14 ga.)

Finish: Galvanized (G90)

Installation:

- Use the specified type and number of anchors.
- Use the specified number of XLSH34B1414 #14 shouldered screws (included).
 Install shouldered screws in the slots adjacent to the No-Equal stamp.
- Use a maximum of one screw per slot.
- For installations to wood framing, see Simpson Strong-Tie engineering letter L-CF-DEFCLIPW at **strongtie.com**.

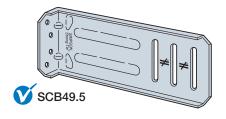
Codes: See p. 13 for Code Reference Key Chart

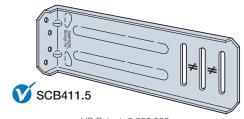
Ordering Information:

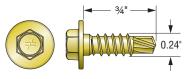
SCB43.5-KT contains:

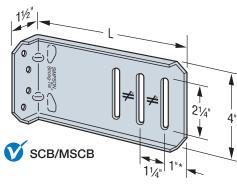
- 25 connectors
- (55) XLSH34B1414 #14 shouldered screws

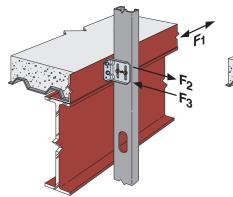
SCB45.5-KT, MSCB45.5-KT, SCB47.5-KT, MSCB47.5-KT, SCB49.5-KT, and SCB411.5-KT contain:

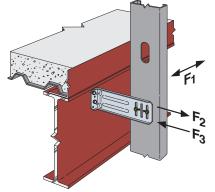

- 25 connectors
- (83) XLSH34B1414 #14 shouldered screws

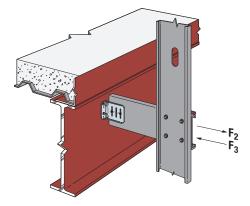

Note: Replacement #14 shouldered screws for SCB/MSCB connectors are XLSH34B1414-RP83






XLSH34B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)



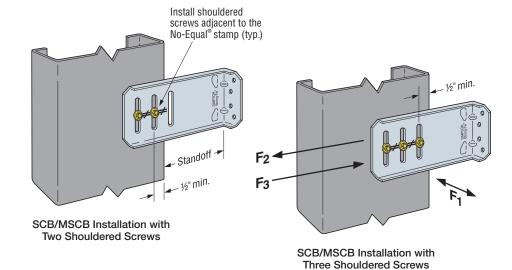

*3/4" for SCB43.5

SCB/MSCB Bypass Framing Slide-Clip Connector

Typical SCB/MSCB Installation

SCB/MSCB Installation at Fascia Beam

Typical SCB/MSCB Installation with Stud Strut


SCB/MSCB Allowable Connector Loads (lb.)

	Connector		No. of #14	Stud Thickness													
Model No.	Material Thickness	L (in.)	Shouldered Screws ¹	33	mil (20 g	a.)	43	43 mil (18 ga.)		54 mil (16 ga.)			68	3 mil (14 g	a.)	Code Ref.	
	mil (ga.)			F1 ^{3,4}	F ₂ ²	F ₃ ²	F ₁ ^{3,4}	F ₂ ²	F ₃ ²	F ₁ ^{3,4}	F ₂ ²	F ₃ ²	F1 ^{3,4}	F ₂ ²	F ₃ ²		
SCB43.5	54 (16)	3½	2	100	520	520	160	610	690	215	760	975	215	760	975		
SCB45.5	54 (16)	5½	2	120	490	520	150	610	690	200	760	975	215	760	975	IBC, FL, LA	
30040.0	34 (10)	3/2	3	120	675	675	150	895	1,000	200	990	1,260	215	990	1,260	1 . 2, 2, .	
MCCD45 5	60 (14)	5½	2	120	490	520	185	780	690	250	1,055	1,200	270	1,195	1,475	IBC, LA	
MSCB45.5 68 (14)	3/2	3	120	675	675	185	1,070	1,000	250	1,220	1,930	270	1,365	1,930	IDO, LA		
SCB47.5	54 (16)	7½	2	90	490	520	120	610	690	160	760	945	175	760	945	IBC,	
30047.3	54 (16) 7 /2	34 (10) 172	1 /2	3	90	675	675	120	895	1,000	160	990	1,260	175	990	1,260	FL, LA
MSCB47.5	68 (14)	7½	2	105	490	520	140	780	690	190	1,055	1,200	205	1,195	1,475	IBC, LA	
IVI30D47.3	00 (14)	1 72	3	105	675	675	140	1,070	1,000	190	1,220	1,930	205	1,365	1,930	IDU, LA	
SCB49.5	54 (16)	9½	2	90	490	520	110	690	690	105	760	945	110	760	945		
30D49.0	34 (10)	9/2	3	90	675	675	110	895	1,000	105	990	1,260	110	990	1,260	IBC,	
SCB411.5	54/16)	11½	2	90	490	520	90	690	690	85	990	920	90	990	920	FL, LA	
300411.5	54 (16)	11/2	3	90	675	675	90	860	1,000	85	990	1,260	90	990	1,260]	

- 1. When the SCB or MSCB connector is used with two shouldered screws, the screws may be installed in any two slots.
- 2. Allowable loads are based on clips installed with (4) #12-14 screws in the anchor leg. For other anchorage installations, the capacity of the connection system will be the minimum of the tabulated value and the allowable load from the SCB/MSCB Allowable Anchorage Loads table on p. 31.
- 3. Anchorage to the supporting structure using welds or a minimum of (2) fasteners is required.
- 4. Tabulated F₁ loads are based on assembly tests with the load through the centerline of stud. Tested failure mode due to screw pullout; therefore compare F_1 against F_p calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.

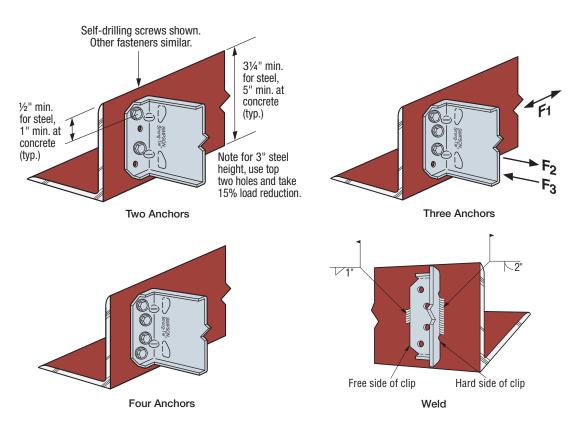
SCB/MSCB Standoff Distances

Model No.	L (in.)	No. of #14 Shouldered Screws	Maximum Standoff (in.)
SCB43.5	3½	2	1
SCB45.5	5½	3	2¾ 1½
MSCB45.5	5½	2	2¾ 1½
SCB47.5	7½	2	4¾ 3½
MSCB47.5	7½	2	4¾ 3½
SCB49.5	9½	2	6¾ 5½
SCB411.5	111/2	2	8¾ 7½

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SCB/MSCB Bypass Framing Slide-Clip Connector

Strong-Tie


SCB/MSCB Allowable Anchorage Loads (lb.)

Anchorogo Typo	Minimum	No. of	F ₂ aı	nd F ₃	
Anchorage Type	Base Material	Anchors	SCB	MSCB	
		2	1,115	1,150	
#12-24 self-drilling screws Simpson Strong-Tie® X and XL Metal screws	A36 steel %6" thick	3	1,645	1,725	
		4	2,230	2,300	
Simpson Strong-Tie		2	440	520	
0.157" x 5/8" powder-actuated fasteners	A36 steel 3/16" thick	3	585	780	
PDPAT-62KP		4	895	1,040	
Simpson Strong-Tie		2	585	610	
0.157" x 5/8" powder-actuated fasteners	A572 or A992 steel 3/16" thick	3	800	915	
PDPAT-62KP		4	1,170	1,220	
Simpson Strong-Tie		2	330	330	
1⁄4" x 1 3⁄4" Titen Turbo™	Concrete f'c = 2,500 psi	3	460	460	
TNT25134H	,,,,,,,	4	595	595	
Weld	A36 steel	Hard side: 2"	1 740	4.570	
E70XX electrodes	¾6" thick	Free side: 1"	1,740	4,570	

1. For additional important information, see General Information and Notes on p. 26.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- 2. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the tabulated allowable anchorage loads the allowable load from the SCB/MSCB Allowable Connector Load table on p. 30.
- 3. Allowable loads for #12-24 self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum %6" thick structural steel with Fy = 36 ksi. PDPAT values are also provided for A572 steel. Values listed above may be used where other thicknesses of steel are encountered or other manufacturers are used, provided that the fastener has equal or better tested values (see p. 26). It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 4. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling use a maximum 3/16"-diameter drill bit.

SCB/MSCB Anchor Layout

The first product of its type to undergo full-scale cyclic research testing to determine its load capacities in real-world conditions, the SCS is a hybrid clip designed specifically to allow both slide-clip or fixed-clip applications in areas of high seismic activity. Everything about the SCS clip - from its heavy-duty 10- and 12-gauge steel manufacturing to its strategically placed darts to the location of its fastener slots and holes — has been engineered to provide exceptional resistance to in-plane seismic loads. Because slide-clip testing shows that attachment at the first slot is most critical to in-plane capacity, the SCS is designed to accommodate two large washer screws (included) at the first slot attached to the stud.

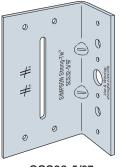
The SCS clip is the most versatile clip on the market making it the ideal clip in seismic and non-seismic areas. This clip has three prepunched oblong slots for slide applications and a pattern of round holes for fixed-clip applications to meet a range of load needs. In addition, the support leg features anchor holes for concrete supports using 1/4"- or 1/2"-diameter concrete screws or bolts, plus smaller holes for steel supports using powder-actuated fasteners such as Simpson Strong-Tie® PDPAT 0.157"-diameter pins or #12 self-drilling Strong-Drive® XL Large-Head Metal screws.

- 31/2", 6" and 8" lengths
- · Slide slots used with shouldered washer screws (included) allow a full 1" of vertical deflection
- · Precision-located stiffeners enhance strength while allowing ductility
- Simpson Strong-Tie No-Equal® stamps alongside slide slots indicate proper screw placement
- Dual-function clip with prepunched slots for slide application and small round holes for fixed application

Material: 12 ga. (97 mil) and 10 ga. (118 mil), 50 ksi

Finish: Galvanized (G90)

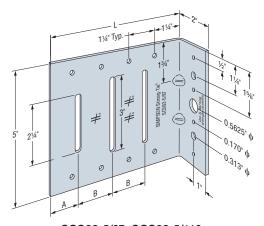
Installation:

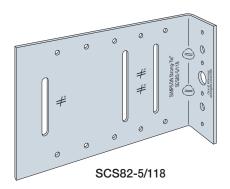

- SCS32-5 permits 1" maximum standoff for fixed applications and 11/2" maximum for slide applications, SCS62-5 and SCS82-5 maximum standoff are 21/4" for fixed applications and 3" for slide applications.
- · Use the specified type and number of anchors.
- Slide applications Use the specified number of XLSH78B1414 #14 shoulder screws (included). Install the screws in the slots adjacent to the No-Equal stamps.
- Fixed applications Use the specified number of #10 screws (not included) in the designated screw holes.

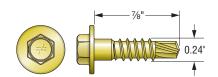
Codes: See p. 13 for Code Reference Key Chart.

Ordering Information

Model No.	Order SKU	Thickness mil (ga.)	L (in.)	A (in.)	B (in.)
SCS32-5/97	SCS32-5/97-KT25	97 (12)	3½	1%	_
SCS62-5/97	SCS62-5/97-KT25	97 (12)	6	11/8	1½
SCS62-5/118	SCS62-5/118-KT25	118 (10)	6	11/8	1½
SCS82-5/118	SCS82-5/118-KT25	118 (10)	8	11/8	1½


- 1. Each box contains (25) connectors.
- 2. SCS32-5/97-KT25 comes with 55 screws for slide-clip applications. All other SCS kits come with 83 screws for slide-clip applications.


SCS32-5/97

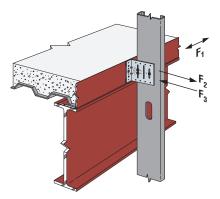

Clip features designed to dramatically increase in-plane resistance. Load rated per ICC-ES AC261.

US Patent: 10,749,229

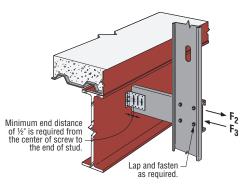
SCS62-5/97, SCS62-5/118

XLSH78B1414 #14 Shouldered Screw for Attachment to Stud Framing Slide Application (included)

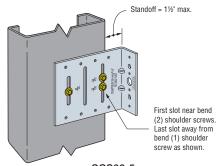
SIMPSON Strong-Tie

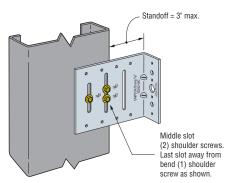

SCS Slide-Clip Allowable Connector Loads (lb.)

Praiming Praiming		- C.I.P	Fasteners to						
No. Thickness mil (a.) Fastener Pattern Screws No. of #14 caches Screws bistance In Pattern Screws In-Patter In Coad Fa Comp. Load Fa Ref. SCS32-5/97 33 (20) S1 2 11½ 200 425 425 SCS62-5/97 S1 3 11½ 205 635 760 SCS62-5/118 S2 3 3 205 650 760 SCS62-5/118 S2 3 3 270 650 760 SCS62-5/97 43 (18) S1 2 11½ 290 540 540 SCS62-5/97 43 (18) S1 3 11½ 290 540 540 SCS62-5/118 S1 3 11½ 290 540 540 SCS62-5/118 S1 3 11½ 290 540 540 SCS62-5/97 43 (18) S1 3 11½ 435 940 1,165 SCS62-5/97 43 (18) S2 3 3 <th>Model</th> <th></th> <th></th> <th></th> <th></th> <th>Allo</th> <th>wable Load</th> <th>(lb.)</th> <th>Code</th>	Model					Allo	wable Load	(lb.)	Code
SCS62-5/97 SCS62-5/118 S		Thickness		Shouldered	Distance	Load	Load	Load	
SCS62-5/97 S2 3 3 205 635 760 SCS62-5/118 33 (20) 51 3 1½ 270 650 760 SCS82-5/118 52 3 3 270 650 760 SCS82-5/97 43 (18) 51 3 1½ 290 540 540 SCS62-5/97 43 (18) 51 3 1½ 290 540 540 SCS62-5/118 51 3 1½ 290 540 540 SCS62-5/97 43 (18) 51 3 1½ 435 940 1,165 SCS62-5/118 43 (18) 51 3 1½ 435 940 1,165 SCS62-5/118 51 3 1½ 435 940 1,165 SCS62-5/97 54 (16) 51 3 1½ 655 1,275 1,525 SCS62-5/97 54 (16) 51 3 1½ 655 1,825 2,085	SCS32-5/97		S1	2	1½	200	425	425	
SCS62-5/118	00000 5/07	33 (20)	S1	3	1½	205	635	760	1
SCS62-5/118 33 (20) S2 3 3 270 660 760 SCS82-5/118 31 (20) S1 3 1½ 270 660 760 SCS32-5/97 31 (2) 1½ 290 540 540 SCS62-5/178 43 (18) S1 3 1½ 290 540 540 SCS62-5/178 43 (18) S1 3 1½ 290 540 540 SCS62-5/178 S2 3 3 350 895 1,165 SCS62-5/18 S2 3 3 435 940 1,165 SCS32-5/97 S1 2 1½ 540 890 890 SCS62-5/178 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/97 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/97 54 (16) S1 3 1½ 655 1,825 2,085 <t< td=""><td>50502-0/97</td><td></td><td>S2</td><td>3</td><td>3</td><td>205</td><td>635</td><td>760</td><td></td></t<>	50502-0/97		S2	3	3	205	635	760	
SCS82-5/118 S2 3 3 270 650 760	00000 E/110		S1	3	1½	270	650	760	
SCS82-5/118	50502-0/118	22 (20)	S2	3	3	270	650	760	
SCS32-5/97 S1 2 11½ 290 540 540	CCC00 E/110	33 (20)	S1	3	1½	270	650	760	
SCS62-5/97 43 (18) S1 3 1½ 350 895 1,165 SCS62-5/118 S2 3 3 335 895 1,165 SCS62-5/118 S1 3 1½ 435 940 1,165 SCS82-5/118 S2 3 3 435 940 1,165 SCS32-5/97 S1 2 1½ 540 890 890 SCS62-5/97 S4 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/97 S4 (16) S1 3 1½ 655 1,275 1,525 SCS82-5/118 S2 3 3 620 1,635 1,530 SCS82-5/118 S2 3 3 620 1,825 2,085 SCS82-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S2 3	50582-3/118		S2	3	3	270	650	760	1
SCS62-5/97 S2 3 3 335 895 1,165 SCS62-5/118 S1 3 1½ 435 940 1,165 SCS82-5/118 S2 3 3 435 940 1,165 SCS82-5/97 S1 2 1½ 435 940 1,165 SCS62-5/97 S1 2 1½ 540 890 890 SCS62-5/97 S4 (16) S1 3 1½ 655 1,275 1,525 SCS82-5/118 S1 3 1½ 655 1,825 2,085 SCS82-5/118 S2 3 3 620 1,825 2,085 SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 705 2,065 <td>SCS32-5/97</td> <td></td> <td>S1</td> <td>2</td> <td>1½</td> <td>290</td> <td>540</td> <td>540</td> <td></td>	SCS32-5/97		S1	2	1½	290	540	540	
SCS62-5/118	00000 F/07	43 (18)	S1	3	1½	350	895	1,165	
SCS62-5/118 S2 3 43 (18) SCS82-5/118 S2 3 1½ 435 940 1,165 SCS32-5/97 S1 2 1½ 540 890 890 SCS62-5/97 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/97 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/118 54 (16) S1 3 1½ 655 1,825 2,085 SCS62-5/118 54 (16) S1 3 1½ 655 1,825 2,085 SCS62-5/118 S2 3 3 620 1,825 2,085 SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 685 2,065 2,155 SC 3 3 650 2,065 2,220 SCS62-5/118 S2 3	50502-5/97		S2	3	3	335	895	1,165	
SCS82-5/118 S2 3 3 435 940 1,165	00000 E/110		S1	3	1½	435	940	1,165	
SCS82-5/118 S1 3 1½ 435 940 1,165 SCS32-5/97 S1 2 1½ 540 890 890 SCS62-5/97 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/97 S2 3 3 620 1,635 1,530 SCS62-5/118 S2 3 3 620 1,825 2,085 SCS82-5/118 S2 3 3 620 1,825 2,085 SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 685 2,065 2,155 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS82-5/118 S1 3 1½ 705 2,	50502-0/118	40 (40)	S2	3	3	435	940	1,165	1
S2 3 3 435 940 1,165	00000 F/110	43 (18)	S1	3	1½	435	940	1,165	
SCS62-5/97 54 (16) S1 3 1½ 655 1,275 1,525 SCS62-5/118 3 3 620 1,635 1,530 SCS62-5/118 51 3 1½ 655 1,825 2,085 SCS82-5/118 S2 3 3 620 1,825 2,085 SCS82-5/97 S1 3 1½ 655 1,825 2,085 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 685 2,065 2,155 SCS62-5/118 S2 3 3 650 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 2 1½ 650 925 925 SCS62-5/118 S1 3 1½ 975 2,065	56582-5/118		S2	3	3	435	940	1,165	
SCS62-5/97 S2 3 3 620 1,635 1,530 SCS62-5/118 81 3 1½ 655 1,825 2,085 LA SCS82-5/118 S2 3 3 620 1,825 2,085 LA SCS82-5/97 S1 2 1½ 655 1,825 2,085 LA SCS62-5/97 S1 2 1½ 550 925	SCS32-5/97	54 (16)	S1	2	1½	540	890	890	1
S2 3 3 620 1,635 1,530 1	00000 E/07		S1	3	1½	655	1,275	1,525	
SCS62-5/118 SCS62-5/118 S2 3 1/2 655 1,825 2,085 SCS82-5/118 S1 3 11/2 655 1,825 2,085 SCS32-5/97 S1 2 11/2 550 925 925 SCS62-5/97 S1 2 11/2 550 925 925 SCS62-5/118 S1 3 11/2 685 2,065 2,155 SCS62-5/118 S1 3 11/2 705 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 11/2 650 925 925 SCS62-5/97 S1 2 11/2 650 925 925 SCS62-5/118 97 (12) S1 3 11/2 975 2,065 2,155 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118	56562-5/97		S2	3	3	620	1,635	1,530	
SCS82-5/118 S2 3 3 620 1,825 2,085 SCS82-5/118 S1 3 1½ 655 1,825 2,085 SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/118 S1 3 1½ 685 2,065 2,155 SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2	00000 5/440		S1	3	1½	655	1,825	2,085	
SCS82-5/118 S1 3 1½ 655 1,825 2,085 SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 3 1½ 685 2,065 2,155 SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 705 2,065 2,220 SCS62-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	50502-0/118	E4 (10)	S2	3	3	620	1,825	2,085	
SCS32-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 2 1½ 550 925 925 SCS62-5/97 S1 3 1½ 685 2,065 2,155 SCS62-5/118 S2 3 3 650 2,065 1,630 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 3 1½ 705 2,065 2,220 SCS62-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/97 S2 3 3 930 2,065 2,220 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	00000 5/440	54 (16)	S1	3	1½	655	1,825	2,085	
SCS62-5/97 68 (14) S1 3 1½ 685 2,065 2,155 SCS62-5/118 S2 3 3 650 2,065 1,630 SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/97 S2 3 3 930 2,065 2,220 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220	56582-5/118		S2	3	3	620	1,825	2,085	
SCS62-5/97 S2 3 3 650 2,065 1,630 SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/97 S2 3 3 930 2,065 1,630 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	SCS32-5/97		S1	2	1½	550	925	925	1
SCS62-5/118 S1 3 1½ 705 2,065 2,220 SCS62-5/118 S2 3 3 670 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 S2 3 3 930 2,065 1,630 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220	00000 E/07	68 (14)	S1	3	1½	685	2,065	2,155	
SCS62-5/118 S2 3 3 670 2,065 2,220 SCS82-5/118 S1 3 1½ 705 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/97 S2 3 3 930 2,065 1,630 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	50502-5/97		S2	3	3	650	2,065	1,630	
SCS82-5/118 SCS82-5/118 S2 3 3 670 2,065 2,220 SCS82-5/118 S1 3 1½ 705 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SC 3 3 930 2,065 1,630 SCS62-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	00000 5/440		S1	3	1½	705	2,065	2,220	
SCS82-5/118 S1 3 1½ 705 2,065 2,220 SCS32-5/97 S1 2 1½ 650 925 925 SCS62-5/97 S1 3 1½ 975 2,065 2,155 SCS62-5/97 S2 3 3 930 2,065 1,630 SCS62-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	56562-5/118	CO (14)	S2	3	3	670	2,065	2,220	
SCS32-5/97 SCS62-5/97 SCS62-5/118	00000 5/440	68 (14)	S1	3	1½	705	2,065	2,220	1
SCS62-5/97 97 (12) S1 3 1½ 975 2,065 2,155 S2 3 3 930 2,065 1,630 SCS62-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	56582-5/118		S2	3	3	670	2,065	2,220	
SCS62-5/97 S2 3 3 930 2,065 1,630 SCS62-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	SCS32-5/97		S1	2	1½	650	925	925	
SCS62-5/118 S1 3 930 2,065 1,630 SCS62-5/118 S1 3 1½ 975 2,065 2,220 SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	00000 F/07	97 (12)	S1	3	1½	975	2,065	2,155	
SCS62-5/118 97 (12) SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118	SUS0Z-5/9/		S2	3	3	930	2,065	1,630	
SCS82-5/118 S2 3 3 930 2,065 2,220 SCS82-5/118 S1 3 1½ 975 2,065 2,220	00000 5/440		S1	3	1½	975	2,065	2,220	
SCS82-5/118 S1 3 1½ 975 2,065 2,220	50562-5/118	07 (10)	S2	3	3	930	2,065	2,220	
	CCC00 E/110	97 (12)	S1	3	1½	975	2,065	2,220	
	00002-0/118		S2	3	3	930	2,065	2,220	



^{2.} SCS Allowable Connector Loads are also limited by the SCS Anchorage Load tables on pp. 36 and 37. Use the minimum tabulated values from the connector and anchorage load tables as applicable.


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

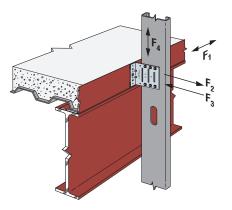

Typical SCS Slide-Clip Installation

Typical SCS Slide-Clip Installation with Stud Strut

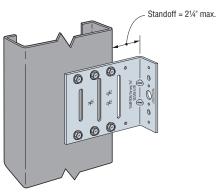
SCS62-5 11/2" Maximum Standoff (Pattern S1 - reference p. 35 for all fastener patterns)

SCS62-5 3" Maximum Standoff (Pattern S2 - reference p. 35 for all fastener patterns)

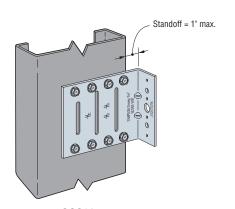
^{3.} See illustrations on p. 35 for fastener placement to stud framing.


^{4.} Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. Tests are governed by fastener connections.

^{5.} F₁ loads are based on maximum standoff distances of 1½" or 3" as shown. SCS32-5/97 maximum 11/2" standoff.


SCS Fixed-Clip Allowable Connector Loads (lb.)

Madal	Framing		s to Framing ember	Max.		Allowable	Load (lb.)		
Model No.	Members Thickness mil (ga.)	Fastener Pattern No. of #10 Self-Drilling Screws		Standoff Distance (in.)	In-Plane Load F ₁	Tension Load F ₂	Comp. Load F ₃	Shear Load F ₄	Cod Ref
SCS32-5/97		R1	4	1	160	705	705	705	
00000 5/07	33 (20)	R1	6	21/4	145	1,060	1,060	650	1
SCS62-5/97		R2	8	1	175	1,415	1,415	995	ĺ
00000 54440		R1	6	21/4	150	1,060	1,060	650	
SCS62-5/118	00 (00)	R2	8	1	175	1,415	1,415	995	ĺ
00000 5/440	33 (20)	R1	8	21/4	150	1,415	1,415	690	ĺ
SCS82-5/118		R2	10	1	175	1,765	1,765	1,050	1
SCS32-5/97		R1	4	1	200	1,050	1,050	1,050	
	43 (18)	R1	6	21/4	190	1,580	1,580	970	
SCS62-5/97		R2	8	1	225	2,105	2,105	1,480	ĺ
		R1	6	21/4	195	1,580	1,580	970	ĺ
SCS62-5/118		R2	8	1	245	2,105	2,105	1,480	ĺ
	43 (18)	R1	8	21/4	195	2,105	2,105	1,025	İ
SCS82-5/118		R2	10	1	245	2,630	2,105	1,565	
SCS32-5/97		R1	4	1	395	2,135	2,135	1,405	
	54 (16)	R1	6	21/4	345	3,205	2,275	1,970	İ
SCS62-5/97		R2	8	1	410	4,275	3,125	3,005	
		R1	6	21/4	360	3,205	2,440	2,085	IBC LA
SCS62-5/118		R2	8	1	445	4,275	3,350	3,005	-
	54 (16)	R1	8	21/4	360	4,275	2,440	2,010	ĺ
SCS82-5/118		R2	10	1	445	4,540	3,350	3,180	ĺ
SCS32-5/97		R1	4	1	445	2,160	2,160	1,405	
	68 (14)	R1	6	21/4	410	3,240	2,275	1,970	ĺ
SCS62-5/97		R2	8	1	435	4,320	3,125	3,005	
		R1	6	21/4	535	3,240	2,440	1,970	ĺ
SCS62-5/118		R2	8	1	540	4,320	3,350	3,005	ĺ
	68 (14)	R1	8	21/4	535	4,320	2,980	2,085	ĺ
SCS82-5/118		R2	10	1	675	4,720	4,095	3,180	ĺ
SCS32-5/97		R1	4	1	635	2,160	2,160	1,405	
	97 (12)	R1	6	21/4	775	3,240	2,275	1,970	ĺ
SCS62-5/97		R2	8	1	775	4,320	3,125	3,005	ĺ
00000 =		R1	6	21/4	775	3,240	2,440	1,970	ĺ
SCS62-5/118	07.440	R2	8	1	775	4,320	3,350	3,005	
00000 5445	97 (12)	R1	8	21/4	775	4,320	2,980	2,085	1
SCS82-5/118		R2	10	1	775	4,720	4,095	3,180	


- 1. For additional important information, see General Information and Notes on p. 26.
- SCS Allowable Connector Loads are also limited by the SCS Anchorage Load tables on pp. 36 and 37. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. See illustrations on p. 35 for screw fastener placement to stud framing.
- Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. Tests are governed by fastener connections.
- $5.\,F_1$ loads are based on maximum standoff distances of 1" or $21\!\!\!/4$ " as shown. SCS32-5/97 maximum 1" standoff.
- 6. XLSH78B1414 #14 shouldered screw may be used to replace #10 screws in a fixed application.

Typical SCS Fixed-Clip Installation

SCS62-5 21/4" Maximum Standoff (Pattern R1 — reference p. 35 for all fastener patterns)

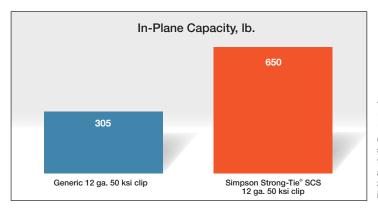
SCS62-5 1" Maximum Standoff (Pattern R2 — reference p. 35 for all fastener patterns)

Fastener Patterns

Slide Conditions

Fixed Conditions

Model No.	Pattern S1	Pattern S2	Pattern R1	Pattern R2
SCS32-5/97	######################################		# # #	
SCS62-5/97 SCS62-5/118		0		
SCS82-118	# # # # # # # # # # # # # # # # # # #	O O O O O O O O O O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

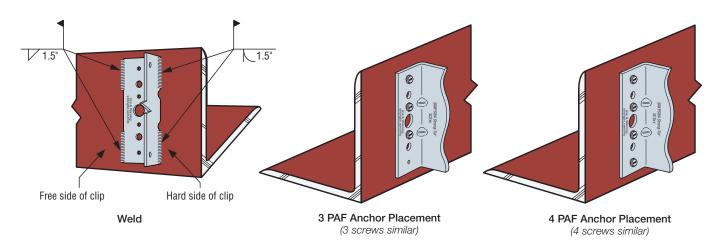

First of Its Kind — Full-Scale Cyclic Testing for Bypass Clips

The Re-Engineered Bypass Clip

Our engineering expertise went into our new SCS seismic bypass clip. All aspects of the clip were evaluated. One significant modification was the location of our screw holes and slots. Our tests showed that in-plane load is not evenly applied to all screws. In-plane load, or seismic shaking along the plane of the wall, applies predominantly to the first row of screws. Our SCS clip was designed to accommodate two shoulder screws at the first screw line, doubling the number of screws effectively resisting in-plane load.

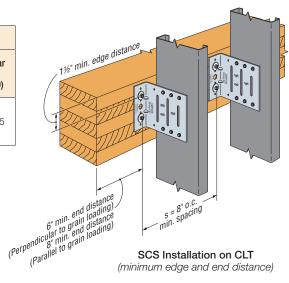
Testing Results Explained

To determine the in-plane performance of our SCS clips, Simpson Strong-Tie conducted full-scale cyclic testing on our uniaxial shake table at our Tye Gilb Research Laboratory in Stockton, CA. The full-scale test results were used to develop a representative component test to determine various combinations of stud/clip in-plane capacities. This first-of-its-kind testing represents something that was sorely needed because of the lack of industry testing and design standards. Our tests also allowed us to re-engineer the bypass clip to significantly increase the in-plane capacities. Prior to our tested values, various unproven calculation techniques have been used to estimate in-plane loads. Our tested in-plane loads eliminate the guesswork and thus mitigate risk for engineers, contractors and building owners.


Test based on 16 ga. 50 ksi stud and 12 ga. generic clip with (3) #14 screws through slot with flat washer tested in same manner as Simpson Strong-Tie SCS 12 ga. 50 ksi clip in slide-clip application.

SCS Allowable Anchorage Loads to Steel (lb.)

Anchorage Type	Minimum Base Material	No. of Anchors	Allowable Load (lb.)		
Anchorage Type			F ₁	F ₂ and F ₃	F4
#12–24 self-drilling screws Simpson Strong-Tie® X and XL Metal screws	A36 steel ¾6" thickness	3	730	1,910	1,590
		4	975	2,545	3,180
Simpson Strong-Tie 0.157" x 5%" powder-actuated fasteners	A36 steel 3/16" thickness	3	_	780	_
PDPAT-62KP		4	_	1,040	1,040
Simpson Strong-Tie	A572 or A992 steel 3/16" thickness	3	_	1,260	_
0.157" x %" powder-actuated fasteners PDPAT-62KP		4	_	1,710	1,710
Weld	A36 steel %6" thickness	(2) Hard side: 1.5"	2,040	4,720	3,865
E70XX electrodes		(2) Free side: 1.5"			


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable anchorage loads are also limited by the SCS Connector Loads on p. 33 for slide applications and p. 34 for fixed applications. Use the minimum tabulated values from the connector and anchorage load tables as applicable
- 3. Allowable loads for self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum 1/16"-thick structural steel with F_V = 36 ksi. PDPAT values are also provided for A572 steel. Values listed above maybe used where other thicknesses of steel are encountered provided that the fastener has equal or better tested values into thicker steel. It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 4. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling, use a maximum 3/16"-diameter drill bit.
- 5. F₁, F₂, F₃ and F₄ load directions are the same as SCS Connector Loads on p. 33 for slide applications and p. 34 for fixed applications.

SCS Allowable Anchorage Loads to CLT (lb.)

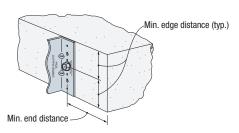
		Anchorage Type	Minimum Base Material	Allowable Load (lb.)			
	Models			In-Plane F ₁ (160)	Tension F ₂ (160)	Comp. F ₃ (160)	Shear F ₄ (100)
	SCS62-5/97	(2) SDWH27400G	5-ply (67/8") SPF CLT into side or end grain	560	1,260	1,260	1,295

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable anchorage loads are also limited by the SCS Connector Loads on p. 33 for slide applications and p. 34 for fixed applications. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. Tabulated values are based on (2) Strong-Drive® SDWH27400G Timber-Hex HDG Screws 0.276" diameter x 4" length. Minimum spacing, end distance, and edge distances for wood screws are shown in the illustration.
- 4. SDHW27400G screw is designed to thread into SCS anchor hole without enlargement of clip hole.
- 5. The SDWH27400G have been increased for wind or earthquake loading (160) in the F_1 , F_2 and F_3 direction. No further increase allowed.

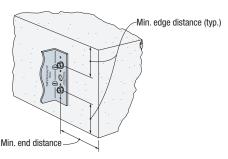
(minimum edge and end distance)

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SCS Seismic Bypass Framing Connector


SCS Allowable Anchorage Loads to Concrete (lb.)

	Anchor Bolt	Nominal	Minimum	Minimum			Allowable	Load (lb.)		
Model No.	Quantity and	Embed. Depth, h _{nom}	Edge Distance	End Distance		f' _c = 3,000 psi			f' _c = 4,000 psi	
NO.	Diameter	(in.)	(in.)			F ₂ and F ₃	F ₄	F ₁	F ₂ and F ₃	F ₄
			Uncracked C	oncrete, Wind	and Seismic	in SDC A & B ^{4,6}				
Titen HD®	(2) 1/4"	15/8	1½	25/8	375	725	565	430	840	655
TILEITTID	(2) 74	2½	172	278	410	525	565	475	605	655
Strong-Bolt® 2	(2) 1/4"	1¾	4	4	750	1,245	750	750	1,245	750
Titen HD	(1) ½"	31/4	2½	25/8	525	1,105	665	605	1,245	770
TILEIT FID	(1) /2	3¾	Z/2	272 298	540	1,110	690	625	1,245	795
Strong-Bolt 2	(1) ½"	2¾	4	4	1,035	1,155	1,240	1,195	1,330	1,435
Strong-boil 2	(1) /2	37/8	4	4	1,120	1,245	1,400	1,295	1,245	1,620
AT-XP®	(4) 1/11	7	01/	05/	1,160	1,145	1,450	1,340	1,145	1,675
SET-3G™	(1) ½"	/	2½	25/8	1,160	1,245	1,450	1,340	1,245	1,675
			Cracked Co	ncrete, Wind a	and Seismic ir	SDC A & B 4,6				
Titor UD	(0) 1/11	15/8	41/	05/	265	690	405	305	800	465
Titen HD	(2) 1/4"	2½	1½	25/8	295	770	445	340	885	515
Titen HD	(1) ½"	31/4	2½	25/8	375	790	475	430	910	550
HIGH HD	(1) /2	3¾		Z/2	272 Z /8	385	790	490	445	910
Ctrong Polt 2	(1) 1/11	2¾	4	4	740	1,225	925	855	1,245	1,065
Strong-Bolt 2	(1) ½"	37/8	4	4	800	1,245	1,000	925	1,245	1,155
AT-XP	(1) ½"	7	2½	25/8	830	1,245	1,035	955	1,245	1,195
SET-3G	(1) /2	/	Z/2	298	830	1,245	1,035	955	1,245	1,195
			Cracked C	Concrete, Seis	mic in SDC C	Through F 5,6				
Tita UD	(0) 1/11	15/8	41/	05/	310	605	470	360	700	545
Titen HD	(2) 1/4"	2½	1½	25/8	340	670	520	395	775	600
Titara UD	(4) 1/11	31/4	01/	05/	435	690	555	505	800	640
Titen HD	(1) ½"	3¾	Z ½2	2½ 25% –	450	690	575	520	800	660
Ctrong Polt 0	(4) 1/11	2¾	4	4	860	1,070	1,075	995	1,240	1,245
Strong-Bolt 2	(1) ½"	37/8	4	4	935	1,245	1,170	1,080	1,245	1,350
AT-XP	(1) ½"	7	2½	25/8	965	1,245	1,210	1,115	1,245	1,395
SET-3G	(1) /2		Z/2	278	965	1,245	1,210	1,115	1,245	1,395


- 1. Allowable anchor capacities have been determined using ACI 318-14 Chapter 17 calculations with a minimum concrete compressive strength (f'_C) of 3,000 and 4,000 psi in normal-weight concrete. Tabulated values shall be multiplied by a factor (\(\lambda_{\text{o}}\)] of 0.51 for adhesive anchor and 0.68 for mechanical anchor for installation in sand light-weight concrete.
- 2. Load values are for group anchors based on ACI 318, condition B, load factors from ACI 318-14 Section 5.3, no supplement edge reinforcement, $\Psi_{\text{C,V}} = 1.0$ for cracked concrete and periodic special inspection.
- 3. Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α), of 0.70 for seismic load and 0.6 for wind loads. ASD values for other combinations may be determined using alternate conversion factors.
- Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A and B only.
- 5. Design loads shall include the over-strength factor per ASCE7 Section 12.4.3. For fasteners in exterior wall connection systems, Ω_0 = 1.5 per Table 13.5-1.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- 6. Tabulated allowable loads are based on anchorage only. The capacity of the connection system shall be the minimum of the allowable anchorage load and the SCS allowable connector loads on p. 33 for slide applications and p. 34 for fixed applications.
- Shaded values are limited by connector serviceability and strength in a single-fastener anchorage.
- 8. For anchor subjected to both tension and shear loads, it shall be designed to satisfy the following:
 - a. For $N_{a}\,/\,N_{all} \leq \bar{0.2},$ the full allowable load in shear is permitted.
 - b. For V_a / $V_{all} \le$ 0.2, the full allowable load in tension is permitted.
 - c. For all other cases, N_a / N_{all} + V_a / V_{all} \leq 1.2, where N_a = Applied ASD tension load.
 - N_{all} = Allowable F2 or F3 load column from SCS allowable anchorage loads to concrete table.
 - Va = Applied ASD shear load.
 - $V_{all} = Allowable F_4 \text{ or } F_1 \text{ load column from the SCS allowable}$ anchorage loads to concrete table.

(1) Anchor, End and Edge Distance

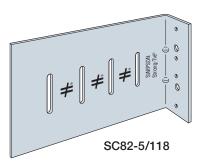
(2) Anchor, End and Edge Distance

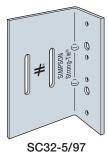
Ideal for high-seismic areas, Simpson Strong-Tie® SC connectors are the optimal solution for slide-clip bypass framing. SC clips are often welded to the structure in high-seismic zones, but they also feature anchorage holes so that concrete screws or powder-actuated fasteners can be used to attach the clip to the structure. In addition to anchorage versatility, the SC clips include No-Equal[®] stamps at the center of the slots to ensure proper shouldered screw placement. SC connectors are manufactured using heavy-duty 10- and 12-gauge steel to provide exceptional resistance to in-plane seismic load.

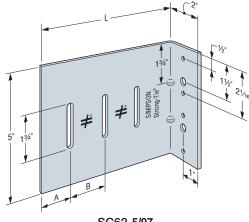
- The clips come in lengths of 31/2", 6" and 8" for use with 35/8", 6" and 8" studs, respectively
- The maximum standoff distance is 1" for 3%" studs and 11/2" for 6" and 8" studs
- Provides a full ¾" of both upward and downward deflection
- Embossments in the bend line provide increased strength and stiffness in the F₁ and F₂ load directions, but are positioned towards the center of the clip so that 11/2" long welds can be applied at the top and bottom of the clip
- Prepunched large-diameter anchor holes accommodate 1/4"-diameter concrete screws like the Simpson Strong-Tie Titen HD®
- Prepunched small-diameter anchor holes accommodate powder-actuated fasteners like the 0.157"-diameter Simpson Strong-Tie PDPAT or the #12 self-drilling Simpson Strong-Tie Strong-Drive® XL Large-Head Metal screw
- Precision-manufactured shouldered screws, provided with SC connectors, are designed to prevent overdriving and to ensure the clip functions properly

Material: 50 ksi Finish: Galvanized (G90)

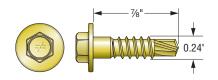
Installation:


- · Use the specified type and number of anchors.
- Use the specified number of XLSH78B1414 #14 shouldered screws (included). Install the screws in the slots adjacent to the No-Equal stamps.
- Use one shouldered screw per slot (maximum).

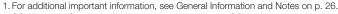

Codes: See p. 13 for Code Reference Key Chart


Ordering Information and Dimensions

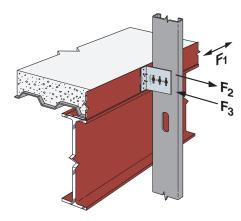
Model No.	Ordering SKU	Thickness mil (ga.)	L (in.)	A (in.)	B (in.)
SC32-5/97	SC32-5/97-KT25	97 (12)	3½	7/8	11⁄4
SC62-5/97	SC62-5/97-KT25	97 (12)	6	11/8	1 1/2
SC62-5/118	SC62-5/118-KT25	118 (10)	6	11/8	1½
SC82-5/118	SC82-5/118-KT25	118 (10)	8	1%	1½


- 1. Each box contains (25) connectors and enough shouldered screws for installation.
- 2. Replacement #14 shouldered screws for SC connectors are XLSH78B1414-RP83.

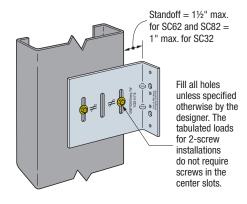
SC62-5/97 SC62-5/118



XLSH78B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)


Strong-Tie

SC Allowable Connector Loads (lb.)


		Fastener	s to Stud	Allowable Load (lb.)				
Model	Stud	Allowable	No. of	F	1			Cada
Model No.	Thickness mil (ga.)	Pullout per Single #14 Shouldered Screw	#14 Shouldered Screws	1" Standoff	1½" Standoff	F ₂	F ₃	Code Ref.
SC32-5/97			2	170	_	585	715	ļ
SC62-5/97			2	100	115	585	715	
0002 3/3/			3	115	130	880	1,070	
SC62-5/118	33 (20)	100	2	100	115	585	710	
0002 0/110			3	115	130	880	1,070	ļ
SC82-5/118			2	115	130	585	710	ļ
0002 0/110			4	115	130	1,170	1,425	
SC32-5/97			2	220	_	765	930	
SC62-5/97			2	135	155	765	930	ļ
0002 0/01			3	150	175	1,145	1,395	ļ
SC62-5/118	43 (18)	145	2	135	155	765	930	
0002 0/110			3	150	175	1,145	1,395	
SC82-5/118			2	150	175	765	930	ļ
0002 0/110			4	150	175	1,525	2,125	
SC32-5/97			2	300	_	1,145	1,645	
SC62-5/97			2	255	295	1,145	1,645	ļ
0002 0707			3	265	305	2,120	2,345	
SC62-5/118	54 (16)	270	2	255	295	1,405	1,685	-
	_		3	265	305	2,110	2,530	
SC82-5/118			2	260	300	1,405	1,685	
			4	260	300	2,810	3,370	
SC32-5/97			2	375	_	1,695	1,645	
SC62-5/97			2	320	370	1,695	1,645	
	_		3	335	385	2,540	2,345	ļ
SC62-5/118	68 (14)	410	2	330	380	2,165	2,040	
			3	345	395	3,250	3,060	
SC82-5/118			2	325	375	2,165	2,085	
			4	325	375	4,330	4,165	
SC32-5/97			2	540	_	1,695	1,645	ļ
SC62-5/97			2	555	555	1,695	1,645	
	1		3	555	555	2,540	2,345	
SC62-5/118	97 (12)	725	2	555	555	2,165	2,040	
	-		3	635	635	3,250	3,060	
SC82-5/118			2	465	465	2,165	2,085	
	0002-0/110		4	465	465	4,330	4,165	

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Typical SC Installation

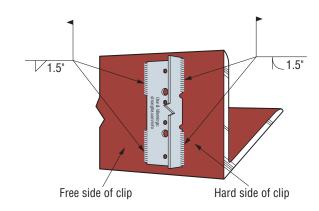
SC62 with Two Screws (SC82 similar)

^{2.} SC Allowable Connector Loads are also limited by the SC Anchorage Load tables on pp. 40 and 41. Use the minimum tabulated values from the connector and anchorage load tables as applicable.

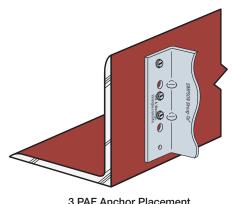
^{3.} See illustration for fastener placement when using only two shouldered screws to the stud.

^{4.} Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. Tested failure modes were due to screw pullout; therefore compare F₁ against F_D calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.

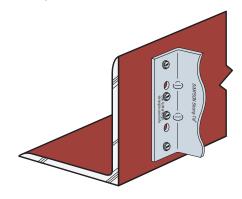
^{5.} F₁ loads are based on maximum standoff distances of 1" or 1½" as shown. Other loads are applicable to a 1" standoff for SC32 and 1" or 11/2" standoff for SC62 and SC82.


^{6.} At the bend line, the gross allowable plastic moment in the F_1 load direction for 97 mil (12 ga.) and 118 mil (10 ga.) SC connectors are 395 in.-lb. and 675 in.-lb., respectively.

^{7.} At a vertical slot, the net allowable plastic moment in the F₁ load direction for 97 mil (12 ga.) and 118 mil (10 ga.) SC connectors are 260 in.-lb. and 440 in.-lb., respectively.


SC Allowable Anchorage Loads to Steel (lb.)

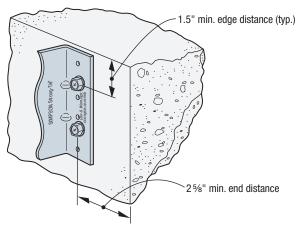
Anchorona Tuno	Minimum	No. of	Allowable	Load (lb.)	
Anchorage Type	Base Material	Anchors	F ₁	F ₂ and F ₃	
#12–24 self-drilling screws	A36 steel	3	730	1,910	
Strong-Drive® X and XL Metal screws	¾e" thick	4	975	2,545	
Simpson Strong-Tie® 0.157" x 5%" powder-actuated fasteners	A36 steel	3	_	780	
PDPAT-62KP	¾e" thick	4	_	1,040	
Simpson Strong-Tie 0.157" x %" powder-actuated fasteners	A572 or A992 steel	3	_	1,260	
PDPAT-62KP	¾e" thick	4	_	1,710	
Weld	A36 steel	(2) Hard side: 1.5"	2,040	4.720	
E70XX electrodes	¾e" thick	(2) Free side: 1.5"	2,040	4,720	


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable anchorage loads are also limited by the SC Connector Load Table on p. 39. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. Allowable loads for #12–24 self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum %e" thick structural steel with Fy = 36 ksi. PDPAT values are also provided for A572 steel. Values listed above may be used where other thicknesses of steel are encountered or other manufacturers are used, provided that the fastener has equal or better tested values (see p. 26). It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 4. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling, use a maximum \%"-diameter drill bit.

Weld Anchorage

3 PAF Anchor Placement (3 screws similar)

4 PAF Anchor Placement (4 screws similar)


SC Anchor Layout

SC Allowable Anchorage Loads into Concrete (lb.)

Anchorage Type	Nominal Embedment	Anchor Quantity	f'c	Load	Wind and in SD0		Seismic in SDC C through F
	(in.)	and Size	(psi)	Direction	Uncracked Concrete	Cracked Concrete	Cracked Concrete ⁶
	Simpson Strong-Tie®		2 000	F ₁	335	240	280
Simpson Strong-Tie® Titen HD screw anchor		(2) 1⁄4" x 17⁄8"	3,000	F ₂ and F ₃	660	630	550
THDB25178H	1%		4,000	F ₁	390	280	325
				F ₂ and F ₃	760	725	635
			2 000	F ₁	370	265	310
Simpson Strong-Tie Titen HD screw anchor	2½	(2) 1/4" x 23/4" -	3,000	F ₂ and F ₃	475	695	610
THDB25234H	∠ //2		4,000	F ₁	430	305	360
				F ₂ and F ₃	550	805	705

- 1. Allowable anchor capacities have been determined using ACI 318-14 Chapter 17 calculations with a minimum concrete compressive strength (f'c) of 3,000 and 4,000 psi in normal-weight concrete. Tabulated values shall be multiplied by a factor (λ_a) of 0.68 for sand light-weight concrete.
- 2. Edge distance is assumed to be 1½", and end distance is 25%".
- Load values are for group anchors based on ACI 318, condition B, load factors from ACI 318-14 Section 5.3, no supplement edge reinforcement, Ψ_{C,V} = 1.0 for cracked concrete and periodic special inspection.
- 4. Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α), of 0.70 for seismic load and 0.6 for wind loads. ASD values for other combinations may be determined using alternate conversion factors.
- Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A&B only.
- Design loads shall include the over-strength factor per ASCE7 Section 12.4.3. For fasteners in exterior wall connection systems, Ω₀ = 1.5 per Table 13.5-1.
- 7. Allowable loads for F_1 are based on the governing loading direction which is toward the end of slab.
- 8. For anchor subjected to both tension and shear loads, it shall be designed to satisfy the following:
 - For N_a / $N_{all} \le 0.2$, the full allowable load in shear is permitted.
 - \bullet For V_a / $V_{all} \leq$ 0.2, the full allowable load in tension is permitted.
 - For all other cases: N_a / N_{all} + V_a / V_{all} ≤ 1.2 where:
 - Na = Applied ASD tension load
 - $N_{all}^- = Allowable F_2$ and F_3 load from the SC Allowable Anchorage Loads into Concrete table
 - Va = Applied ASD shear load
 - Vall = Allowable F₁ load from the SC Allowable Anchorage Loads into Concrete table
- 9. Tabulated allowable loads are based on anchorage only. The capacity of the connection system shall be the minimum of the allowable anchorage load and the SC Allowable Connector Loads.

Titen HD Anchorage

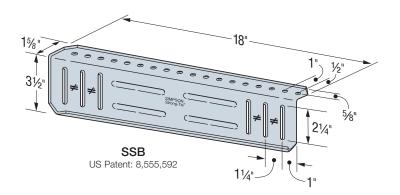
SSB Bypass Framing Slide-Clip Strut Connector

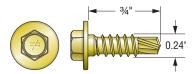
The SSB connector is a versatile strut connector that is commonly used at the bottom of a steel beam to accommodate large standoff conditions. It accommodates 1" of upward and 1" of downward movement.

Material: 54 mil (16 ga.) Finish: Galvanized (G90)

Installation:

- Use the specified type and number of anchors.
- Use the specified number of XLSH34B1414 #14 shouldered screws (included). Install shouldered screws in the slots adjacent to the No-Equal® stamp.
- Use a maximum of one screw per slot.
- If the SSB intrudes on interior space, it can be trimmed. The trimmed part shall allow an edge distance from the center of the nearest anchor to the end of the trimmed part of ½" or greater.
- For installations to wood framing, see Simpson Strong-Tie® engineering letter L-CF-DEFCLIPW at strongtie.com.

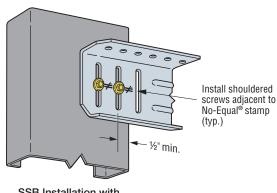

Codes: See p. 13 for Code Reference Key Chart


Ordering Information:

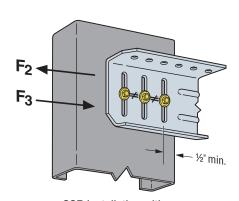
SSB3.518-KT contains:

- Box of 25 connectors
- (83) XLSH34B1414 #14 shouldered screws

Note: Replacement #14 shouldered screws for SSB connectors are XLSH34B1414-RP83.



XLSH34B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)

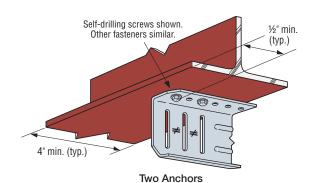

SSB Allowable Connector Loads (lb.)

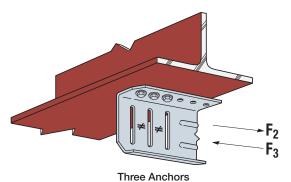
	Connector No. of #14		Stud Thickness						
Model Material Thickness		Shouldered	33 mil (20 ga.)		43 mil (18 ga.)		54 mil (16 ga.)		Code Ref.
	mil (ga.)	Screws	F ₂	F ₃	F ₂	F ₃	F ₂	F ₃	
SSB3.518	E4 (16)	2 ¹	480	480	640	640	890	890	IBC,
33.518	54 (16)	3	755	755	955	1,000	1,235	1,370	FL, LA

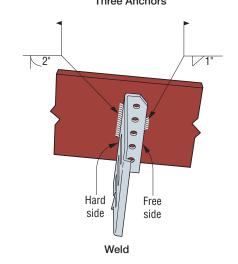
- 1. When the SSB connector is used with two shouldered screws, the screws may be installed in any two slots.
- 2. Allowable loads are based on clips installed with (3) #12–24 screws in the anchor leg. For other anchorage installations, the capacity of the connection system will be the minimum of the tabulated value and the allowable load from the SSB Allowable Anchorage Loads table on p. 43.
- 3. The maximum standoff for SSB with (2) screws and (3) screws is 121/4" and 11", respectively.

SSB Installation with Two Shouldered Screws

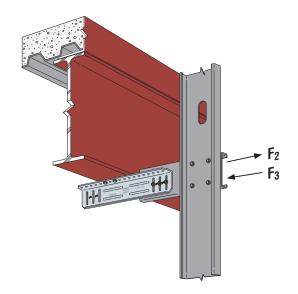
SSB Installation with Three Shouldered Screws

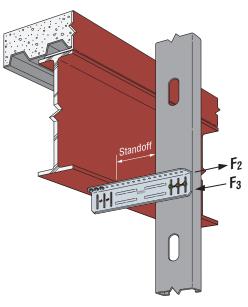

SSB Bypass Framing Slide-Clip Strut Connector


Strong-Tie


SSB Allowable Anchorage Loads (lb.)

Anchorage Type	No. of Anchors	Allowable Load F ₂ and F ₃
#12-24 self-drilling screws	2	1,250
#12-24 Sell-utilling Screws	3	1,875
Simpson Strong-Tie®	2	820
0.157" x 5/6" powder-actuated fasteners PDPAT-62KP	3	1,225
Weld E70XX electrodes	Hard side: 2" Free side: 1"	2,455


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the tabulated value and the allowable load from the SSB Allowable Connector Loads table on p. 42.



SSB Anchor Layout

Typical SSB Installation with Stud Strut

Typical SSB3.518 Installation

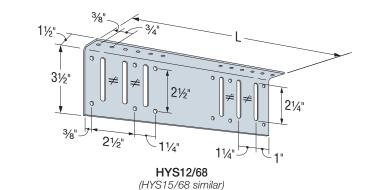
The HYS hybrid strut is the only CFS strut on the market designed and tested for use as either a slide or a rigid clip. Commonly used at the bottom of a steel beam to accommodate large standoff conditions, the HYS strut attaches to the structure with screws, powder-actuated fasteners or welds.

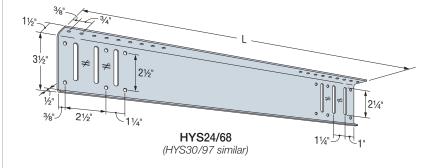
For installation as a slide connection, attach the HYS using shouldered screws through the slotted holes. Precision-manufactured shouldered screws provided with the HYS are designed to prevent over-driving and to ensure that the clip functions properly in the slide application. For installation as a rigid connection to support gravity and lateral loading, attach the clip using the small predrilled holes with #10 screws.

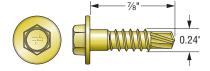
The HYS has undergone comprehensive component, assembly and anchor testing. Tabulated loads were developed from these tests and include capacities based on strength and deflection to assist in mitigating design risk. You can count on the HYS dual-application strut for its versatility and test-verified performance.

Features:

- Available in lengths of 12", 15", 24" and 30" (for 18" lengths, use SSB and FSB struts)
- Slots are positioned to minimize eccentric load and maximize capacity
- Slide application allows up to 1" of vertical moment in each direction when shouldered screws are used through the center of the slot
- Simpson Strong-Tie® No-Equal® stamps mark the center of the slots to help ensure correct placement of shouldered screws
- Supports gravity and lateral loads when using #10 screws through small predrilled holes


Material: HYS12/68, HYS15/68, HYS24/68 —


68 mil (14 ga.), 50 ksi

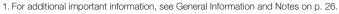

HYS30/97 - 97 mil (12 ga.), 40 ksi

Finish: Galvanized (G90)

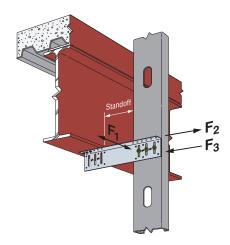
Codes: See p. 13 for Code Reference Key Chart

XLSH78B1414
#14 Shouldered Screw for
Attachment to Stud Framing
Slide Application
(included)

Ordering Information and Dimensions

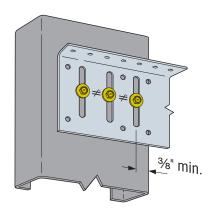

Model No.	Ordering SKU	Length (in.)	Connectors	Shoulder Screws
HYS12/68	HYS12/68-KT25	12	25	83
HYS15/68	HYS15/68-KT25	15	25	83
HYS24/68	HYS24/68-KT15	24	15	55
HYS30/97	HYS30/97-KT10	30	10	55

- 1. Replacement of additional shoulder screws for HYS connectors in slide application are XLSH78B1414-RP83.
- 2. Maximum offsets are for two or three fasteners to primary structure. For four fasteners, reduce by ¾".


Strong-Tie

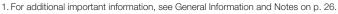
HYS Slide-Clip Allowable Loads (lb.)

		No. of	All	owable Load (I	b.)	
Model No.	Stud Thickness mil (ga.)	#14 Shoulder Screws (Pattern)	In-Plane Load F ₁	Tension Load F ₂	Comp. Load F ₃	Code Ref.
UVC10/60		2 (S1)	100	520	520	
HYS12/68		3 (S2)	100	815	815	
UVC1E/G0		2 (S1)	100	520	520	
HYS15/68	22 (20)	3 (S2)	100	815	815	
UVC24/60	33 (20)	2 (S1)	100	520	460	
HYS24/68		3 (S2)	100	815	690	
HV620/07		2 (S1)	100	520	530	
HYS30/97		3 (S2)	100	815	795	
11//010/00		2 (S1)	150	845	620	
HYS12/68		3 (S2)	150	1,285	1,260	
LIVO1E/G0		2 (S1)	150	845	620	
HYS15/68	40 (10)	3 (S2)	150	1,285	1,260	
HVCO4/60	43 (18)	2 (S1)	150	845	950	
HYS24/68		3 (S2)	150	1,285	1,420	
UVC20/07		2 (S1)	150	845	1,100	
HYS30/97		3 (S2)	150	1,285	1,640	
LIV010/00		2 (S1)	240	1,040	995	_
HYS12/68		3 (S2)	240	1,585	1,550	
UV01E /00		2 (S1)	240	1,040	995	
HYS15/68	E4 (16)	3 (S2)	240	1,585	1,550	
HYS24/68	54 (16)	2 (S1)	240	1,040	1,170	
П1324/00		3 (S2)	240	1,585	1,755	
HYS30/97		2 (S1)	240	1,040	1,355	
111330/97		3 (S2)	240	1,585	2,020	
HYS12/68		2 (S1)	300	1,165	995	
111312/00		3 (S2)	300	1,775	1,550	
HYS15/68		2 (S1)	300	1,165	995	
111010/00	68 (14)	3 (S2)	300	1,775	1,550	
HACOVIEO	00 (14)	2 (S1)	300	1,165	1,170	
HYS24/68		3 (S2)	300	1,775	1,755	
HYS30/97		2 (S1)	300	1,520	1,520	
111000/31		3 (S2)	300	2,265	2,265	


HYS Allowable Connector Loads are also limited by the HYS Anchorage Load table on p. 47. Use the minimum tabulated values from the connector and anchorage load tables as applicable.

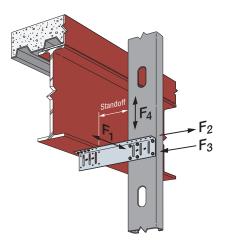
Typical HYS Slide-Clip Application

Slide Screw Pattern S1 (no screws required in small round holes in slide application)

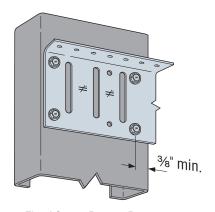

Slide Screw Pattern S2 (no screws required in small round holes in slide application)

^{3.} See illustrations on the side for fastener placement to stud framing.

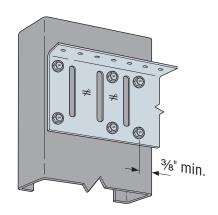
^{4.} Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. Tests are governed by fastener connections.


HYS Fixed-Clip Allowable Loads (lb.)

	01.1	No. of		Allowable	Load (lb.)		
Model No.	Stud Thickness mil (ga.)	#10 Screws (Pattern)	In-Plane Load F ₁	Tension Load F ₂	Comp. Load F ₃	Shear Load F ₄	Co Re
11//010 /00		4 (R1)	100	705	705	365	
HYS12/68		6 (R2)	110	1,060	1,060	365	
UV04E /00		4 (R1)	100	705	705	340	
HYS15/68	22 (20)	6 (R2)	110	1,060	1,060	340	
UV004/00	33 (20)	4 (R1)	100	705	705	140	ĺ
HYS24/68		6 (R2)	110	1,060	1,060	175	ĺ
111/000/07		4 (R1)	100	705	705	135	
HYS30/97		6 (R2)	110	1,060	1,060	135	
111/040 /00		4 (R1)	125	1,040	1,050	525	
HYS12/68		6 (R2)	155	1,520	1,580	525	
111/045 (00		4 (R1)	125	1,040	1,050	445	
HYS15/68		6 (R2)	155	1,520	1,580	445	
111/00/1/00	43 (18)	4 (R1)	115	1,040	1,050	180	
HYS24/68		6 (R2)	125	1,520	1,580	230	ĺ
111/000 /07		4 (R1)	115	1,045	1,050	175	
HYS30/97		6 (R2)	125	1,580	1,580	175	
111/040 (00		4 (R1)	145	2,110	1,800	560	-
HYS12/68		6 (R2)	285	3,085	1,800	710	
111/045 (00		4 (R1)	145	2,110	2,135	560	
HYS15/68	54 (40)	6 (R2)	285	3,085	2,630	560	
111/00/1/00	54 (16)	4 (R1)	150	2,110	2,135	225	ĺ
HYS24/68		6 (R2)	165	3,085	2,315	290	
111/000/07		4 (R1)	150	2,125	2,135	220	
HYS30/97		6 (R2)	165	3,190	3,205	220	
111/040 /05		4 (R1)	195	2,110	1,800	550	
HYS12/68		6 (R2)	385	3,085	1,800	710	
LIVO45 (22		4 (R1)	195	2,110	2,160	560	
HYS15/68	00 (4.4)	6 (R2)	385	3,085	2,630	560	ĺ
LIN/00 / /00	68 (14)	4 (R1)	190	2,110	2,160	225	
HYS24/68		6 (R2)	210	3,085	2,315	290	
LIN/005 /07		4 (R1)	190	2,125	2,160	220	İ
HYS30/97		6 (R2)	210	3,190	3,240	220	1



^{2.} HYS Allowable Connector Loads are also limited by the HYS Anchorage Load table on p. 47. Use the minimum tabulated values from the connector and anchorage load tables as applicable.


6. Minimum stud width for fixed application is 6".

Typical HYS Fixed-Clip Application

Fixed Screw Pattern R1 (no screws required in slot in fixed application)

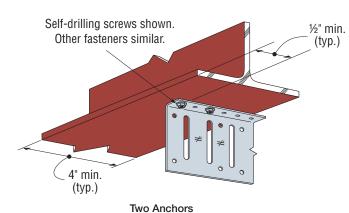
Fixed Screw Pattern R2 (no screws required in slot in fixed application)

^{3.} See illustrations on the side for screw fastener placement to stud framing.

Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. Tests are governed by fastener connections.

^{5.} XLSH78B1414 #14 shouldered screw may be used to replace #10 screws in a fixed application.

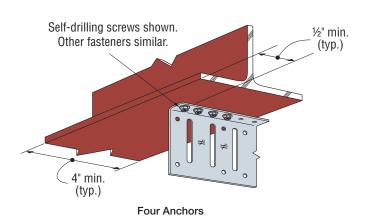
SIMPSON Strong-Tie

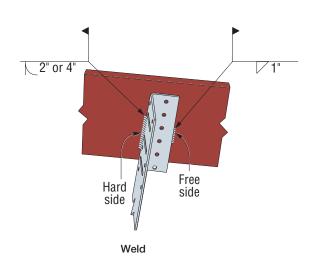

HYS Allowable Anchorage Loads (lb.)

Anghorogo Tuno	No. of	Allowable	Load (lb.)
Anchorage Type	Anchors	F ₂ and F ₃	F ₄
#12–24 self-drilling screws	2	1,595	565
	3	2,395	845
	4	3,190	1,125
Simpson Strong-Tie®	2	820	_
0.157" x 5%" powder-actuated fasteners	3	1,230	520
PDPAT-62KP	4	1,640	780
Weld	Hard side: 2" Free side: 1"	2,455	1,125
E70XX electrodes	Hard side: 4" Free side: 1"	3,190	1,125

^{1.} For additional important information, see General Information and Notes on p. 26.

HYS Maximum Standoff Distances (in.)


Model	Pattern	No. of Anchors					
No.	rattern	2 or 3	4				
	S1	7	61/4				
HYS12/68	S2	5¾	5				
	R1 or R2	51/8	43/8				
	S1	10	91/4				
HYS15/68	S2	8¾	8				
	R1 or R2	81/8	7%				
	S1	19	181⁄4				
HYS24/68	S2	17¾	17				
	R1 or R2	171/8	16%				
	S1	25	241/4				
HYS30/97	S2	23¾	23				
	R1 or R2	231/8	22%				



Self-drilling screws shown.
Other fasteners similar.

4" min.
(typ.)

Three Anchors

^{2.} Allowable loads are for the clip anchorage only. The capacity of the connection system will be the minimum of the tabulated value and the allowable load from the HYS Allowable Connector Loads on p. 45 for slide applications and p. 46 for fixed applications.

SCW Head-of-Wall Slide-Clip Connector

The SCW connectors offer 1" of upward and 1" of downward movement. They are primarily used in head-of-wall applications that require vertical movement relative to the structure. SCW connectors are often used to strengthen window and door jambs for projects that utilize slip or slotted track.

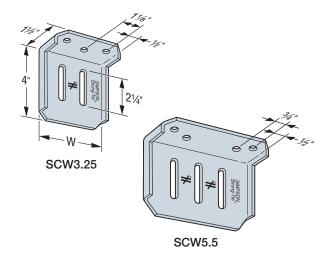
Material: 54 mil (16 ga.) Finish: Galvanized (G90)

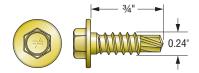
Installation:

- Use the specified type and number of anchors.
- Use the specified number of #14 shouldered screws (included).
 Install shouldered screws in the slots adjacent to the No-Equal[®] stamp.
- Use a maximum of one screw per slot.
- For installations to wood framing, see Simpson Strong-Tie[®] engineering letter L-CF-DEFCLIPW at strongtie.com.

Codes: See p. 13 for Code Reference Key Chart

Ordering Information:

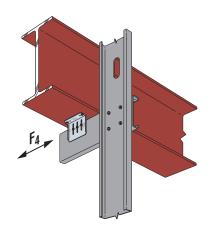

SCW3.25-KT contains:


- Box of 25 connectors
- 55 XLSH34B1414 #14 shouldered screws

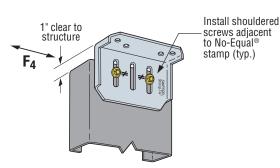
SCW5.5-KT contains:

- Box of 25 connectors
- 83 XLSH34B1414 #14 shouldered screws

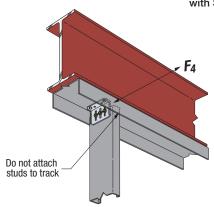
Note: Replacement #14 shouldered screws for SCW connectors are XLSH34B1414-RP83.



XLSH34B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)


SCW Allowable Connector Loads (lb.)

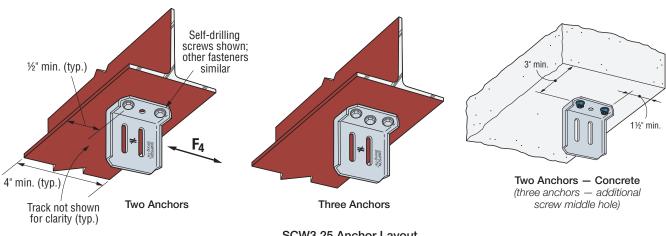
		Connector						
	Model No.	Connector Material Thickness mil (ga.)	W (in.)	No. of #14 Shouldered Screws	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	Code Ref.
		iiii (ya.)			F ₄	F ₄	F ₄	
	SCW3.25	54 (16)	31/4	2	455	630	755	
	COME E	54 (16)	5½	21	455	630	995	IBC, FL, LA
	SCW5.5			3	455	630	1,220³	,

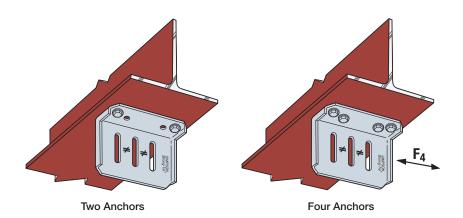

- 1. When the SCW5.5 connector is used with two shouldered screws, install screws in the outermost slots.
- 2. Allowable loads are based on clips installed with all holes in the anchor leg filled with #12-14 screws. For other anchorage installations, the capacity of the connection system will be the minimum of the tabulated value and the allowable load from the SCW Allowable Anchorage Loads table on p. 49.
- 3. Tabulated loads are applicable for the following framing widths: SCW3.25 3½", 3½", 4" and 5½" SCW5.5 6", 8" (18 ga. min.), 10" and 12" (16 ga. min.)

Typical SCW Installation with Stud Strut

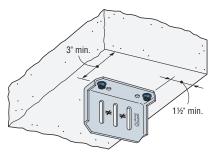
SCW5.5 Installation with Two Shouldered Screws (three shouldered screws and SCW3.25 similar)

Typical SCW Installation at Stud


SCW Head-of-Wall Slide-Clip Connector


SCW Allowable Anchorage Loads (lb.)

Model No.	Anchorage Type	Minimum Base Material	No. of Anchors	Allowable Load F4
	#12–24 self-drilling screws	A36 steel	2	715
	#12-24 Self-drilling Screws	¾6" thick	3	1,075
SCW3.25	Simpson Strong-Tie® 0.157" x 5%" powder-actuated fasteners	A36 steel	2	715
30W3.25	PDPAT-62KP	¾6" thick	3	1,075
	Simpson Strong-Tie	Concrete	2	285
	1⁄4" x 1 ³ ⁄4" Titen Turbo™ ³	$f'_{C} = 2,500 \text{ psi}$	3	350
	#12–24 self-drilling screws	A36 steel	2	775
	#12-24 Sell-utilling Screws	¾6" thick	4	1,550
SCW5.5	Simpson Strong-Tie 0.157" x 5%" powder-actuated fasteners	A36 steel	2	745
30W3.3	PDPAT-62KP	¾6" thick	4	1,490
	Simpson Strong-Tie	Concrete	2	285
	1/4" x 1 3/4" Titen Turbo ³	f' _C = 2,500 psi	4	775


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the tabulated value and the allowable load from the SCW Allowable Connector Loads table on p. 48.
- 3. Tabulated values require a minimum 1 $\frac{1}{2}$ " edge distance for masonry screws in concrete.
- 4. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

SCW5.5 Anchor Layout

Two Anchors - Concrete (four anchors - additional screws middle holes)

HWSC Head-of-Wall Slide-Clip Connector

Strong-Tie

WEINEER ED

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The HWSC head-of-wall slide-clip connector is specifically designed for simplifying the panelization of 6" printed studs (e.g., FrameCAD®, Arkitech, Howick, Pinnacle and Scottsdale). The HWSC is designed to replace slotted track with a typical printed track at head-of-wall conditions. To facilitate installation, a cone-shaped funnel in the clip helps the dimple in the track align properly with the clip's corresponding dimple to hold it in place while a screw is placed in each flange from the track to the clip. The stud is then slid into position, and the clip is attached to the stud with shoulder screws driven through the center of the fastener slots. As an option, fasten the clip through the diamond-shaped hole to stud using a single screw to lock the deflection gap in place temporarily during transport and installation. The optional screw is then removed after installation is complete. The HWSC has been assembly tested to provide optimal strength and performance.

Features:

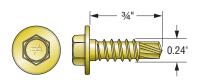
- An edge stiffener has been rolled into the web and flange of the clip for added strength and for ease of fastening of the screws into the clip flange during installation
- The clip has a unique cone-shaped dimple that guides the track dimple into alignment with the clip, locking the connection in-place while a screw is installed into each flange
- Replaces slotted track that is difficult to panelize with typical printed track
- Allows up to 1" movement up and down

Caution:

- The HWSC connector is specifically designed for use with printed studs and tracks such as FrameCAD, Arkitech, Howick, Pinnacle and Scottsdale
- Not intended for use with typical manufactured studs and tracks

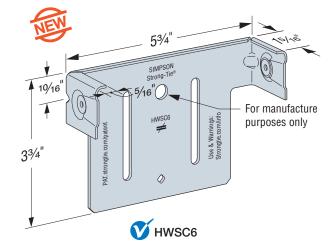
Material: 54 mil (16 ga.), 50 ksi

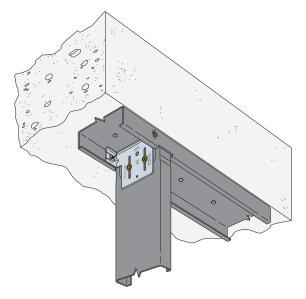
Finish: Galvanized (G90)


Installation:

- Use (2) XLSH34B1414 #14 shoulder screws (included).
 Install screws into the center of the slot at No-Equal[®] logo.
- Use an optional #10 screw to lock deflection gap during panel construction. Remove after installation is complete.

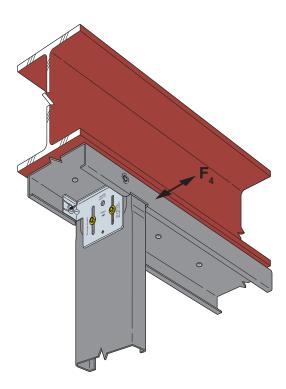
Codes: Testing performed in accordance with ICC-ES AC261. Visit **strongtie.com** for the latest load values and testing information.


Ordering Information:


- Box of (50) HWSC6-KT connectors
- (2) bags of (55) XLSH34B1414 #14 shoulder screws

XLSH34B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)

Typical HWSC6 Installation


HWSC Head-of-Wall Slide-Clip Connector

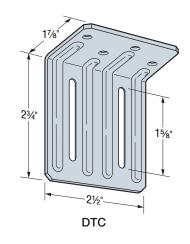
HWSC Allowable Connector Loads, F₄ (lb.)

	Track		Stud Thickness mil (ga.), F _y									
Model No.	Thickness	Fy	33	(20)	43 (18)		54 (16)	68 (14)				
	mil (ga.)	(kśi)	33 ksi	50 ksi	33 ksi	50 ksi	33 or 50 ksi	33 or 50 ksi				
	33 (20)	33										
		50										
HWSC6	40 (10)	33	Please see the H	ee the HW	HWSC product page at							
HWSCO	43 (18)	50	strongtie.com for load capacities.									
	54 (16)	33 or 50										
	68 (14)	33 or 50										

- 1. The HWSC6 has an out-to-out dimension of 5%". It is designed to fit inside a printed track and attached to the swaged end of the printed stud. Listed capacities are based on tracks with ½" lips and a maximum lip cutout of 2%" at stud location.
- 2. Allowable loads are based on the clip installed with (1) #10–16 screw into each track flange and (2) shoulder screws into the stud. Shoulder screws are included with the clip.
- 3. Tabulated capacities are based on 1" deflection gap. End of stud must be located a maximum of 1" from web of top track.
- 4. Anchorage to structure designed by others.

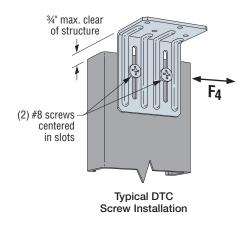
Typical HWSC Installation at Stud

DTC Head-of-Wall Slide-Clip Application

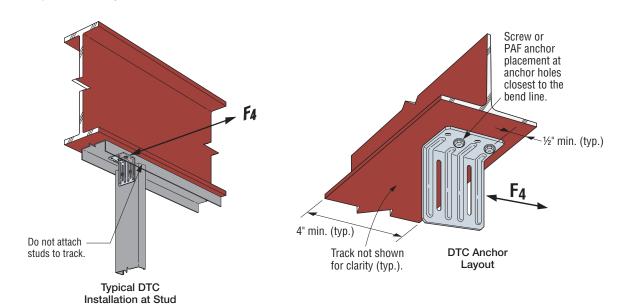

DTC clips are a cost-effective solution for light-duty, head-of-wall slide clip applications. The 1 % " slot will allow % " movement in each direction.

Material: 43 mil (18 ga.) Finish: Galvanized (G90)

Installation:


- Use specified type and number of anchors per the installation drawing below
- Install (2) #8 screws centered in the vertical slots
- Once tightened, back-out screws ½ turn to ensure slip

Codes: See p. 13 for Code Reference Key Chart



DTC Allowable Loads (lb.)

Model No.	Connector Material mil (ga.)	Fasteners	Anchorage	Stud Thickness mil (ga.)	Stud Steel Strength F _y (ksi)	Allowable Load F4	Code Ref.
	43 (18)	(2) #8 self-drilling screws ⁴		15 (25 EQ)	50	60	
				18 (25)	33	70 80 165 170	
			(2) 0.157" PDPAT powder-actuated fasteners or (2) #12 self-drilling screws ⁴	19 (20 EQ)	65		IBC, FL, LA
DTC				20 (20 EQ)	57		
				30 (20 DW)	33		
				33 (20 STR)	33		
				43 (18)	33	215	

- 1. Allowable loads may not be increased for wind or seismic load.
- 2. Clips do not replace stud lateral or stability bracing. Design of bracing is the responsibility of the designer.
- 3. It is the responsibility of the designer to verify the adequacy of the stud. Allowable loads are based on clips installed an adequate distance away from penetrations, notches, ends of studs and other conditions that may affect the clip performance.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.
- 5. EQ = Equivalent, DW = Drywall, STR = Structural.

SCHA Slide-Clip Connectors for Horizontal Anchorage

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

SCHA connectors are an ideal solution for panelized or stick-frame construction where the CFS framing anchors to the top of a concrete floor slab or the bottom of a steel beam. The connector features a wide support leg to decrease eccentricity on anchors and provide a variety of anchorage options. The included SCVC vertical slider helps to strengthen the connector for the highest tension (F₂) and compression (F₃) loads in the industry.

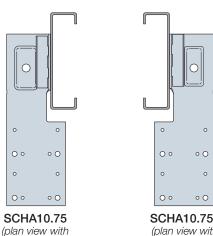
Features:

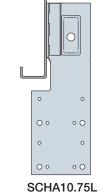
- Provides a full 1" of both upward and downward movement
- Tabulated design values for anchorage help mitigate risk and provide ease of specification
- Either face of anchorage leg can be used against the support
- Accommodates standoff distances up to 43/4"
- Can be used with 35/4", 4", 6" and 8" studs
- Prepunched anchor holes accommodate 1/4"-diameter Titen HD® or other 1/4"-diameter concrete screw anchors, and 0.157"-diameter powder-actuated fasteners such as the Simpson Strong-Tie® PDPAT-62KP
- Prepunched anchor holes also eliminate the need for pre-drilling and help ensure accurate anchor placement

Material: SCHA - 118 mil (10 ga., 33 ksi); SCVS - 97 mil (12 ga., 33 ksi)

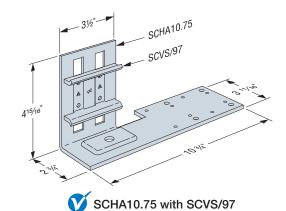
Coating: Galvanized (G90)

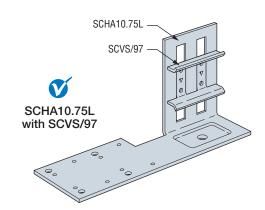
Installation:


- Use all specified fasteners and anchors. Note that the smaller diameter anchor holes are provided for PAF installation, and the larger diameter anchor holes are for 1/4"-diameter concrete screw anchors.
- Ensure that the SCVS vertical slider is centered in the SCHA vertical slots by aligning the tic-marks adjacent to the triangle holes on the slider with the ≠ stamp on the SCHA clip.


Codes: See p. 13 for Code Reference Key Chart

Ordering Information:


vertical leg up)


- SCHA10.75-KT15 contains (15) SCHA10.75 connectors and (15) SCVS/97 sliders
- SCHA10.75L-KT15 contains (15) SCHA10.75L connectors and (15) SCVS/97 sliders

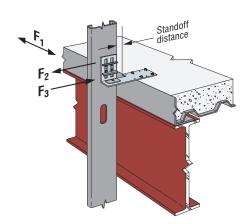
(plan view with vertical leg up)

US Patent Pending

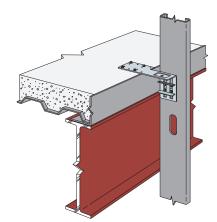
SCHA Anchorage Types and Conditions

SCHA Anchorage Typ	pes and Conditions				
Four PDPAT Ar	nchors to Steel				
Front Condition	End Condition				
½° min.	½' min.				
4" V	Veld				
Front Condition	End Condition				
	1 2				
1/4"-Diameter C	oncrete Screws				
Four Anchors	Two Anchors				
T. Mr.	The state of the s				

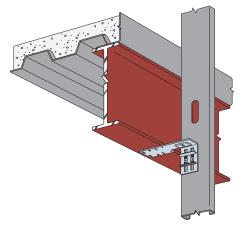
SCHA Slide-Clip Connectors for Horizontal Anchorage

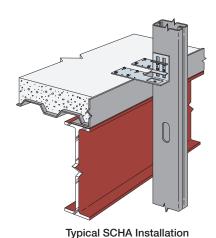

SCHA Allowable Loads (lb.)

Primary Structure	Anchora	age		s to Stud ng Screws	Stud Thickness	Maximum Standoff	All	owable Load (l	lb.)	Code
Base Material	Qty./Type/Size	Condition	Min./ Max.	No. #12–14	mil (ga.)	Distance (in.)	F ₁ ⁷	F ₂	F ₃	Ref.
				Min. 4	33 (20)		150	645	490	
			Min		43 (18)	2	195	860	610	
		Front	IVIIII.	4	54 (16)		235	990	880	
		condition			68 (14)		235	990	880	
	(4) 0.157" x 5%" powder-actuated		Max.		54 (16)	0	350	1,300	1,045	
Structural steel A36	fasteners		Max.	6	68 (14)	2	350	1,495	1,045	
¾6" thick minimum	PDPAT-62KP or				33 (20)		105	625	470	
	(2) welds – 2" length				43 (18)	43/4	110	830	570	1
		End	Min.	4	54 (16)		830	720	1	
		condition			68 (14)		165	830	720	1
				6	54 (16)	43/4	350	1,060	775	1
			Max.	ь	68 (14)	4%	350	1,060	775	_
			Min.	4	33 (20)	2	105	625	470	
					43 (18)		110	830	570	
	(4) 1/4"-diameter				54 (16)		165	830	720	
	concrete screw anchors ³	4 anchors			68 (14)		165	830	720	
					54 (16)		350	1,060	775	
			Max.	6	68 (14)	2	350	1,060	775	
Concrete					33 (20)		105	625	470	
			N.4:	4	43 (18)	42/	105	830	570	
	(2) 1/4"-diameter	0 1	Min.	4	54 (16)	4¾	165	830	720	
	concrete screw anchors ³	2 anchors			68 (14)		165	830	720	
					54 (16)	427	350	860	745	
			Max.	6	68 (14)	4¾	350	860	745	


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable loads are based on connectors installed with tabulated anchorage type, quantity and size into structural steel. For anchorage installations into concrete, the capacity of the connection system will be the minimum of the tabulated value and the allowable load using concrete screws indicated on the table on p. 55. Note that if the designer chooses to calculate concrete anchorage with alternate ¼"-diameter anchors, then the maximum load shall not exceed the tabulated values in this table. Refer to the figures on p. 53 for anchorage conditions.
- 3. Please refer to the table on p. 55 for Simpson Strong-Tie® Titen HD® anchorage loads.
- 4. Min. fasteners quantity and tabulated values fill round holes; max. fasteners quantity and tabulated values fill round and triangular holes.
- 5. The standoff is the distance from the interior flange of the stud to the face of the supporting structure. Note that the interior flange of the stud is assumed to align with the inside vertical edge of the connector as indicated in the illustrations on p. 55.
- 6. Tabulated values are based on 35%" studs. Web crippling checks for deeper members are the responsibility of the designer.
- 7. Tabulated F_1 loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F_1 against F_p calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.

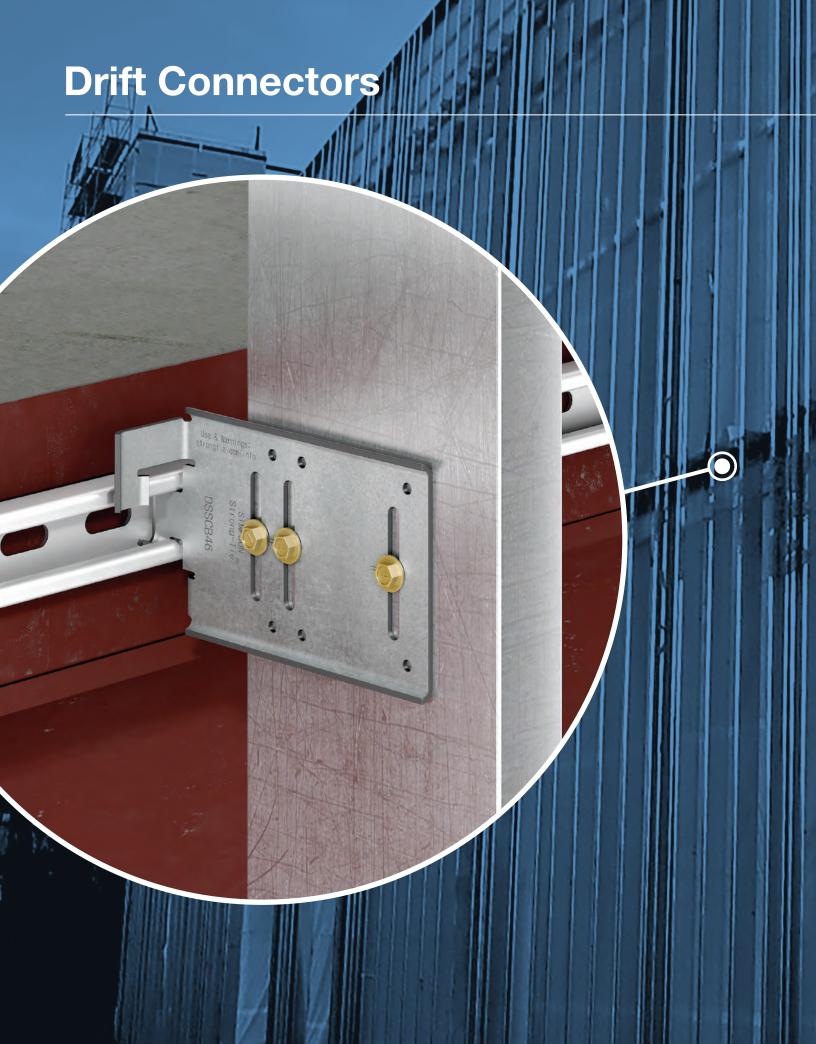
SCHA Slide-Clip Connectors for Horizontal Anchorage




Typical SCHA Installation at Floor Slab

Typical SCHA Installation at Floor Slab (inverted)

Typical SCHA Installation at Beam Flange



for Built-Up Studs at Floor Slab (SCHA10.75L near side and SCHA10.75 far side)

Allowable Titen HD® Anchorage Loads into Concrete with SCHA Clip (lb.)

	Nominal	Anchors				chor Load (lb.) nd F ₃	
Anchorage Type	Embedment (in.)	Quantity and Size	f' _C (psi)	Wind and Seisr	mic in SDC A&B	Seismic in SDC C through F	
				Uncracked Concrete	Cracked Concrete	Cracked Concrete $(\Omega = 1.0)$	Cracked Concrete ⁷ $(\Omega = 2.5)$
Simpson Strong-Tie® Titen HD screw anchor	1 %	(4) ¼" x 1 %"	2,500	1,025	730	855	350
THDB25178H	15/8	(2) 1/4" x 1 7/8"	2,500	510	365	425	175

- 1. Allowable anchor capacities have been determined using ACI 318-14 Chapter 17 calculations with a minimum concrete compressive strength (f'_c) of 2,500 psi and 5" slab thickness in normal-weight concrete. Tabulated values can be multiplied by a factor (λ_a) of 0.68 for sand-lightweight concrete.
- 2. Nominal Embedment Depth/Effective Embedment Depth relationship is 1.75" (hnom) / 1.30" (hef).
- 3. Edge distance is assumed to be 2", and end distance is 7%".
- 4. Load values are for group anchors based on ACI 318-14, condition B, load factors from ACI 318-14 Section 5.3, no supplement edge reinforcement, $\Psi_{\text{C,V}} = 1.0$ for cracked concrete and periodic special inspection.
- 5. Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α), of 0.70 for seismic load and 0.6 for wind loads. ASD values for other combinations may be determined using alternate conversion factors.
- 6. Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A&B only.
- 7. Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17.
- 8. Allowable F2 and F3 loads are based on the governing loading direction, which is toward the edge of slab.
- Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the SCHA Allowable Connector Loads.

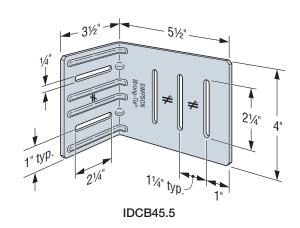
IDCB Drift-Clip Bypass Framing Connector

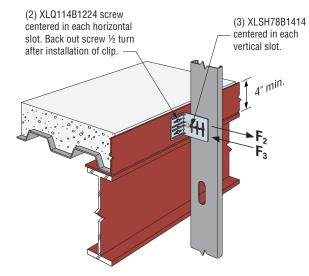
The IDCB drift-clip connector is used to secure bypass stud framing to the edge of a slab. The connector will accommodate 1" of lateral drift in each direction and 1" of upward and downward vertical deflection. Tested load values are provided for anchorage to a steel-edge angle using #12 x 1 ¼" Strong-Drive® XL Large-Head Metal screws.

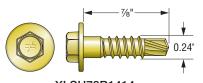
Features:

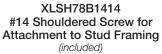
- Horizontal embossments and corner gussets optimize performance in the F₂ load direction
- Precision-manufactured shouldered screws provided with the IDCB connector are designed to prevent overdriving and to ensure that the clip functions properly
- Simpson Strong-Tie® No-Equal® stamps mark the center of the slots to help ensure correct shouldered screw and anchor placement

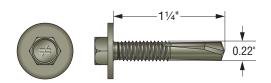
Material: 97 mil (12 ga.), 50 ksi Coating: Galvanized (G90)

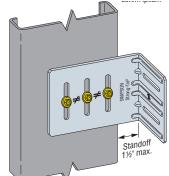

Installation:


- Use the specified type and number of fasteners and anchors.
- In the vertical slots, use the specified number of #14 shouldered screws (included) for attachment to the stud. Install screws to align with the No-Equal stamp.
- For attachment to a minimum 1/6"- and maximum 1/2"-thick steel edge angle, use Simpson Strong-Tie Strong-Drive XL Large-Head Metal screws (XLQ114B1224). Use one screw centered in each horizontal slot. Install screws to align with the No-Equal stamp and back out 1/2 turn.
- For fastener installation into steel backed by concrete, predrilling of both the steel and the concrete may be required. For predrilling, use a maximum %6"-diameter drill bit.


Codes: See p. 13 for Code Reference Key Chart


Ordering Information:


IDCB45.5-KT25 contains (25) IDCB45.5 connectors and (83) XLSH78B1414 #14 shouldered screws



XLQ114B1224 Screw for Anchorage to Steel Edge Angle (sold separately)

Standoff Distance

IDCB45.5 Connector Loads (lb.)

Model	No. of #14	No. of #12 XLQ Screw Anchors ²	Load Direction	Stud Thickness	Strength³ (lb.)		Service Limit ³ (lb.)		Code
No.	Shouldered Screws ¹			mil (ga.)	ASD	LRFD	1/8" Deformation	3/16" Deformation	Ref.
	3	2	F ₂ and F ₃	33 mil (20 ga.)	600	900	410	650	
IDCB45.5				43 mil (18 ga.)	680	1,060	455	695	_
				54 mil (16 ga.)	760	1,220	500	745	

- 1. #14 x 7/6" shouldered screw (model no. "XLSH78B1414") provided with the clips are ASTM C1513 compliant.
- 2. For additional information on the #12 XL screw (model no. "XLQ114B1224") refer to strongtie.com.
- 3. The capacity of the connection will be the minimum of Strength Load and applicable Service Limit Load as determined by the designer.

^{4.} For additional important information, see General Information and Notes on p. 26.

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

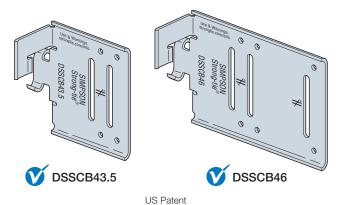
The solution to accommodate building drift, the DSSCB, is used to support cold-formed steel bypass framing to the edge of a floor slab. The DSSCB also simplifies installation by allowing installers for panelized construction to install finished panels while working off the top of the slab without the need to predrill or preinstall anchors for each clip. It also eliminates the coordination difficulties associated with pre-anchorage of standard bypass clips. With prepunched slots and round holes, the DSSCB is a dual-function connector that can be used for slide-clip and fixed-clip applications.

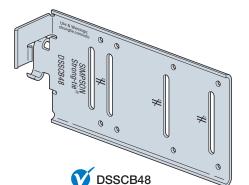
Features:

- The clips come in lengths of 31/2", 6" and 8".
- Prepunched slots provide a full 1" of both upward and downward deflection.
- Precision-manufactured shouldered screws, provided with DSSCB connectors, are designed to prevent overdriving and to ensure the clip functions properly.
- Works with %" and 1%" strut channels as given in the accompanying figures. Common manufactured brands are Unistrut®, PHD and B-Line. Struts are not supplied by Simpson Strong-Tie.
- The maximum slide-clip standoff distance is 31%" for %" struts, 37%" for 15%" struts and 214" for concrete inserts.
- Depending on the application and the designer's specifications, struts can be either mechanically anchored, welded or cast in place.
- Pre-engineered design solutions are provided for channel strut anchorage.
- Tabulated design values are based on assembly testing to mitigate risk for designers, engineers and architects.
- Optional pre-cast concrete inserts for flush mounting.
- Optional drift stopper, DSHS, for clip alignment flexibility (where drift not required).

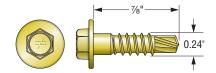
Material: DSSCB — 97 mil (12 ga.), 50 ksi; DSHS — 97 mil (12 ga.), 33 ksi

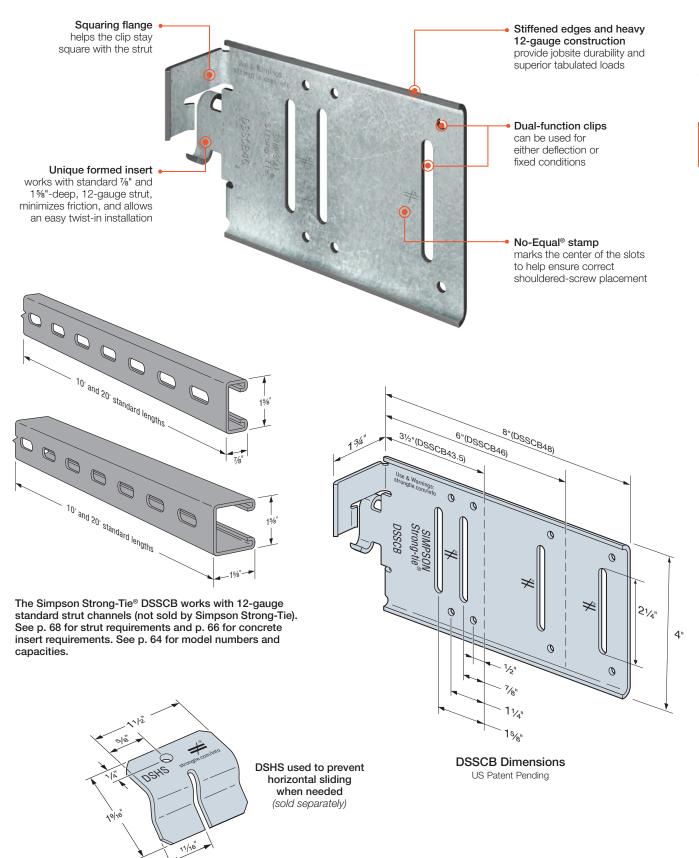
Finish: Galvanized (G90)


Codes: See p. 13 for Code Reference Key Chart.

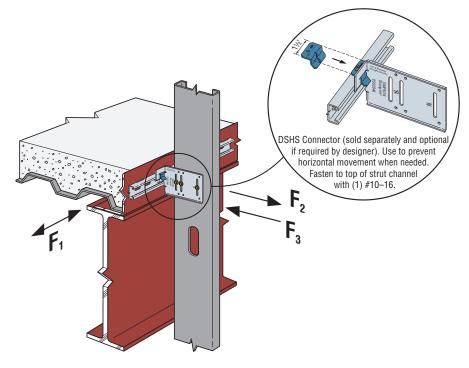

Ordering Information:

The DSSCB43.5-KT25, DSSCB46-KT25 and DSSCB48-KT25 contain 25 connectors and enough shouldered screws for installation. The DSHS-R100 contains 100 connectors.


Note: Replacement #14 shouldered screws for DSSCB connectors are the XLSH78B1414-RP83.



Pending



XLSH78B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)

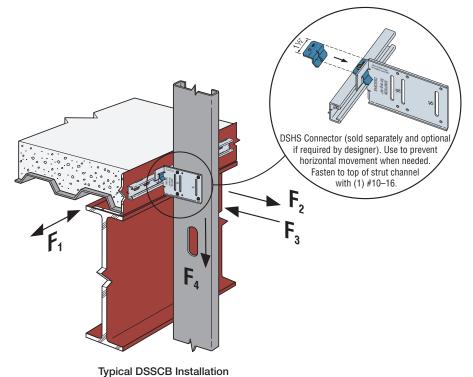
Typical DSSCB Installation Slide-Clip Application

DSSCB Screw Patterns (Slide-Clip Applications)

(Slide-Clip Ap	oplications)		
Model	Pattern A		
DSSCB43.5	The state of the s		
Model	Pattern B	Pattern C	Pattern D
DSSCB46	DOSCORA DE LA CALL	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	School of the Control
Model	Pattern E	Pattern F	Pattern G
DSSCB48	O O O O O O O O O O O O O O O O O O O	TO STATE OF THE PARTY OF THE PA	

DSSCB Allowable Slide-Clip Connector Loads (lb.)

		Fastener	s to Stud		Allowable Load (lb.)		
Model No.	Stud Thickness mil (ga.)	Screw Pattern	No. of #14 Shouldered Screws	F ₁	F ₂	F ₃	Code Ref.
DSSCB43.5		А	2	105	515	570	
DSSCB46	33 (20)	В	3	105	765	855	
D330B40		C, D	2	105	515	570	
DSSCB48		E	4	105	765	1,135	
D330D40		F, G	3	105	765	855	
DSSCB43.5		А	2	155	785	875	
DSSCB46		В	3	155	1,175	1,310	
D330B40	43 (18)	C, D	2	155	785	875	
DSSCB48		E	4	155	1,175	1,745	
D000D40		F, G	3	155	1,175	1,310	IBC, LA
DSSCB43.5		А	2	225	1,075	1,250	IDU, LA
DSSCB46		В	3	225	1,475	1,875	
D330B40	54 (16)	C, D	2	225	1,075	1,190	
DSSCB48		E	4	225	1,475	2,560	
D330D40		F, G	3	225	1,475	1,820	
DSSCB43.5		А	2	300	1,075	1,640	
DSSCB46	68 (14)	В	3	300	1,475	2,800	
D000D40	and 97 (12)	C, D	2	300	1,075	1,560	
DSSCB48		E	4	300	1,475	2,800	
D000D40		F, G	3	300	1,475	2,725	


^{1.} For additional important information, see General Information and Notes on p. 26.

^{2.} DSSCB Allowable Slide-Clip Connector Loads are also limited by the Strut Channel Allowable Anchorage Loads to Steel table on p. 64, or Concrete Insert Allowable Anchorage Loads table on p. 65, or Strut Channel Allowable Anchorage Loads to CLT table on p. 69. Use the minimum tabulated values from the connector and anchorage load tables as applicable.

^{3.} See illustrations on p. 60 for shouldered screw fastener pattern placement to stud framing.

^{4.} Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. F₁ loads require DSHS connector with (1) #10 screw to strut.

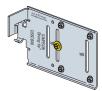
Fixed-Clip Application

DSSCB Screw Patterns (Fixed-Clip Applications)

Model	Pattern H	Pattern I	Pattern J
DSSCB43.5	Sample Sa	O STANSON STAN	ORGANISA OF THE PROPERTY OF TH
Model	Pattern K	Pattern L	Pattern M
DSSCB46	STATE OF THE PROPERTY OF THE P	SURFERING STATE OF THE STATE OF	
Model	Pattern N	Pattern 0	Pattern P
DSSCB48		A Constant of the Constant of	CONTRACTOR OF THE CONTRACTOR O

DSSCB Allowable Fixed-Clip Connector Loads (lb.)

Model	Stud	Screw	No. of #10		Allowable	Load (lb.)		Code
No.	Thickness mil (ga.)	Pattern	Screws	F ₁	F ₂	F ₃	F ₄	Ref.
D000D40 F		Н	4	220	705	705	345	
DSSCB43.5		l, J	2	185	355	355	175	
D000D40	00 (00)	K	6	220	1,060	1,060	355	
DSSCB46	33 (20)	L, M	4	185	705	705	350	
DSSCB48		N	8	220	1,060	1,060	545	
DSSCB48		0, P	4	185	705	705	505	
DSSCB43.5		Н	4	265	1,050	1,050	450	
D000B40.0		I, J	2	240	525	525	230	
DSSCB46	42 (10)	K	6	285	1,125	1,580	460	
D55CB46	43 (18)	L, M	4	240	1,050	1,050	455	
DSSCB48		N	8	285	1,145	1,580	710	
D336B40		0, P	4	240	1,050	1,050	660	IDC I A
DSSCB43.5		Н	4	330	1,410	2,070	1,025	IBC, LA
D336B43.3		l, J	2	300	1,070	1,035	515	
DSSCB46	54 (16)	K	6	360	1,410	3,105	1,050	
D336B40	34 (10)	L, M	4	300	1,410	2,135	1,040	
DSSCB48		N	8	360	1,440	3,105	1,145	
D330B40		0, P	4	300	1,420	2,135	1,070	
DSSCB43.5		Н	4	395	1,410	2,160	1,025	
D330D43.3		l, J	2	300	1,080	1,080	515	
DSSCB46	68 (14) and	K	6	395	1,410	3,105	1,050	
D330D40	97 (12)	L, M	4	300	1,410	2,160	1,040	
DSSCB48		N	8	395	1,440	3,240	1,145	
D33UD40		0, P	4	300	1,420	2,160	1,070	


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. DSSCB Allowable Fixed-Clip Connector Loads are also limited by the Strut Channel Allowable Anchorage Loads to Steel table on p. 64, or Concrete Insert Allowable Anchorage Loads table on p. 65, or Strut Channel Allowable Anchorage Loads to CLT table on p. 69. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. See illustrations on p. 62 for screw fastener pattern placement to stud framing.
- Tabulated F₁ loads are based on assembly tests with the load through the centerline of the stud. F₁ loads require DSHS connector with (1) #10 screw to strut.
- 5. In-plane capacities (F₁) for DSSCB attached to 54 mil (16 ga.) stud can be increased to 455 lb. with the addition of a shoulder screw at first slot from bend line for screw pattern K and L and at middle slot for pattern M (reference patterns shown to the right). Failure mode for this condition is member, not fastener.

Screw pattern K with added shoulder screw per note 5

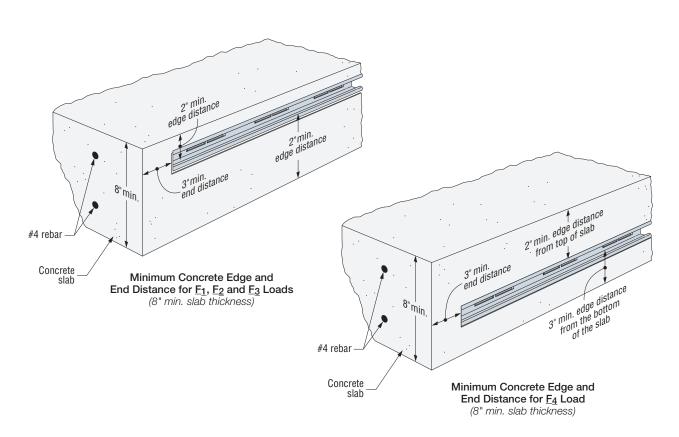
Screw pattern L with added shoulder screw per note 5

Screw pattern M with added shoulder screw per note 5

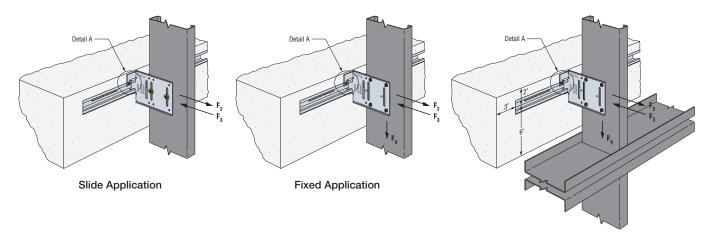
Strut Channel Allowable Anchorage Loads to Steel (lb.)

	Models		Welded Anchorage Each Flange					#12-24 Screw Anchorage					
Strut Size (in.)		Weld Spacing (in.)	Required Weld Length (in.)	F ₁ (lb.)	F ₂ (lb.)	F ₃ (lb.)	F ₄ (lb.)	Screw Spacing (in.)	F ₁ (lb.)	F ₂ (lb.)	F ₃ (lb.)	F ₄ (lb.)	Code Ref.
	Unistrut®	4	1	775	1,800	2,710	3,200	4	755	1,535	2,710	1,650	
⁷ /8	P3300	6	1	775	1,200	2,710	2,135	6	755	1,040	2,710	1,155	
	1201; 1202; 1211; 1212; 1221; 1222; 1241; 1242 B-Line B52; B52H1 7/s; B52SH; B52K06	8	1	775	900	2,710	1,600	8	755	800	2,710	865	
		10	1	775	720	2,710	1,280	_	_	_	_	_	
		12	1	775	600	2,710	1,065	_	_	_	_	_	
		16	1	775	450	2,710	800	_	_	_	_	_	IBC,
	Unistrut® P1000; P1000HS; P1000T; P1000K0.	4	1	775	4,310	3,925	1,745	4	755	1,535	3,925	1,315	LA
1%		6	1	775	2,875	3,925	1,715	6	755	1,040	3,925	1,155	
	PHD 1001; 1002; 1011; 1012; 1021; 1022; 1041; 1042 B-Line B22; B22H176; B22SH; B22K06	8	1	775	2,155	3,925	1,670	8	755	800	3,925	865	
		10	1	775	1,725	3,925	1,335	_	_	_	_	_	
		12	1	775	1,435	3,925	1,115	_	_	_	_	_	
		16	1	775	1,080	3,925	835	_		_	_	_	

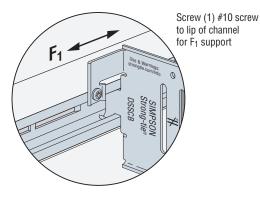
- 1. For additional important information, see General Information and Notes on p. 26.
- Allowable anchorage loads are also limited by the DSSCB Connector Load tables on pp. 61 and 63. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- Allowable loads are based on 97 mil (12 ga.) thickness strut channel members with a minimum yield strength, F_V, of 33 ksi, tensile strength, Fu, of 45 ksi.
- Allowable loads for self-drilling screws are based on installation in minimum %⁶ -thick structural steel with $F_V = 36$ ksi. Values listed above may be used where other thicknesses of steel are encountered provided that the fastener has equal or better tested values into thicker steel. It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 5. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling, use a maximum %-diameter drill bit. Screw to be installed through steel portion of channel strut (1.5 x screw diameter from punch-out) and centered vertically in web.
- 6. For any connector occurring within 2" of channel strut splice, load not to exceed $-F_2 = 865$ lb. and $F_4 = 785$ lb.
- 7. Maximum allowable load of strut can be increased at high concentrated loads by welding each flange 1" from the strut channel to support directly at clip location:
 - For $\frac{7}{8}$ strut size $-F_1 = 775$ lb., $F_2 = 1,800$ lb., $F_3 = 2,710$ lb., $F_4 = 3,200$ lb. For $\frac{1}{8}$ strut size $-F_1 = 775$ lb., $F_2 = 4,310$ lb., $F_3 = 3,925$ lb., $F_4 = 1,745$ lb.
- 8. Required weld length is on each flange at spacing indicated.
- 9. Anchorage spacing cannot be greater than framing spacing.
- 10. Connector load to be located a minimum of 2" from end of strut channel.
- 11. Tabulated values for 1 1%" x 7%" strut may be used for 1 1%" x 11%6" strut except F2 welded anchorage values are limited to a maximum load of 1,615 lb. If 13/6" struts are pierced, a load modifier per note 12 is required. See p. 68 for all channel dimension requirements.
- 12. F₁, F₃ and F₄ have no load reductions for allowed piercings. F₂ has no load reductions for piercings, except for welded conditions as follows:
 - For %16" hole at 1%" o.c., multiply by 0.9;
 - For %" hole at 6" o.c., multiply by 0.9;
 - For slotted hole (1 1/8" x 9/16") at 2" o.c, multiply by 0.85.


No load reductions are required for F₁, F₂ or F₃ load directions for allowed piercing. For images of allowed piercings reference p. 68.

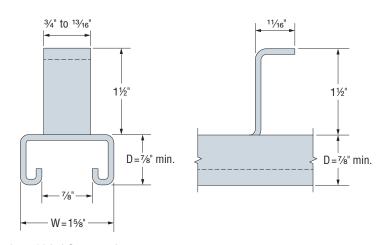
Concrete Insert Allowable Anchorage Loads (lb.)


Church Cimo	Minimum Ec	lge Distance		Allowable Load (lb.)				
Strut Size 1%" Wide x Depth	Top of Slab	Bottom of Slab	Load Direction	Uncracke	d Concrete	Cracked Concrete		
(in.)	(in.)	(in.)		SDC A&B	SDC C-F	SDC A&B	SDC C-F	
7⁄8 to 13⁄8	2	2	In-plane (F ₁)	2,955	2,590	2,070	1,815	
7/8	2	2	Tension (F ₂)	1,715	1,250	1,200	1,050	
1%	2	2	Tension (F ₂)	2,100	1,570	1,470	1,290	
7⁄8 to 13⁄8	2	2	Compression (F ₃)	2,710	2,710	2,710	2,710	
7/s to 13/s	2	6	Shear (F ₄)	1,640	1,440	1,150	1,005	
7⁄8 to 13∕8	2	3	Shear (F ₄)	485	425	340	300	

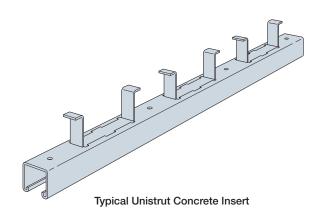
- 1. For additional DSSCB connector requirements and important technical information, visit strongtie.com.
- 2. The designer is responsible for concrete slab design. The minimum tested concrete slab thickness is 8". Minimum end distance and edge distances for concrete insert struts are shown in the illustrations.
- Tabulated values are for concrete compressive strength f'_C = 4,000 psi minimum. For 3,000 psi or 3,500 psi, apply a load adjustment factor of 0.87 or 0.94, respectively.
- 4. Allowable anchorage loads with concrete insert are also limited by the DSSCB Connector Load tables on pp. 61 and 63. Use the minimum tabulated values from the connector and strut anchorage load table above as applicable.
- 5. Allowable loads are based on 97 mil (12 ga.) thickness strut channel members with a minimum yield strength, F_y, of 33 ksi, tensile strength, F_u, of 45 ksi. Strut size and dimensions are illustrated on p. 68. Other strut manufacturers with equivalent performance and dimensions may be used as approved by the designer.
- Tabulated values are for connector load spacing at 16" minimum. Reduce load linearly for connector spacing less than 16".
 For example, shear connector load (F₄), with 2" edge distance from the top of slab at 12" spacing is 1,440 lb. * (12"/16") = 1,080 lb.
- 7. Tabulated values are for clips installed 6" minimum from the end of strut. See minimum end distances from strut to concrete in illustration below.
- 8. The load direction of shear (F₄) is toward the bottom of the slab for the tabulated capacities.
- Shear load (F₄) may be linearly interpolated for strut embedded between 2" from the top to 3" from the bottom of the concrete slab as follows:
 - For an 8" concrete slab, shear load (F₄) may be linear interpolated for strut embedded between 2" from the top and 3" from the bottom of the slab.
 - For slabs thicker than 8", linear interpolate based on bottom concrete edge distance.
- 10. Allowable loads are based on testing in accordance with AC398 in the Simpson Strong-Tie's IAS-accredited test lab.

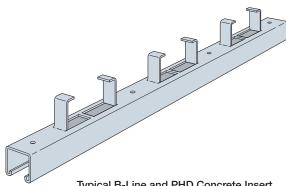


Concrete Insert Anchorages



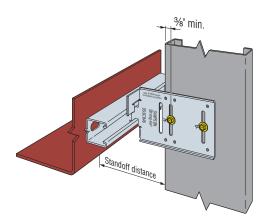
Fixed Application (Panelized)



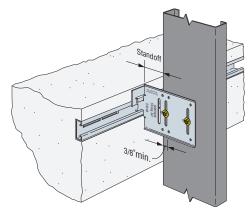

Detail A (F₁ support required) This detail meets or exceeds the published F₁ loads for this connector when installed with the DSHS drift stopper clip.

For horizontal drift connections where F₁ support is not required, do not fasten connector to strut.

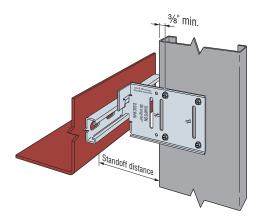
12 ga. 33 ksi Concrete Insert (by others)

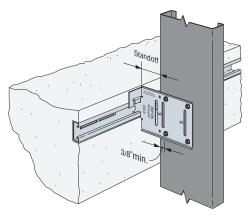


Typical B-Line and PHD Concrete Insert



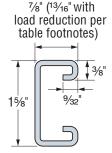
DSSCB Standoff Distances


				7%" Struts		15%" \$	Struts	Concrete Inserts	
Model No.	Application	Screw Pattern	No. of Screws	Min. Standoff (in.)	Max. Standoff (in.)	Min. Standoff (in.)	Max. Standoff (in.)	Min. Standoff (in.)	Max. Standoff (in.)
DSSCB43.5		А	2		2%	1 1346	31/8	%16	1½
		В	3		2%		31/8		1 1/2
DSSCB46		С	2		2%		31/8		1 1/2
	Slide Clip	D	2	1	31/8		37/8		21/4
		Е	4		2%		31/8		1 1/2
DSSCB48		F	3		2%		31/8		1 1/2
		G	3		31/8		3%		21/4
	Fixed Clip	Н	4	1	2¾	1 13/16	31/2	346	17/8
DSSCB43.5		I	2		2¾		31/2		17/8
		J	2		31/2		41/4		25/8
		K	6		2¾		31/2		17/8
DSSCB46		L	4		2¾		31/2		1%
		M	4		31/2		41/4		25/8
		N	8		2¾		3½		1 1//8
DSSCB48		0	4		2¾		31/2		17/8
		Р	4		31/2		41/4		25/8

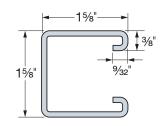

DSSCB Standoff Distance with 1%" Strut (%" Strut Similar) and Minimum Fastener Edge Distance for Slide-Clip Application

DSSCB Standoff Distance with Concrete Insert and Minimum Fastener Edge Distance for Slide-Clip Application

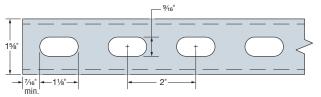
DSSCB Standoff Distance with %" Strut and Minimum Fastener Edge Distance for Fixed-Clip Application

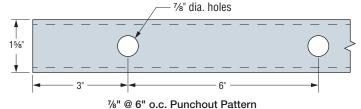


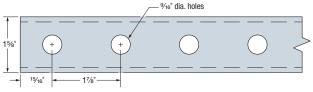
DSSCB Standoff Distance with Concrete Insert and Minimum Fastener Edge Distance for Fixed-Clip Application



Strut Requirements

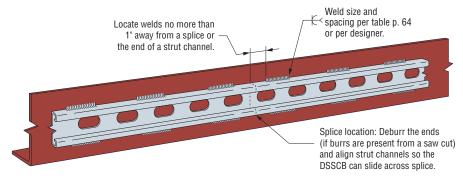

Struts must meet the strut channel dimensions, gauge, yield strength, and punch patterns shown in these requirements.

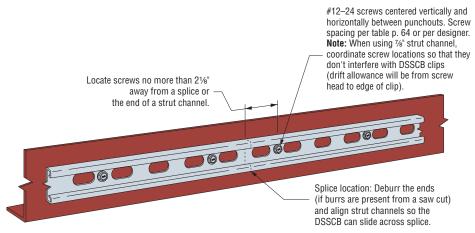

%" 12 ga. 33 ksi Strut Channel (by others)



1%" 12 ga. 33 ksi Strut Channel (by others)

1 1/8" x 1/16" @ 2" o.c. Punchout Pattern




%6" @ 1%" o.c. Punchout Pattern

Unpunched Condition

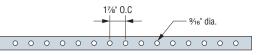
Typical Strut Channel Anchorage with Welds

Typical Strut Channel Anchorage with Screws

CLT Applications

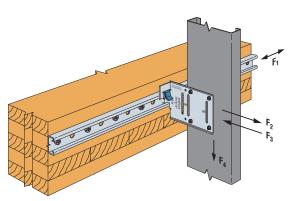
Strut Channel Allowable Anchorage Loads to CLT (lb.)

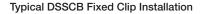
Strut Size	SDHR31400 Screw Spacing (in.)	Allowable Load (lb.)						
1%" Wide x Depth (in.)		In-Plane F ₁ (160)	Tension F ₂ (160)	Compression F ₃ (160)	Shear F4 (100)			
7/8	3¾	2,200	1,675	2,710	2,200			
1%					1,215			
7/8	55/8	1 200	1150	2.710	1,320			
1%	378	1,320	1,150	2,710	1,215			

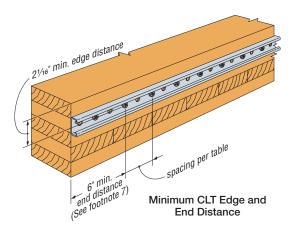

- 15%"

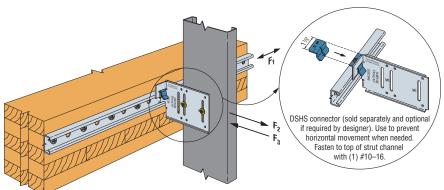
 3%"

 7/8"


 9/32"


 15%"
- 1. For additional DSSCB connector requirements and important technical information, visit **strongtie.com**.
- 2. The designer is responsible for CLT system design. Tabulated values are based on minimum 3-ply (41/8") SPF CLT into side or end grain.
- 3. Tabulated values are based on Strong-Drive® SDHR31400 Combo-Head screw 0.472" diameter x 4" length. Minimum end distance, and edge distances for wood screws are shown in the illustrations.
- 4. Allowable anchorage loads in CLT are also limited by the DSSCB Connector Load tables on pp. 61 an 63. Use the minimum tabulated values from the connector and strut anchorage load table above as applicable.
- 5. Allowable loads are based on 97 mil (12 ga.) thickness strut channel members with a minimum yield strength, Fy, of 33 ksi, tensile strength, Fu, of 45 ksi. Strut size and dimensions are illustrated below. Other strut manufacturers with equivalent performance and dimensions may be used as approved by the designer.
- 6. Tabulated values are for connector spacing at 16" minimum. Reduce load linearly for connector spacing less than 16". For example, shear connector load (F₄) for ½" depth strut, with 3¾" screw spacing, allowable load at 12" connector spacing is 2,200 lb.* (12"/16") = 1,650 lb.
- 7. Tabulated values are for clips installed 6" minimum from the end of CLT.
- Strut size 1%" width x %" depth is limited to a horizontal fixed application due to DSSCB clip interference with SDHR screw head. Required coordination of screw head for installation.
- Loads (160) have been increased for wind or earthquake loading, with no further increase allowed. Reduce where other loads govern.
- 10. Tabulated loads for $\frac{7}{6}$ " strut may be used for $\frac{13}{6}$ " strut, except F₂ load capacity reduced to 1,550 lb. and 1,035 lb. at $\frac{33}{4}$ " and $\frac{5}{6}$ " spacing, respectively.




Unistrut: P3300HS, P1000HS PHD: 1221-1222 Bline: B22H17/8

Other manufacturers that meet dimensions and thickness

Typical DSSCB Slide Clip Installation

HWDC Head-of-Wall Drift-Clip Connector

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The head-of-wall drift-clip connector (HWDC) is used to secure the head of a wall to the bottom of a slab or beam. The unique design allows anchor screws to be installed closer to the bend, providing a stronger and stiffer connection while also allowing horizontal and vertical movement during seismic and high-wind events. HWDC5.25 provides anchorage location options with a third slot providing a solution for clips overhanging beam flanges.

HWDC connectors are an optimal solution for adding strength to window or door jambs at head-of-wall connections. Tested load values are provided for anchorage to steel and concrete.

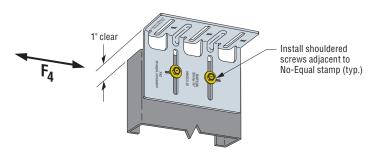
Features:

Drift Connectors

- Accommodates 1" of lateral drift in each direction, and 1" of upward and downward vertical deflection
- Unique design and placement of slot on anchorage leg allows for closer attachment of anchorage to the clip bend, providing increased load capacity
- The HWDC5.25 clip has three slots located at the anchorage leg allowing for attachment at the outer slots (anchorage pattern — centered) for maximum capacity or anchorage to the adjacent slots (anchorage pattern — off center) for walls that overhang the edge-angle or beam-edge
- Stiffening ribs are placed in between anchorage slots through the bend to provide additional strength and stiffness
- Simpson Strong-Tie® No-Equal® stamps mark the center of the slots to help ensure proper shouldered screw and anchor placement

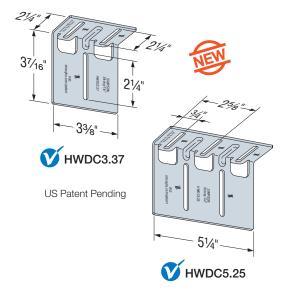
Material: 97 mil (12 ga.), 50 ksi Finish: Galvanized (G90)

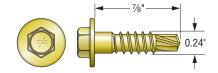
Installation:


- Use the specified type and number of fasteners and anchors.
- In the vertical slots, use the specified number of #14 shoulder screws (included) for attachment to the stud. Install screws to align with No-Equal stamp.
- For attachment to steel support, use Simpson Strong-Tie Strong-Drive[®] XL Large-Head Metal Screws (XLQ114B1224). Use two screws centered in horizontal slot. Install screws to align with the No-Equal stamp and then back out one half-turn.
- For attachment to concrete support, use a Titen Turbo[™] screw anchor. Use two screws centered in each horizontal slot. Install screws to align with the No Equal stamp and back out half-turn.

Codes: See p. 13 for Code Reference Key Chart

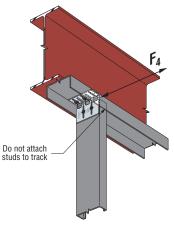
Ordering Information:


HWDC5.25-KT25, HWDC3.37-KT25

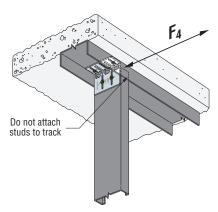

(55) XLSH78B1414 shoulder screws are provided with each order Replacement #14 shoulder screws for the HWDC are XLSH78B1414-RP83

HWDC5.25 Installation with Two Shouldered Screws (HWDC3.37 similar, only one shoulder screw required)

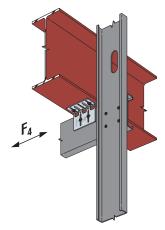
XLSH78B1414 #14 Shouldered Screw for Attachment to Stud Framing (included)


XLQ114B1224 Screw for Anchorage to Steel Support (sold separately)




TNT25134H Screw Anchor for Anchorage to Concrete (sold separately)

HWDC Head-of-Wall Drift-Clip Connector



Typical HWDC Installation at Stud to Concrete

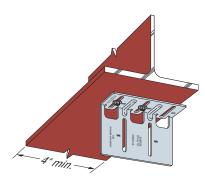
Typical HWDC Installation with Stud Strut

HWDC Allowable Connector Loads (lb.)

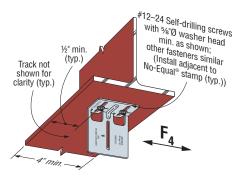
			Allowable Load, F ₄ (lb.) Stud Thickness				
Model No.	No. of #14 Shoulder Screws	Anchorage Pattern					
NO.	to Stud	rattern	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)		
HWDC3.37	1	_	315	410	580		
HWDC5.25	0	Center	390	785	1,110		
	2	Off center	390	590	770		

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. HWDC allowable connector loads are also limited by the HWDC allowable anchorage loads below. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. See the illustration for shouldered screw fastener placement to stud framing.
- 4. The published allowable load is the lower of the tested ultimate with a safety factor, load at 1/s" deflection or the fastener calculation limits.
- 5. "Center" Anchorage Pattern refers to clip attached to structure at outer slots.
 "Off center" Anchorage Pattern refers to clip attached to structure at end and center slots.

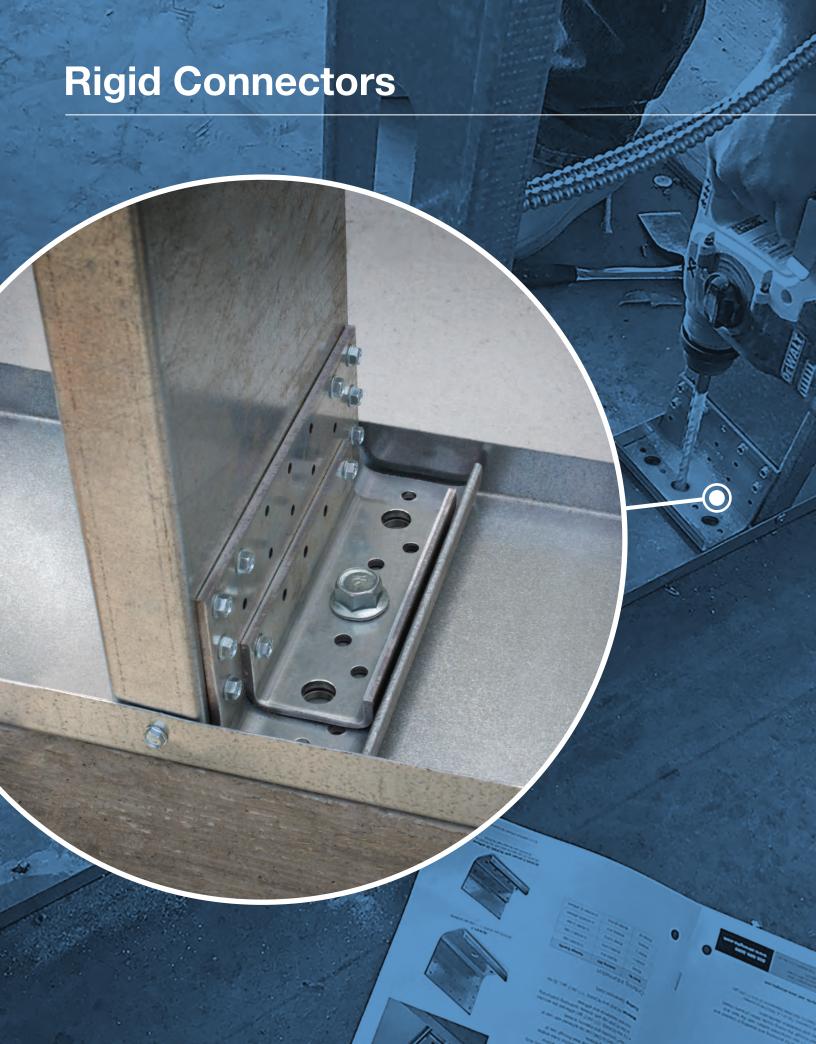
HWDC Allowable Anchorage Loads (lb.)


Model No.	Anchorage Type	Minimum Base Material	Number of Anchors (Anchorage Pattern)	Allowable Load F ₄ (lb.)
HWDC3.37	#12–24 self-drilling screws %" washer diameter minimum (XLQ114B1224)	A36 steel ¾6" thick	2	610
	Simpson Strong-Tie® 1⁄4" x 1¾" Titen Turbo™ screw anchor (TNT25134H)	Concrete f'c = 2,500 psi	2	320
	#12-24 self-drilling screws %" washer diameter minimum	A36 steel	2 (center)	1,440
HWDC5.25	(XLQ114B1224)	¾6" thick	2 (off center)	1,150
1100000.20	Simpson Strong-Tie 1/4" x 134" Titen Turbo™ screw anchor	Concrete	2 (center)	320
	(TNT25134H)	f' _C = 2,500 psi	2 (off center)	500

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the tabulated value and the HWDC allowable connector load table above.
- Tabulated values require a minimum 11/4" and 25%" end distance for center and off-center anchorage pattern, respectively, for masonry screws in concrete.
- 4. See the illustration for anchorage pattern to base material.


HWDC5.25 Anchor Layout Two Anchors

(anchorage pattern - center)



HWDC5.25 Anchor Layout Two Anchors

(anchorage pattern — off center)

HWDC3.37 Anchor Layout

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The FCB/MFCB clip is an economical, high-performance fixed-clip connector that can be used for a variety of framing applications. It is rated for tension, compression, shear and in-plane loads and offers the designer the flexibility of specifying different screw and anchorage patterns that conform to desired load levels.

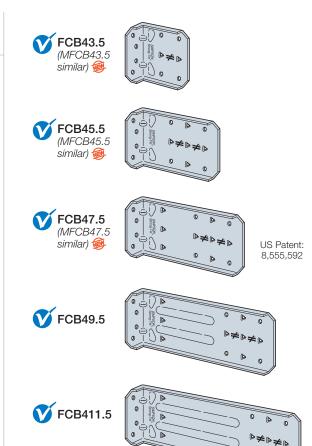
Features:

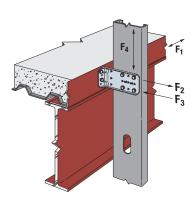
- Rated for tension, compression, shear and in-plane loads
- Provides design flexibility with varying screw and anchorage patterns that achieve different load levels
- Strategically placed stiffeners, embossments and anchor holes maximize connector performance

Material: FCB — 54 mil (16 ga.); MFCB — 68 mil (14 ga.)

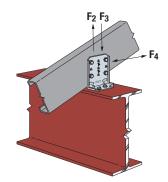
Finish: Galvanized (G90)

Installation:

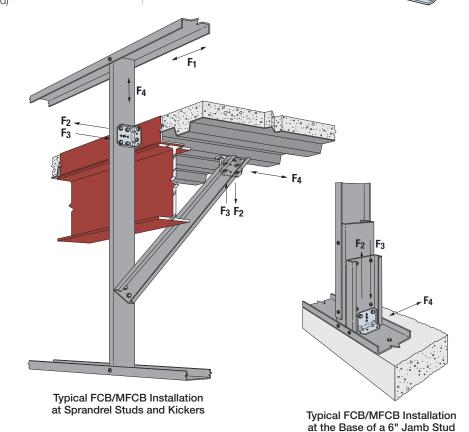

- Use the specified type and number of anchors.
- Use the specified number of #12 self-drilling screws to CFS framing. Note that #10 self-drilling screws can be used per the load tables given on strongtie.com.
- For installations to wood framing, see Simpson Strong-Tie[®] engineering letter L-CF-FIXCLIPW at strongtie.com.


Codes: See p. 13 for Code Reference Key Chart

Ordering Information:

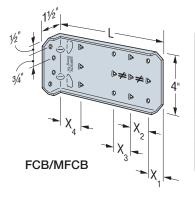

FCB43.5-R25, MFCB43.5-R25, FCB45.5-R25, MFCB45.5-R25, FCB47.5-R25, MFCB47.5-R25, FCB49.5-R25, FCB411.5-R25 contain:

• Box of 25 connectors (screws not included)

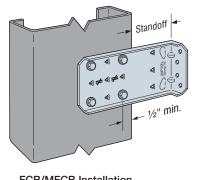


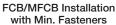
Typical FCB/MFCB Installation at Bypass Framing

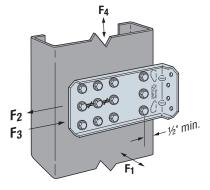
Typical FCB/MFCB Installation for Roof Rafters


FCB/MFCB Allowable Connector Loads (lb.)

	Connector			No. of						Stud Th	ickness						
Model No.	Material Thickness	L (in.)	Min./ Max.	#12-14 Self-Drilling		33 mil ((20 ga.)			43 mil	(18 ga.)			54 mil	(16 ga.)		Code Ref.
	mil (ga.)	,		Screws	F ₁ ^{3,4}	F ₂	F ₃	F ₄	F ₁ ^{3,4}	F ₂	F ₃	F4	F ₁ ^{3,4}	F ₂	F ₃	F ₄	
FCB43.5	54 (16)	31/2	Min.	4	140	755	755	755	175	1,105	905	1,055	330	1,250	905	1,235	
1 0043.3	34 (10)	372	Max.	6	205	1,100	1,130	1,075	260	1,105	1,105	1,350	330	1,250	2,245	1,770	
MFCB43.5	68 (14)	31/2	Min.	4	140	755	755	755	220	1,105	1,105	1,055	410	1,530	2,280	1,595	
IVIFUD43.3	00 (14)	3 72	Max.	6	205	1,130	1,130	1,075	260	1,265	1,105	1,545	410	1,530	2,630	1,770	
FCB45.5	54 (16)	51/2	Min.	4	120	755	755	700	150	1,105	905	875	285	1,105	905	1,100	
FGB45.5	OT (10) 372	5 1/2	Max.	9	155	1,100	1,260	1,095	195	1,105	1,105	1,380	330	1,105	2,245	1,785	
MFCB45.5	68 (14)	5½	Min.	4	170	755	755	700	220	1,105	1,105	1,030	410	1,530	2,280	1,595	
WIF GB45.5	00 (14)	3 72	Max.	9	170	1,265	1,260	1,695	220	1,265	1,105	2,315	410	1,605	3,205	2,315	IBC, FL,
FCB47.5	54 (16)	7½	Min.	4	90	755	755	220	110	1,105	875	330	215	1,105	875	815	LA
F0B47.5	34 (10)	1 72	Max.	12	110	1,100	1,260	705	135	1,105	1,260	1,050	260	1,105	2,245	1,345	
MFCB47.5	68 (14)	71/2	Min.	4	165	755	755	415	215	1,105	1,105	540	410	1,580	2,280	1,025	
WIF GD47.5	00 (14)	1 72	Max.	12	165	1,265	1,260	1,345	215	1,265	1,405	1,530	410	1,605	3,350	2,700	
FCB49.5	54 (16)	91/2	Min.	4	_	755	755	170	_	1,105	905	255	_	1,105	905	340	
F0049.0	34 (10)	9 72	Max.	12	_	1,100	1,260	750	_	1,105	1,260	1,115		1,105	2,245	1,200	
FCB411.5	54 (16)	111/2	Min.	4	_	755	755	140	_	1,105	935	205		1,105	935	340	
100411.0	34 (10)	11.72	Max.	12	_	1,100	1,260	795	_	1,105	1,260	860	_	1,105	2,245	860	

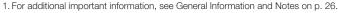

- 1. Min. fastener quantity and load values fill all round holes; max. fastener quantity and load values fill all round and triangular holes.
- Allowable loads are based on clip capacity only and do not consider anchorage. The capacity of the connection system will be
 the minimum of the tabulated value and the allowable load from the FCB/MFCB Allowable Anchorage Loads table on p. 75.
- 3. Anchorage to the supporting structure using welds or a minimum of (2) #12-24 self-drilling screws is required.
- 4. Tabulated F_1 loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F_1 against F_p calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.
- 5. Tabulated values for 54 mil (16 ga.) CFS framing may be used for 68 mil (14 ga.) and greater steel thickness.


FCB/MFCB Standoff Distances


Model No.	L (in.)	Min./ Max.	No. of #12–14 Self-Drilling Screws	Maximum Standoff (in.)
FCB43.5	3½	Min.	4	1
FGB43.5	372	Max.	6	1
MFCB43.5	3½	Min.	4	1
IVIFUD43.3	3/2	Max.	6	1
FCB45.5	5½	Min.	4	1½
FUD40.0	3/2	Max.	9	1
MFCB45.5	5½	Min.	4	1½
IVIFUD40.0	3/2	Max.	9	1
FCB47.5	7½	Min.	4	3½
FUD47.3	1 /2	Max.	12	1
MFCB47.5	7½	Min.	4	3½
INIFUB47.5	1 //2	Max.	12	1
FCB49.5	91/2	Min.	4	5½
FUD49.5	9/2	Max.	12	1
FCB411.5	11½	Min.	4	7½
1.00411.0	1172	Max.	12	1

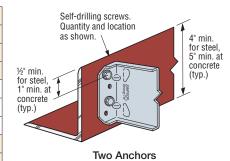
	Dimensions (in.)											
Variable	FCB/MFCB											
	43.5	3.5 45.5 4		49.5	411.5							
X ₁	3/4	1	1	1	1							
X ₂	11/4	11/4	11/4	11/4	11/4							
Х3	_	11/4	11/4	11/4	11/4							
X ₄	_	_	1½	1½	1 1/2							
L	3½	5½	7½	9½	111/2							

FCB/MFCB Installation with Max. Fasteners

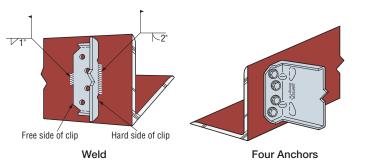

FCB Allowable Anchorage Loads (lb.)

							Allowable	Load (lb.)				
	Minimum	No. of		_				F	4			
Anchorage Type	Base Material	Anchors	F ₁	F ₂ and F ₃	FCB43.5	FCB45.5 FCB47.5		FCB	49.5	FCB411.5		
	Matorial		·		Min./ Max.	Min./ Max.	Min.	Max.	Min.	Max.	Min.	Max.
#12-24 self-drilling screws	A36 steel ¾6" thick	2	165	795	645	895	555	1,075	535	535	370	535
Simpson Strong-Tie® X and XL Metal screws		3	250	1,120	970	1,340	830	1,610	545	560	370	560
		4	330	1,590	1,290	1,785	1,105	2,145	545	560	370	560
Simpson Strong-Tie	A36, A572 or	2	_	390		50	35		535	535	370	535
0.157" x %" power-actuated fasteners	A992 steel	A992 steel 3		715		560				560	370	560
PDPAT-62KP	3/16" thick	4	_	970		560			545	560	370	560
Simpson Strong-Tie	_	2	_	380	415	315	195	315	140	205	140	150
1⁄4" x 13⁄4" Titen Turbo™	Concrete $f'_c = 2,500 \text{ psi}$	3	_	525	470	470	290	470	210	305	210	225
TNT25134H	_,ooopo	4	_	675	645	630	390	630	280	410	280	300
Weld	A36 steel	Hard side: 2"	1 205	1,740	1,770	1,840	1,105	2,650	450	1,200	450	860
E70XX electrodes	3/16" thick	Free side: 1"	1,205	1,740	1,770	1,040	1,100	2,000	430	1,200	430	000

See footnotes below.


MFCB Allowable Anchorage Loads (lb.)

					Allowable	Load (lb.)			
Anchorogo Tuno	Minimum	No. of		F ₂		F ₄			
Anchorage Type	Base Material	Anchors	F ₁	and	MFCB43.5 MFCB45.5		MFCI	B47.5	
				F ₃	Min./Max.	Min./Max.	Min.	Max.	
#12-24 self-drilling screws		2	205	1,045	800	1,160	695	1,350	
Simpson Strong-Tie X and XL Metal screws	A36 steel 3/6" thick	3	310	1,725	1,195	1,735	1,045	2,025	
		4	410	2,090	1,595	2,315	1,390	2,700	
Simpson Strong-Tie	126 1570 or	2	_	390		535			
0.157" x %" power-actuated fasteners	A36, A572 or A992 steel	3	_	715	560				
PDPAT-62KP	¾6" thick	4	_	970	560				
Simpson Strong-Tie		2	_	380	415	315	195	315	
1/4" x 13/4" Titen Turbo	Concrete $f'_{c} = 2,500 \text{ psi}$	3	_	525	470	470	290	470	
TNT25134H	0 ,	4	_	675	645	630	390	630	
Weld	A36 steel	Hard side: 2"	1,485	4,570	1,770	2,315	1,390	3,335	
E70XX electrodes	3/16" thick	Free side: 1"	1,400	4,370	1,770	2,310	1,390	3,330	


 Min. fastener quantity and load values — fill all round holes; max. fastener quantity and load values — fill all round and triangular holes.

- 3. Allowable loads are for clip anchorage only. The capacity of the connection system will be the minimum of the tabulated allowable anchorage loads the allowable load from the FCB/MFCB Allowable Connector Load table on p. 74.
- 4. Allowable loads for #12–24 self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum %6"-thick structural steel with $F_{\rm y}=36$ ksi. PDPAT values are also provided for A572 steel. Values listed above maybe used where other thicknesses of steel are encountered or other manufacturers are used, provided that the fastener has equal or better tested values (see p. 26). It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 5. For attachment with 0.157" x %" PDPAT-62KP to %6" thick, A572 or A992 steel, F₂ and F₃ allowable loads can increase to 585 lb., 800 lb. and 1,170 lb. for two, three and four fasteners, respectively.
- 6. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling use a maximum 1/4e"-diameter drill bit.

F₂ F₃

Three Anchors

FCB/MFCB Anchor Layout

The following FCB/MFCB supplemental information is given to help designers with value-engineered solutions for our FCB/MFCB connectors. Loads are given on our website for fastener patterns other than our standard "min." (fill all round holes) and "max." (fill all round and triangle holes). In addition, the tables on the website give LRFD loads and loads for #10 screws as well as #12 screws. Please visit **strongtie.com/cfs** and reference FCB/MFCB clip.

Table 1: FCB/MFCB Screw Patterns

- 18	able 1: F	CR/MLCR 20	crew Patterns	3							
		Pattern "Min." Pattern "Max." For load capacities for patterns 1 through 10,									
	FCB43.5 MFCB43.5	To o o o o o o o o o o o o o o o o o o		For load capa refer to FCB/	acities for patterns 1 t MFCB clip on strong	through 10, tie.com.					
		Pattern "Min."	Pattern 1	Pattern 2	Pattern "Max."						
	FCB45.5 MFCB45.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			So dons Control Contro						
		Pattern "Min."	Pattern 3	Pattern 4	Pattern 5	Pattern 6	Pattern "Max."				
	FCB47.5 MFCB47.5										
		Pattern	"Min."	Patte	ern 7	Patte	ern 8				
	FCB49.5				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	10049.5	Patte	ern 9	Patte	rn 10	Pattern "Max."					
				6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							
		Pattern	"Min."	Patte	rn 11	Patte	ern 12				
	E00444 7			3 4 8 C							
	FCB411.5	Patte	ern 13	Patte	rn 14	Pattern	"Max."				
				3 + 1 = 0 3 + 1 = 0							

Ideal for high-seismic areas, Simpson Strong-Tie® FC connectors are the optimal solution for fixed-clip bypass framing. FC clips are often welded to the structure in high-seismic zones, but they also feature anchorage holes so that concrete screws or powder-actuated fasteners can be used to attach the clip to the structure. In addition to its anchorage versatility, the FC clip features prepunched screw holes for the framing attachment, eliminating the need for predrilling holes or worrying that fastener placement doesn't match the designer specifications. FC connectors are manufactured using heavy-duty 10- and 12-gauge steel to provide exceptional resistance to in-plane seismic load.

Features:

- The clips come in lengths of 3½", 6" and 8" and are intended to be used with 35", 6" and 8" studs, respectively
- The maximum standoff distance is 1" for 3%" studs and 11/2" for 6" and 8" studs
- Embossments in the bend line provide increased strength and stiffness in the F₁ and F₂ load directions, but are positioned towards the center of the clip so that 1½"-long welds can be applied at the top and bottom of the clip
- Prepunched large-diameter anchor holes accommodate ¼"-diameter concrete screws like the Simpson Strong-Tie Titen HD® screw anchor
- Prepunched small-diameter anchor holes accommodate powder-actuated fasteners like the 0.157"-diameter Simpson Strong-Tie PDPAT or #12 self-drilling Simpson Strong-Tie Strong-Drive® XL Large-Head Metal screw

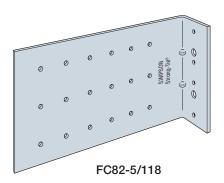
Material: 50 ksi

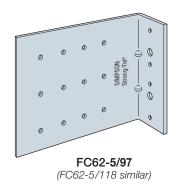
Finish: Galvanized (G90)

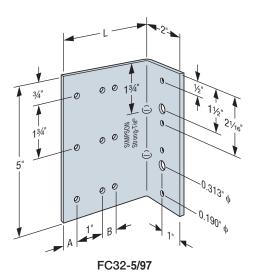
Installation:

• Use the specified type and number of fasteners and anchors

Codes: See p. 13 for Code Reference Key Chart

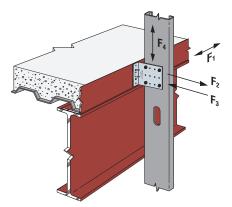

Ordering Information and Dimensions

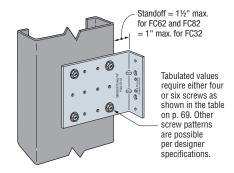

Model No.	Ordering SKU	Thickness mil (ga.)	L (in.)	A (in.)	B (in.)
FC32-5/97	FC32-5/97-R25	97 (12)	3½	1/2	1/2
FC62-5/97	FC62-5/97-R25	97 (12)	6	1	1
FC62-5/118	FC62-5/118-R25	118 (10)	6	1	1
FC82-5/118	FC82-5/118-R25	118 (10)	8	1	1


Note: Each box contains (25) connectors.

WANT MORE OPTIONS IN YOUR CLIP?

Try our SCS hybrid clip. Supports slip and fixed conditions in one clip. Also has the most versatile options in the industry for attaching to structure. Attach with weld, screws, powder-actuated fasteners to steel or attach to concrete with single ½"-diameter or (2) ¼"-diameter anchors. Reference p. 34 for SCS fixed-clip load chart.





FC Allowable Connector Loads (lb.)

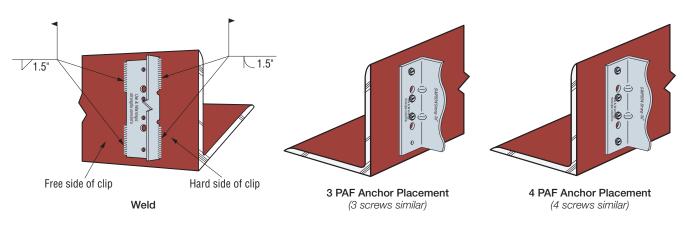
		Fastener	s to Stud	Allowable Load (lb.)																
Model	Stud Thickness	Allowable	No. of	F	1				Code											
No.	mil (ga.)	Pullout per Single #10 Screw	#10 Self-Drilling Screws	1" Standoff	1½" Standoff	F ₂	F ₃	F ₄	Ref.											
F020 F/07			4	165	_	705	1,130	705												
FC32-5/97			6	225	_	1,060	1,355	1,060												
F000 F/07			4	115	130	705	1,130	705												
FC62-5/97	22 (20)	0.5	6	140	160	1,060	1,355	1,060												
F000 F/110	33 (20)	85	4	115	130	705	1,130	705												
FC62-5/118			6	140	160	1,060	1,355	1,060												
F000 F/110			4	105	120	705	1,130	705												
FC82-5/118			6	135	155	1,060	1,355	1,060												
E000 F/07				4	215	_	1,050	1,470	1,050											
FC32-5/97			6	290	_	1,580	1,765	1,580												
F000 F/07			4	150	175	1,050	1,470	1,050												
FC62-5/97	40 (10)	110	6	185	215	1,580	1,765	1,580												
E000 E440	43 (18)	110	4	150	175	1,050	1,470	1,050												
FC62-5/118			6	185	215	1,580	1,765	1,580												
F000 F/440					4	140	160	1,050	1,470	1,050										
FC82-5/118			6	175	200	1,580	1,765	1,580												
E000 F/07			4	395	_	2,135	2,885	2,045												
FC32-5/97		200	6	530	_	2,690	2,885	2,195												
E000 5/07			4	325	375	2,135	2,885	2,045												
FC62-5/97	5.4.4.0		6	405	465	2,690	2,885	2,195												
	54 (16)		200	200	200	200 -	200 -	200 -	200 -	200 -	4	345	395	2,135	2,885	2,045	_			
FC62-5/118											_			6	370	425	3,205	2,885	2,195	
5000 51110												4	325	375	2,135	2,885	2,045			
FC82-5/118			6	440	505	3,205	2,885	2,195												
E000 5/07			4	495	_	2,160	2,885	2,045												
FC32-5/97			6	670	_	2,690	2,885	2,195												
5000 5/07			4	435	500	2,160	2,885	2,045												
FC62-5/97			6	465	535	2,690	2,885	2,195												
	68 (14)	250	4	435	500	2,160	2,885	2,045												
FC62-5/118			6	465	535	3,240	3,780	2,195												
			4	410	470	2,160	2,885	2,045												
FC82-5/118			6	555	640	3,240	3,780	2,195												
			4	710	_	2,160	2,885	2,045												
FC32-5/97			6	955	_	2,690	2,885	2,195												
5000 - i	97 (12) 355		4	775	775	2,160	2,885	2,045												
FC62-5/97			6	1295	1295	2,690	2,885	2,195												
		355	4	775	775	2,160	2,885	2,045												
FC62-5/118			_	6	1150	1150	3,240	3,780	2,195											
	1				4	585	585	2,160	2,885	2,045										
FC82-5/118			6	790	790	3,240	3,780	2,195												

Typical FC Installation at Bypass Framing

FC62 with Four Screws

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. FC Allowable Connector Loads are also limited by the FC Anchorage Load tables on pp. 79 and 80. Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. See illustrations on p. 79 for screw fastener placement to stud framing.
- 4. Tabulated F $_1$ loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F $_1$ against F $_p$ calculated per ASCE 7-16 Chapter 13 with $a_p = 1.25$ and $R_p = 1.0$.
- 5. F₁ loads are based on maximum standoff distances of 1" or 1½" as shown. Other loads are applicable to a 1" standoff for FC32 and 1" or 1½" standoff for FC62 and FC82.
- 6. The allowable plastic moment at the bend line in the F₁ load direction for 97 mil (12 ga.) and 118 mil (10 ga.) FC connectors are 395 in.-lb. and 675 in.-lb., respectively.

FC Screw Patterns


Screw		Models	
Pattern	FC32-5/97	FC62-5/97 and FC62-5/118	FC82-5/118
4 screws	Descriptions De	Description of the state of the	
6 screws	Company of the compan	Description of the control of the co	

FC Allowable Anchorage Loads to Steel (lb.)

Anchorage Type	Minimum	No. of	Allowable Load (lb.)			
Alichorage Type	Base Material	Anchors	F ₁	F ₂ and F ₃	F ₄	
#12-24 self-drilling screws	A36 steel	3	730	1,910	1,590	
Simpson Strong-Tie® X and XL Metal screws	¾6" thick	4	975	2,545	3,180	
Simpson Strong-Tie 0.157" x 5/8" powder-actuated fasteners	A36 steel	3	_	780	_	
PDPAT-62KP	¾6" thick	4	_	1,040	1,040	
Simpson Strong-Tie 0.157" x %" powder-actuated fasteners	A572 or A992 steel	3	_	1,260	_	
PDPAT-62KP	¾6" thick	4	_	1,710	1,710	
Weld	A36 steel	(2) Hard side: 11/2"	2.040	4.720	2 065	
E70XX electrodes	¾6" thick	(2) Free side: 11/2"	2,040	4,720	3,865	

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable anchorage loads are also limited by the FC Connector Load table on p. 78.

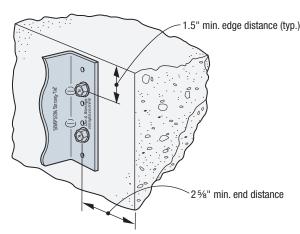
 Use the minimum tabulated values from the connector and anchorage load tables as applicable.
- 3. Allowable loads for #12-24 self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum %ie" thick structural steel with Fy = 36 ksi. PDPAT values are also provided for A572 steel. Values listed above maybe used where other thicknesses of steel are encountered or other manufacturers are used, provided that the fastener has equal or better tested values (see p. 26). It is the responsibility of the designer to select the proper length fasteners based on the steel thickness installation.
- 4. For screw fastener installation into steel backed by concrete, predrilling of both the steel and the concrete is suggested. For predrilling, use a maximum \%"-diameter drill bit.

FC Anchor Layout

Allowable Titen HD® Anchorage Loads into Concrete with FC Clip (lb.)

Anchorage	Nominal	Anchor	f'c	Load	Wind and Seisr	nic in SDC A&B	Seismic in SDC C through F
Туре	Embedment (in.)	Quantity and Size	(psi)	Direction	Uncracked Concrete	Cracked Concrete	Cracked Concrete ⁶
				F ₁	335	240	280
			3,000	F ₂ and F ₃	660	630	550
Simpson Strong-Tie® Titen HD	15/	(0) 1/ II v 17/ II	F ₄ 565	405	470		
screw anchor THDB25178H	15/8	(2) 1/4" x 1 7/8"		F ₁	390	280	325
			4,000	F ₂ and F ₃	760	725	635
				F4	655	465	545
				F ₁	370	265	310
			3,000	F ₂ and F ₃	475	695	610
Simpson Strong-Tie Titen HD	21/2	(0) 1/11 v 03/11		F4	515	445	520
screw anchor THDB25234H	2 1/2	(2) 1/4" x 23/4"		F ₁	430	305	360
ТНИВ25234Н			4,000	F ₂ and F ₃	550	805	705
				F ₄	590	515	600

- 1. Allowable anchor capacities have been determined using ACI 318-14 Chapter 17 calculations with a minimum concrete compressive strength (f'c) of 3,000 and 4,000 psi in normal-weight concrete. Tabulated values shall be multiplied by a factor (λ_a) of 0.68 for sand light-weight concrete.
- 2. Edge distance is assumed to be 11/2", and end distance is 25%".
- 3. Load values are for group anchors based on ACI 318, condition B, load factors from ACI 318-14 Section 5.3, no supplement edge reinforcement, $\psi_{\text{C,V}} = 1.0$ for cracked concrete and periodic special inspection.
- 4. Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α), of 0.70 for seismic load and 0.6 for wind loads. ASD values for other combinations may be determined using alternate conversion factors.
- 5. Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A and B only.
- 6. Design loads shall include the over-strength factor per ASCE7 Section 12.4.3. For fasteners in exterior wall connection systems, $\Omega_0 = 1.5$ per Table 13.5-1.
- $7.\, Allowable \ loads \ for \ F_4 \ are \ based \ on \ the \ governing \ loading \ direction \ which \ is \ toward \ the \ edge \ of \ slab.$
- 8. Allowable loads for F₁ are based on the governing loading direction which is toward the end of slab.
- 9. For anchor subjected to both tension and shear loads, it shall be designed to satisfy the following:
 - For $N_a / N_{all} \le 0.2$, the full allowable load in shear is permitted.
 - \bullet For V_a / $V_{all} \le 0.2$, the full allowable load in tension is permitted.
 - For all other cases: $N_a / N_{all} + V_a / V_{all} \le 1.2$ where:


Na = Applied ASD tension load

 N_{all} = Allowable F_2 or F_3 load from the FC Allowable Anchorage Loads for Concrete table

Va = Applied ASD shear load

 V_{all} = Allowable F₄ or F₁ load from the FC Allowable Anchorage Loads for Concrete table

10. Tabulated allowable loads are based on anchorage only. The capacity of the connection system shall be the minimum of the allowable anchorage load and the FC Allowable Connector Loads.

Titen HD Anchorage

For single-bolt fixed-clip connection to concrete, try the SCS hybrid clip; see p. 32.

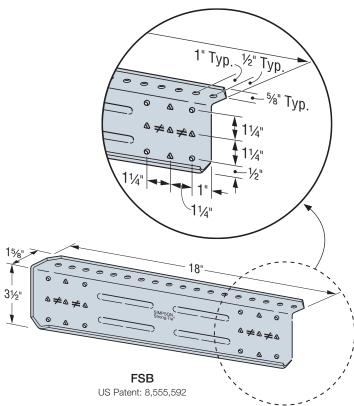
FSB Bypass Framing Fixed-Clip Strut Connector

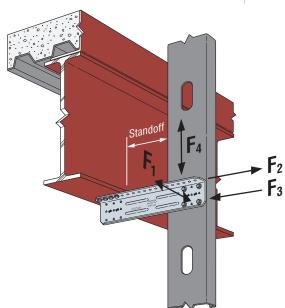
The FSB connector is the fixed-clip version of our popular SSB slide-clip strut connector. The FSB is commonly used at the bottom flange of a steel beam to accommodate large standoff distances for bypass curtain-wall studs.

Material: 54 mil (16 ga.) Finish: Galvanized (G90)

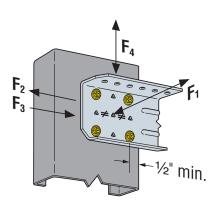
Installation:

- Use the specified type and number of anchors.
- Use the specified type and number of screw fasteners to the stud.
- If the FSB intrudes on interior space, it can be trimmed. The trimmed part shall allow an edge distance of ½" or greater from the center of the nearest anchor to the end of the trimmed part.


Codes: See p. 13 for Code Reference Key Chart


Ordering Information:

FSB3.518-R25 is a box of 25 connectors.


NEED SHORTER OR LONGER STRUT LENGTHS?

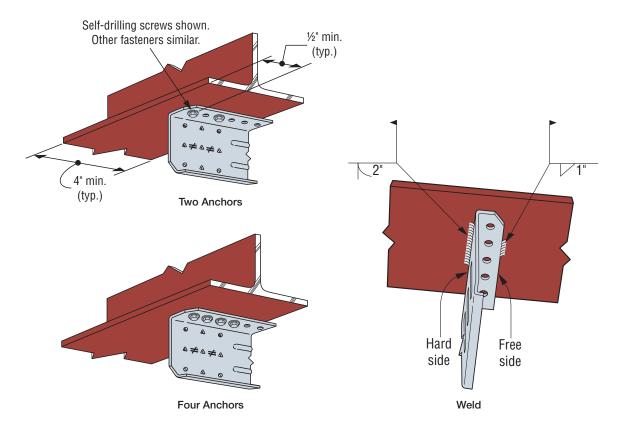
Try the HYS hybrid strut. HYS strut comes in 12", 15", 24" and 30" lengths. Reference p. 46 for HYS fixed-clip load chart.

Typical FSB3.518 Installation

FSB Installation with the Min. Number of Fasteners

FSB Bypass Framing Fixed-Clip Strut Connector

FSB Allowable Connector Loads (lb.)


	Connector	Material Min./ #10	No. of	No. of						Stud Th	ickness						
No. Thickness	Material Thickness		#10-16	33 mil (20 ga.)			43 mil (18 ga.)			54 mil (16 ga.)				Code Ref.			
			Screws	F ₁ ⁴	F ₂	F ₃	F ₄ ⁵	F ₁ ⁴	F ₂	F ₃	F ₄ ⁵	F ₁ ⁴	F ₂	F ₃	F ₄ ⁵		
FSB3.518	54 (16)	Min.	4	120	705	705	160	150	1,050	1,050	210	145	1,670	1,615	210		
F3D3.310	34 (16)	Max.	9	155	1,590	1,340	160	200	2,365	2,180	210	215	2,670	2,180	260		

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. FSB Allowable Connector Loads are also limited by the FSB Allowable Anchorage Loads table. Use the minimum value from the connector and anchorage load tables as applicable.
- 3. Min. fasteners quantity and tabulated values fill round holes; max. fasteners quantity and tabulated values fill round and triangle holes.
- 4. Tabulated F_1 loads are based on assembly tests with the load through the centerline of stud. Tested failure modes were due to screw pullout; therefore compare F_1 against F_D calculated per ASCE 7-16 Chapter 13 with $a_D = 1.25$ and $R_D = 1.0$.
- 5. Tabulated F4 values are controlled by 1/8" deformation limit. The connector strength load in the F4 direction is 550 lb.
- 6. Maximum standoff for FSB is 11" with two anchors to primary structure and 10" with four anchors to primary structure.

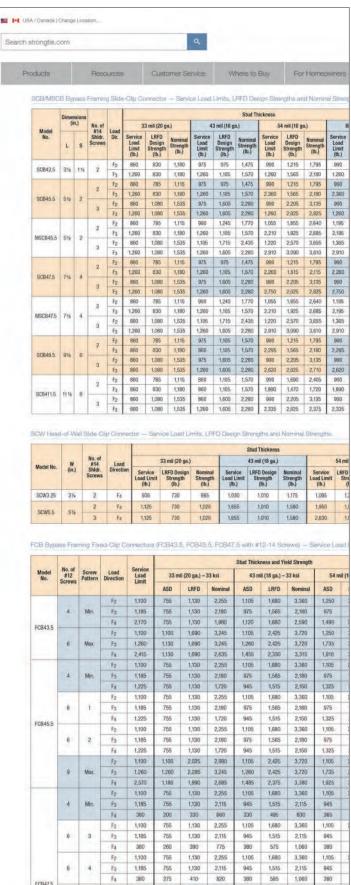
FSB Allowable Anchorage Loads (lb.)

Anchorage Type	No. of Anchors	F ₁	F ₂ and F ₃	F ₄
#12-24 self-drilling screws	2	270	1,250	550
#12-24 Sell-utiliting Screws	4	270	2,500	550
Simpson Strong-Tie®	2	_	820	_
0.157" x 5%" powder-actuated fasteners PDPAT-62KP	4	270	1,640	550
Wold	Hard side: 2"	070	0.455	EEO
Weld	Free side: 1"	270	2,455	550

- 1. Allowable loads for #12–24 self-drilling screws and PDPAT powder-actuated fasteners are based on installation in minimum 3% thick structural steel with $F_y=36$ ksi. It is the responsibility of the designer to select the proper length fasteners.
- 2. Allowable loads for welded connections require E70XX electrodes with a minimum throat size equal to the clip thickness. Welding shall comply with AWS D1.3. Welding galvanized steel may produce harmful fumes; follow proper welding procedures and precautions.
- Allowable loads are for anchorage only. It is the responsibility of the designer to verify the strength and stability of the structure for loads imposed by the cold-formed steel framing connections.

FSB Anchor Layout

Rigid Connectors


SIMPSON

Does your project require DoD-compliant blast design?

Although Allowable Strength Design (ASD) is widely used by designers of Cold-Formed Steel (CFS) construction, some projects require additional connector limit states beyond the typical ASD values that are normally tabulated in our load tables. For example, many Department of Defense (DoD) projects require blast design of exterior wall framing and connections. Such projects may require the LRFD strength or nominal strength for the blast calculations. These limit states required for blast design are located on strongtie.com. Search for the particular product required for blast design on our website to find these capacities.

Not finding what you need? Please contact Simpson Strong-Tie.

Raise Your Expectations, Lower Your Installed Costs!

Utility Clip Connectors

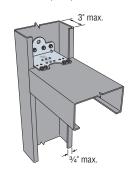
The SSC steel stud connector, the SJC steel joist connector and the SFC steel framing connector, are designed so that a minimum number of clips can be stocked to accommodate a wide array of applications. Prepunched holes and intuitive fastener hole patterns ensure that the structural needs of the designer and the efficient installation goals of the contractor are both satisfied.

Testing You Can Trust

Simpson Strong-Tie® utility clip connectors have undergone industry-first testing to provide maximum benefit to both the installer and the designer. By testing these connectors as part of a complete system in the applications for which they are intended, rather than only testing the physical capabilities of the connector, Simpson Strong-Tie is able to provide comprehensive allowable loads for real-world conditions. This system-based approach eliminates the need for designers to manually calculate connector performance and anchorage, and provides confidence that designs based on these values have been thoroughly evaluated by the industry leader in structural connector research and development.

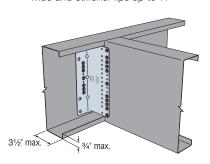
			<u> </u>
	Р	roduct Categor	У
Tested Application	SSC	SJC	SFC O O O O O O O O O O O O O O O O O O O
Steel-to-Steel	✓	√	√
Bypass Framing	✓		
Headers	✓		√
Base of Jamb	√		
Rafter	√		
Kneewall	√		
U-Channel Bridging	✓		√
Kicker		✓	
Soffit Hanger	✓	✓	

Innovative Design Lets You Work Smarter — Not Harder!

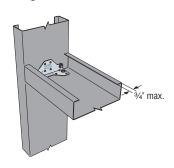


Simpson Strong-Tie® utility clip connectors have been designed with both the contractor and designer in mind. Connector dimensions and fastener/anchor locations have been developed to maximize design flexibility and installation efficiency.

Intelligent Connector Dimensions


SSC Steel Stud Connectors

Designed to accommodate open-side connections with flanges up to 3" wide and stiffener lips up to 3''


SJC Steel Joist Connectors

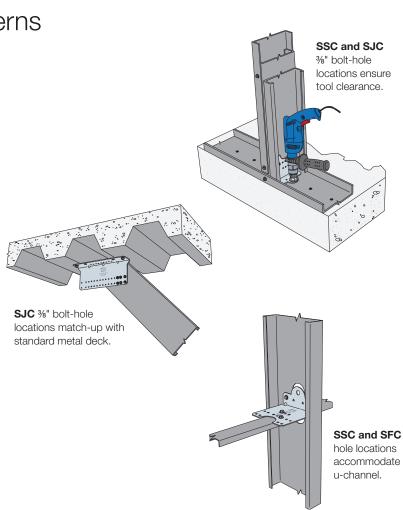
Designed to accommodate open-side connections with flanges up to 3½" wide and stiffener lips up to ¾"

SFC Steel Framing Connectors

Designed to accommodate open-side connections with stiffener lips up to %" long **

*SSC2.25 clips will accommodate 2" wide flange and %" stiffener lips.

For detailed product dimensions, refer to p. 91 for SSC, p. 99 for SJC and p. 102 for SFC.



SSC and SJC connectors

include prepunched holes

SSC and SJC clips include round and triangle holes for minimum and maximum tabulated load values. Square holes are also provided, and can be combined with round and triangle holes for custom screw patterns per installation needs.

^{**}SFC2.25 clips will accommodate %" long stiffener lips.

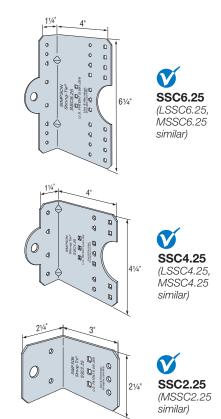
This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

SSC connectors are versatile utility clips ideal for a variety of stud-to-stud and stud-to-structure applications in cold-formed steel construction. The clips have been designed to enable easy installation on the open side of studs or joists with flanges up to 3" long and return lips up to 34". A wide pattern of strategic fastener locations allows the SSC to accommodate a variety of traditional and custom designs.

Features:

- Prepunched holes reduce installation cost by eliminating predrilling
- Intuitive fastener hole positions ensure accurate clip installation in accordance with design, support a wide range of design and application requirements and provide installation flexibility
- Angle lengths accommodate either hard-side or soft-side attachment for studs and joists with return lips up to ¾"*
- 4" leg length enables soft-side connections for studs and joists with flanges up to 3"*
- Also suitable for u-channel bridging

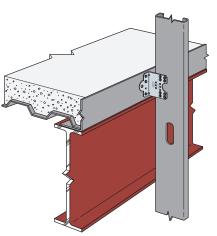
Product Information:

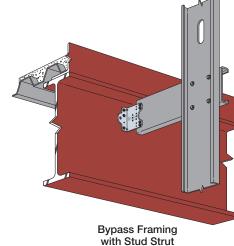

Material: LSSC − 54 mil (50 ksi); SSC − 68 mil (50 ksi); MSSC − 97 mil (50 ksi)

Finish: Galvanized (G90)

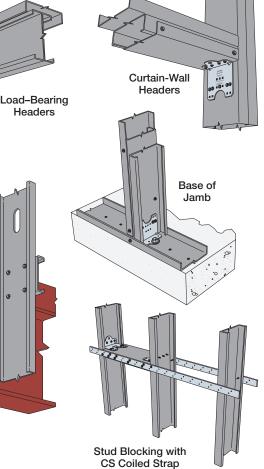
Installation: Use all specified fasteners/anchors

Codes: See p. 13 for Code Reference Key Chart

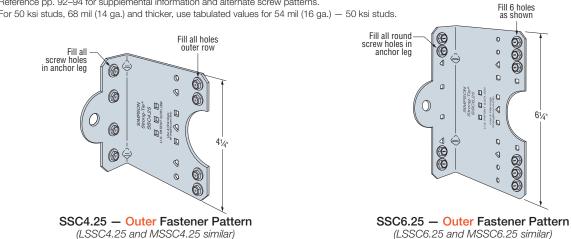

For detailed product dimensions, refer to p. 91.

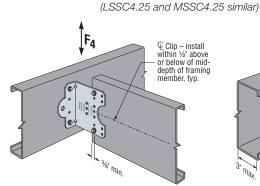


US Patent Pending


Ordering Information

Model No.	Ordering SKU	Package Quantity
SSC2.25	SSC2.25-R125	Bucket of 125
MSSC2.25	MSSC2.25-R90	Bucket of 90
LSSC4.25	LSSC4.25-R50	
SSC4.25	SSC4.25-R50	Bucket of 50
MSSC4.25	MSSC4.25-R50	
LSSC6.25	LSSC6.25-R30	
SSC6.25	SSC6.25-R30	Bucket of 30
MSSC6.25	MSSC6.25-R30	

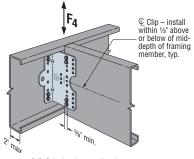




SSC Connectors — CFS to CFS Allowable Loads (lb.)

	Connector		Framing		Fasteners			Allowable F	4 Load (lb.)		
Model	Material	Clip Length	Member		Carried	Corruina	Minim	um Member Thi	ckness	Maximum	Code
No.	Thickness mil (ga.)	(in.)	Depth (in.)	Pattern ¹	Member	Carrying Member	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	Connector Load ³	Ref.
SSC2.25	68 (14)	21/4	3%	Min.	(3) #10	(2) #10	165	225	345	690	
MSSC2.25	97 (12)	21/4	3%	Min.	(3) #10	(2) #10	165	225	345	690	1
				Min.	(2) #10	(2) #10	215	440	675		1
LSSC4.25	54 (16)	41/4	6	Max.	(5) #10	(4) #10	215	440	725	1,615	
				Outer	(4) #10	(4) #10	200	310	520		
				Min.	(2) #10	(2) #10	355	525	890		1
SSC4.25	68 (14)	41/4	6	Max.	(5) #10	(4) #10	365	600	1,005	1,615	ĺ
				Outer	(4) #10	(4) #10	235	330	625		
				Min.	(2) #10	(2) #10	355	525	890		1
MSSC4.25	97 (12)	41/4	6	Max.	(5) #10	(4) #10	365	600	1,005	1,615	,,,,
				Outer	(4) #10	(4) #10	235	330	625		IBC
				Min.	(4) #10	(4) #10	265	660	1,190		1
LSSC6.25	54 (16)	61/4	8	Max.	(7) #10	(6) #10	265	660	1,190	2,590	
				Outer	(6) #10	(4) #10	270	375	695		l
				Min.	(4) #10	(4) #10	385	720	1,190		1
SSC6.25	68 (14)	61/4	8	Max.	(7) #10	(6) #10	385	720	1,190	2,590	İ
				Outer	(6) #10	(4) #10	270	460	725		
				Min.	(4) #10	(4) #10	385	720	1,190]
MSSC6.25	97 (12)	61/4	8	Max.	(7) #10	(6) #10	385	720	1,365	2,590	
				Outer	(6) #10	(4) #10	270	460	725		

- 1. Min. fastener quantity and load values fill all round holes; Max. fastener quantity and load values fill all round and triangular holes; Outer fastener quantity and load values — see illustrations for fastener placement.
- 2. Allowable loads are based on bracing of the members located within 12" of the connection.
- 3. Maximum allowable load for connector that may not be exceeded when designing custom installations. designer is responsible for member and fastener design.
- 4. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.
- 5. Reference pp. 92-94 for supplemental information and alternate screw patterns.
- 6. For 50 ksi studs, 68 mil (14 ga.) and thicker, use tabulated values for 54 mil (16 ga.) 50 ksi studs.



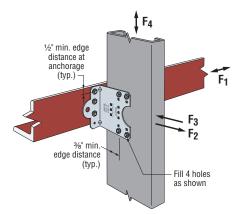
Typical SSC4.25 Installation with Min. Quantity

© Clip – install within ½" above or below of mid-depth of framing member, typ °³⁄8″ Min.

SSC Installation with Carried Member Fasteners in Outer Row

SSC6.25 Installation with Min. Quantity

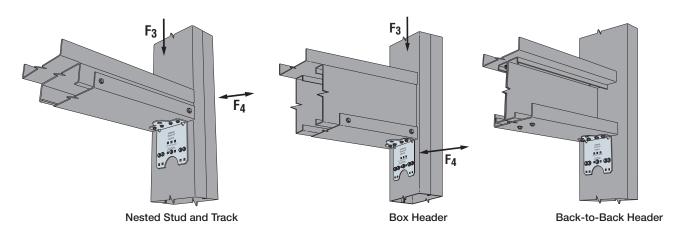
Rigid Connectors


SSC Steel-Stud Connector

SSC Connectors — Bypass Framing Allowable Loads (lb.)

	Connector	Clip	Footonor	Fasteners ^{1,4}		Stud Thickness											
Model No.	Material Thickness	Length	rasiellei	Fasteners ^{1,4}		33 mil ((20 ga.)			43 mil	(18 ga.)			54 mil	(16 ga.)		Code Ref.
	mil (ga.)	(in.)	Anchorage ²	Stud	F ₁ ³	F ₂	F ₃	F ₄	F ₁ ³	F ₂	F ₃	F ₄	F ₁ ³	F ₂	F ₃	F ₄	
SSC4.25	68 (14)	41⁄4	(3) #10	(4) #10	40	705	705	700	40	870	1,050	850	40	935	1,210	850	IBC
3304.23	00 (14)	474	(3) PDPAT-62K	(4) #10	40	705	705	700	40	780	1,050	850	40	780	1,210	850	_
MSSC4.25	07 (10)	41/	(3) #10	(4) #10	105	705	705	705	105	1,050	1,050	880	105	1,385	1,210	880	IBC
IVI3364.23	97 (12)	41⁄4	(3) PDPAT-62K	(4) #10	105	705	705	705	105	780	1,050	880	105	780	1,210	880	_

- 1. See illustration for fastener placement.
- 2. Allowable loads are based on anchors installed in minimum $\%_6$ "-thick structural steel with Fy = 36 ksi.
- Allowable loads based on in-plane loads applied at the centroid of the fasteners to the stud, with no rotational restraint of stud.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

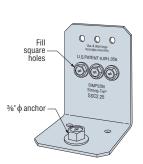


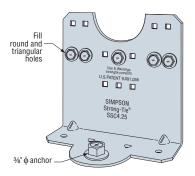
Typical SSC Installation

SSC Connectors — CFS Header to CFS Jamb Allowable Loads (lb.)

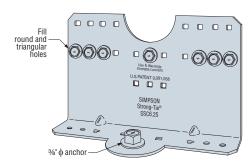
	Connector	Clip	Jamb		Fasteners ⁴		Jamb and	Allowable I	3 Load (lb.)	Allowable F ₄	
Model No.	Material Thickness mil (ga.)	Length (in.)	Stud Depth (in.)	Pattern	Jamb Header		Header Thickness mil (ga.)	Nested Stud and Track Header ³	Back-to-Back Header ²	Load (lb.)	Code Ref.
LSSC4.25	54 (16)	41⁄4	6	Max.	(5) #10	(4) #10	33 (20)	140	455	215	
L3304.23	34 (10)	4 74	0	IVIAX.	(3) #10	(4) #10	43 (18)	220	660	440	
SSC4.25	68 (14)	41⁄4	6	Max.	(5) #10	(4) #10	54 (16)	375	1,055	1,005	
3304.20	00 (14)	474	0	IVIAX.	(3) #10	(4) #10	68 (14)	570	1,055	1,005	IBC
LSSC6.25	54 (16)	61/4	8	Max.	(7) #10	(6) #10	33 (20)	160	455	265	IDC
L3300.23	34 (10)	0 //4	0	IVIAX.	(7)#10	(6) #10	43 (18)	250	730	660	
SSC6.25	68 (14)	61/4	8	Max.	(7) #10	(6) #10	54 (16)	410	1,110	1,190	
3300.23	00 (14)	0 //4	0	ividX.	(7)#10	(0) #10	68 (14)	640	1,110	1,190	

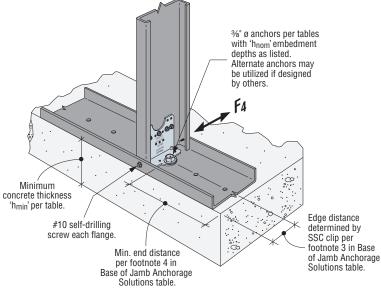
- 1. Max. fastener quantity and load values fill all round and triangular holes.
- 2. Designer is responsible for checking web crippling of the header and reducing allowable loads accordingly.
- 3. Also applies to box header per illustration below.
- 4. See the currrent Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.




SSC Connectors — Base of CFS Jamb Allowable Loads

Model	Connector	Clip	Stud Member	Fasto	eners	Stud	Allowable Load	Codo
No.	Material Thickness mil (ga.)	Length (in.)	Depth (in.)	Anchor Diameter	Stud Fasteners ³	Thickness mil (ga.)	F ₄ (lb.)	Code Ref.
						33 (20)	390	
SSC2.25	68 (14)	21/4	3%	3/8	(3) #10	43 (18)	605	
						54 (16)	940	
						33 (20)	420	
SSC4.25	68 (14)	41⁄4	6	3/8	(5) #10	43 (18)	685	IBC
						54 (16)	975	
						33 (20)	470	
SSC6.25	68 (14)	6¼	8	3/8	(7) #10	43 (18)	715	
						54 (16)	1,020	


- Allowable loads are based on minimum 33 mil (20 ga.) track for 33 mil (20 ga.) and 43 mil (18 ga.) studs, and minimum 43 mil (18 ga.) track for 54 mil (16 ga.) studs, with one #10 screw into each stud flange.
- 2. Allowable loads assume adequate torsional bracing is provided. Bracing design is the responsibility of the designer.
- 3. See illustrations for fastener placement.
- 4. Designer is responsible for anchorage design.
- 5. For anchorage capacity options, see p. 90.
- 6. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.


SSC2.25 Fastener Pattern

SSC4.25 Fastener Pattern

SSC6.25 Fastener Pattern

Typical SSC Installation

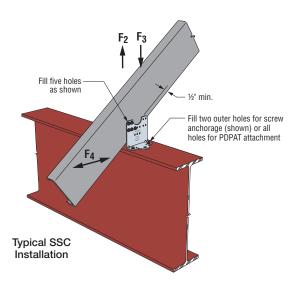
(Note: This figure references the table on the following page.)

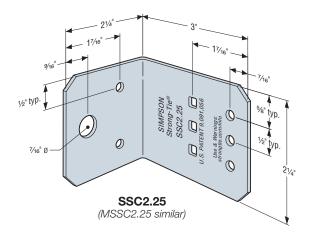
For anchor capacities for SSC clip, reference p. 90. For more information on anchors, see *Anchoring, Fastening and Restoration Systems for Concrete and Masonry* catalog at strongtie.com.

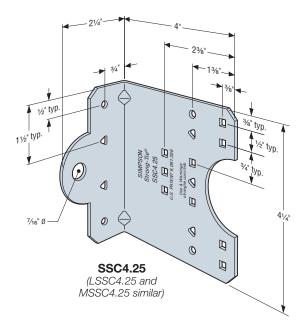
Base of Jamb Anchorage Solutions

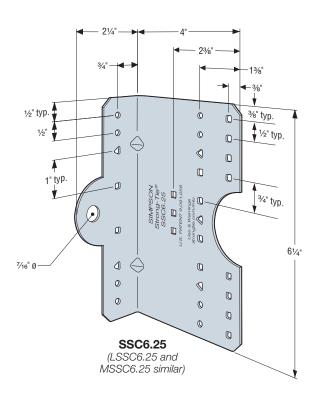
		Uncracked Concre	te, Wind and Seismic in S	SDC A&B®		
Model	Minimum Concrete	3/8" Diameter	Nominal Embedment	Allov	able Anchor Load, F	4 (lb.)
No.	Thickness (h _{min}) (in.)	Simpson Strong-Tie® Anchor Type	Depth (h _{nom}) (in.)	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC
	4	Titen HD®	2½	275	455	530
0000.05		Titen HD	31/4	290	485	560
SSC2.25	6	SET-3G [™]	4	345	510	590
		AT-XP®	4	345	510	590
	4	Titen HD	21/2	550	920	975
000405		Titen HD	31/4	620	975	975
SSC4.25	6	SET-3G	4	735	880	880
		AT-XP	4	735	880	880
	4	Titen HD	21/2	735	1,020	1,020
		Titen HD	31/4	960	1,020	1,020
SSC6.25	6	SET-3G	4	880	880	880
	-	AT-XP	4	880	880	880
		Cracked Concrete	e, Wind and Seismic in SI	DC A&B ⁸		
Model	Minimum Concrete	%" Diameter	Nominal Embedment	Allov	able Anchor Load, F	4 (lb.)
No.	Thickness (h _{min}) (in.)	Simpson Strong-Tie Anchor Type	Depth (h _{nom}) (in.)	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC
	4	Titen HD	21/2	195	325	375
		Titen HD	31/4	210	345	400
SSC2.25	6	SET-3G	4	245	360	420
	-	AT-XP	4	245	360	420
	4	Titen HD	21/2	395	655	760
		Titen HD	31/4	445	740	855
SSC4.25	6	SET-3G	4	525	775	880
		AT-XP	4	525	775	880
	4	Titen HD	21/2	525	875	1,010
	· · · · · · · · · · · · · · · · · · ·	Titen HD	31/4	685	1.020	1.020
SSC6.25	6	SET-3G	4	810	880	880
	Ü	AT-XP	4	810	880	880
			te, Seismic in SDC C thro			
Madal	Minimum Concrete	3/8" Diameter	Nominal Embedment	·	vable Anchor Load, F	4 (lh)
Model No.	Thickness (h _{min}) (in.)	Simpson Strong-Tie Anchor Type	Depth (h _{nom}) (in.)	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC
	4	Titen HD	21/2	90	150	175
	7	Titen HD	31/4	95	160	185
SSC2.25	6	SET-3G	4	115	170	195
		AT-XP	4	115	170	195
	4	Titen HD	2½	185	305	355
	-	Titen HD	31/4	205	345	400
SSC4.25	6	SET-3G	4	245	355	355
	Ü	AT-XP	4	245	350	350
	4	Titen HD	21/2	245	410	470
	_	Titen HD	31/4	320	480	480
SSC6.25	6	SET-3G	4	355	355	355
	ı U	l OLIUU	-⊤	000	1 000	1 000

- Allowable anchor capacities have been determined using ACI 318-14 Chapter 17 calculations with the minimum concrete compressive strength, f'_C and slab thickness listed. Sand-lightweight concrete is abbreviated as "SLWC" while normal-weight concrete is abbreviated as "NWC".
- 2. Nominal Embedment Depth/Effective Embedment Depth relationships:
 - %" Titen HD in 4" Slab: 2.50" (hnom) / 1.77" (hef)


 - %" Titen HD in 6" Slab or thicker : 3.25" (h_{nom}) / 2.40" (h_{ef}) SET-3G or AT-XP Adhesive with %" F1554 Gr. 36 All-Thread Rod in 6" Slab or thicker : 4.0" (h_{nom}) = 4" (h_{ef})
- 3. Edge distances are assumed to be 1.81", 3.0" and 4.0" (½ of stud width) as determined for 3%", 6" and 8" studs, respectively.
- 4. End distances are assumed as 1.5 x min. edge distance in one direction and 'N/A' in the other direction. See figure on p. 89.
- 5. Load values are for a single anchor based on ACI 318-14, condition B, load factors from ACI 318-14 Section 5.3, no supplemental edge reinforcement, Ψ_{C,V} = 1.0 for cracked concrete and periodic special inspection. Reference ICC-ES or IAPMO-UES evaluation reports for further information.
- 6. Load values are based on a short-term temperature range of 160°F and 180°F for SET-3G and AT-XP. Long-term temperature range is assumed to be 110°F for both SET-3G and AT-XP. Dry hole conditions are assumed. Other conditions may be evaluated using Anchor Designer™ Software for ACI 318, ETAG and CSA. See strongtie.com/software.
- 7. Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α) , of 0.7 for seismic loads and 0.6 for wind loads. ASD values for other load combinations may be determined using alternate conversion factors.
- Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A&B only.
- 9. Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17.
- 10. Allowable F₄ load based on loading direction towards the edge of slab.
- 11. Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the allowable load value from the SSC Connectors: Base of CFS Jamb Allowable Load Tables.


SSC Connectors — CFS Rafter Allowable Loads (lb.)


	Connector	Clip	Fastener	Allow	d (lb.)			
Model No.	Material Thickness	Length	Anchorage	Supported	43	mil (18 g	a.)	Code Ref.
	mil (ga.)	(in.)	to Steel ²	Member	F ₂	F ₃	F4	
SSC4.25	68 (14)	41/4	(2) #12-24	(5) #10	710	1,075	595	
3304.23	00 (14)	474	(4) 0.157" PDPAT	(5) #10	1,020	1,075	630	IBC
MSSC4.25	97 (12)	41/4	(2) #12-24	(5) #10	710	1,335	595	IDU
100004.20	97 (12)	474	(4) 0.157" PDPAT	(5) #10	1,025	1,335	815	

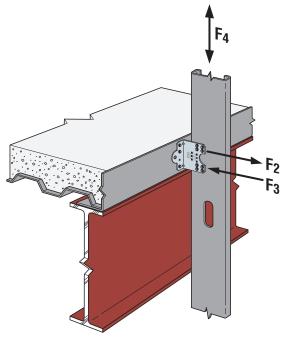

- 1. See illustrations for fastener placement.
- 2. Allowable loads are based on anchors installed in minimum $\% {\rm _{6}}"$ -thick structural steel with $F_{y}=36~ksi.$
- Allowable loads are based on a 6"-deep member. For deeper members, designer must consider web crippling of the member and reduce loads accordingly.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

SSC Utility Clip Dimensions

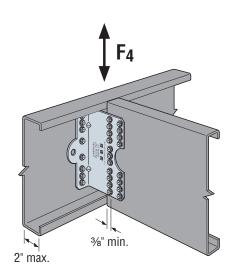
SSC Supplemental Information

The following SSC supplemental information is given to help designers with value-engineered solutions for our SSC connectors. Loads are given for fastener patterns other than our standard "min." (fill all round holes) and "max." (fill all round and triangle holes). The tables give ASD Loads. LRFD and nominal loads can be found at **strongtie.com**.

Table 1: SSC Screw Patterns


19016 1: 220	Screw Patterns			
	Pattern "Min."	Pattern A	Pattern B	
SSC2.25	ACL ABOUS ACTIONS	ACL CHANGE AND AND AND AND AND AND AND AND AND AND	O O O O O O O O O O O O O O O O O O O	
MSSC2.25	Pattern C	Pattern D	Pattern E	
	O O O O O O O O O O O O O O O O O O O	ACCEPTATE OF THE PROPERTY OF T	ACCEPTION OF THE PROPERTY OF T	
	Pattern "Min."	Pattern "Max."	Pattern "Outer"	
LSSC4.25 SSC4.25	B B B B B B B B B B B B B B B B B B B	B B B B B B B B B B B B B B B B B B B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
MSSC4.25	Pattern F	Pattern G	Pattern H	Pattern I
	(a) a (b) a (c) a	A A A A A A A A A A A A A A A A A A A	CONTROL OF THE PROPERTY OF THE	66 66 66 66 66 66 66 66 66 66 66 66 66
	Pattern "Min."	Pattern "Max."	Pattern "Outer"	
	O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O	MOSAMIS MOS	
	Pattern J	Pattern K	Pattern L	
LSSC6.25 SSC6.25 MSSC6.25	O O O O O O O O O O O O O O O O O O O	And a a a a a a a a a a a a a a a a a a a	OFFICE OF	
	Pattern M	Pattern N	Pattern 0	
	### ##################################	### ##################################	See See See See See See See See See See	

SSC Supplemental Information



Notes for Table 2 (see p. 94)

- Calculated values are per AISI RP18-4, AISI S-100, or generally accepted industry standards. Shaded values for F4 are derived from test data. Whenever possible, unshaded F4 values are based on the maximum calculated value and applicable tested value.
- The tabulated values do not account for anchorage to the support. Anchor strength must be calculated separately and may reduce the capacity of the connection when compared to the tabulated values.
- 3. Tabulated values do not include shear, web crippling, buckling, or other local effects in the member. The designer must check member limit states separately.
- 4. For load combinations that include F₄ and/or F₂ and/or F₃, use an appropriate interaction equation.
- #10–16 screws shall have P_{SS} ≥ 1,620 lb. Calculated values are per AISI S-100. Screws must be installed with three (min.) exposed threads.
- 6. The number of screws is for one clip leg that is attached to the supported stud.
- 7. For the minimum screw pattern, fill all round holes. For the maximum screw pattern, fill all round and triangle holes. Reference p. 92.
- 8. In addition to calculations of net and gross section tension, and screw shear of the clip leg attached to the stud, F₂ values are also calculated for weak-axis bending of the anchored clip leg with the line of bending at the smaller anchor holes. The designer is responsible for calculating pullover, pullout, and tension strength of the anchors, and this may reduce F₂ strength compared to the tabulated values.
- 9. F₃ values are computed using the plate buckling provisions of AISI RP18-4.
- 10. For the F₄ calculated values, it's assumed that the connection eccentricity is taken by screws in the supported stud.
- 11. Service load limits for F₂ and F₃ are not given since there are no generally accepted industry methods available to compute these values. F₄ service load limits are based on AISI Research Report RP18-4 for ½" deflection or applicable test data.
- 12. For 50 ksi studs, 68 mil (14 ga.) and thicker, use tabulated values for 54 mil (16 ga.) 50 ksi studs.

Installation Example #1 — SSC4.25 Typical Bypass Framing Installation

Installation Example #2 — SSC6.25 Typical Joist-to-Girder Installation

SSC Supplemental Information

Table 2: SSC Steel Stud Connectors — Allowable Loads (lb.)

						Stud Thic	kness and Yie	ld Strength			
Model	No. of #10	Screw	33 n	nil (20 ga.) – 3	3 ksi		nil (18 ga.) – 3		54 r	nil (16 ga.) – 5	n ksi
No.	Screws	Pattern	F ₂	F ₃	F ₄	F ₂	F ₃	F ₄	F ₂	F ₃	F ₄
	3	Min.	12	525	165	12	610	225	12	610	345
	2	A A	1	350	65	1	475	100		475	205
	2	В	1	350	105		530	160		635	325
SSC2.25	3	C	235	525	165	235	795	225	235	820	345
	4	D	{	635	190	{	635	285		635	580
	6	E	{	820	245	{	820	375		820	750
	3	Min.	475	525	165		795	225		1,055	345
	2	A		350	65		530	100		820	205
	2	В	350	350	105		530	160		1,070	325
MSSC2.25	3	C		525	165	475	795	225	475	1,420	345
	4	D	475	700	190	ĺ	1,060	285		1,105	580
	6	E	1	1,050	245	ĺ	1,420	375		1,420	750
	2	Min.	350	350	215		350	440		350	675
	5	Max.		845	215	ĺ	845	440		845	725
	4	Outer	1	575	200		575	310		575	520
LSSC4.25	4	F	1	350	320	435	350	485	435	350	980
	8	G	435	695	530	1	695	805		695	1,495
	11	Н	1	845	590	1	845	895		845	1,495
	14	I	1	845	730	1	845	1,105		845	1,495
	2	Min.	350	350	355	530	485	525		485	890
	5	Max.		875	365		1,175	600		1,175	1,005
	4	Outer	1	700	235	1	795	330		795	625
SSC4.25	4	F	000	485	320	000	485	485	660	485	980
	8	G	660	970	530	660	970	805		970	1,625
	11	Н		1,175	590		1,175	895		1,175	1,805
	14	I		1,175	730		1,175	1,105		1,175	1,860
	2	Min.	350	350	355	530	530	525	1,070	840	890
	5	Max.	875	875	365	1,325	1,325	600		2,040	1,005
	4	Outer	700	700	235	1,060	1,060	330		1,380	625
MSSC4.25	4	F	700	700	320	1,000	840	485	1,340	840	980
	8	G	ļ	1,400	530	ļ	1,680	805	1,040	1,680	1,625
	11	Н	1,340	1,925	590	1,340	2,040	895		2,040	1,805
	14	I		2,040	730			1,105			2,235
	4	Min.	ļ	700	265		705	660		705	1,190
	7	Max.	ļ	1,225	265		1,230	660		1,230	1,190
	6	Outer	ļ	870	270		870	375		870	695
	4	J	ļ	350	435	ļ	350	660		350	1,330
LSSC6.25	8	K	640	705	785	640	705	1,190	640	705	2,210
	12	L		1,055	1,050		1,055	1,590		1,055	2,205
	16	M			1,230	ļ		1,860			
	19	N	ļ	1,255	1,305		1,255	1,975		1,255	2,250
	22	0	700	700	1,455		000	2,200		000	1.100
	4 7	Min.	700	700	385	1	980	720		980	1,190
	7	Max.	975	1,225	385	1	1,710	720		1,710	1,190
	6 4	Outer	975	1,050 490	270 435	1	1,210 490	460		1,210 490	725 1,330
SSC6.25	8	J K	700	980	785	975	980	1 100	975	980	-
JJUU.23	12	L	{	1,465		913		1,190 1,590	910		2,405
	16	M	975	1,400	1,050 1,230	{	1,465 1,745	1,860		1,465 1,745	2,750 2,845
	19	N N	910	1,745	1,305	1	1,745	1,860		1,745	2,845
	22	0	1	1,170	1,455	1	1,745	2,200		1,745	2,845
	4	Min.	700	700	385	1,060	1,060	720		1,695	1,190
	7	Max.	1,225	1,225	385	1,855	1,855	720		2,965	1,365
	6	Outer	1,050	1,050	270	1,590	1,590	460		2,100	725
	4	J	700	700	435	1,060	845	660		845	1,330
MSSC6.25	8	K	1,400	1,400	785	1,000	1,695	1,190	1,970	1,695	2,405
11100001.20	12	L	1, 100	2,100	1,050		2,540	1,590	1,070	2,540	3,210
	16	M		2,800	1,230	1,970	2,040	1,860		2,040	3,755
	19	N	1,970	-	1,305	1,570	3025	1,975		3,025	3,985
	22	0		3,025	1,455		0020	2,200		3,020	4,305
					1, 100			2,200			1,000

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

SJC connectors have been specifically designed for various CFS joist, rafter and underside of metal deck applications. The unique clip dimensions enable easy installation on the open side of joists and rafters with up to 3½" flanges and return lips up to ¾". For metal deck applications, the prepunched ¾" holes easily accommodate 6", 8", 10" and 12" on-center metal deck flutes.

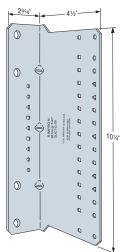
Features:

- Prepunched holes reduce installation cost by eliminating predrilling
- Intuitive fastener hole positions ensure accurate clip installation in accordance with design, support a wide range of design and application requirements and provide installation flexibility
- Angle lengths accommodate either hard-side or soft-side attachment for joists with return lips up to ¾"
- 41/2" leg length enables soft-side connections for joists with flanges up to 31/2"
- Also accommodates kicker-to-metal deck applications

Material: SJC - 68 mil (50 ksi); MSJC - 97 mil (50 ksi)

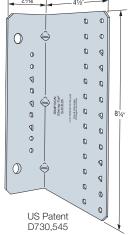
Finish: Galvanized (G90)

Installation:

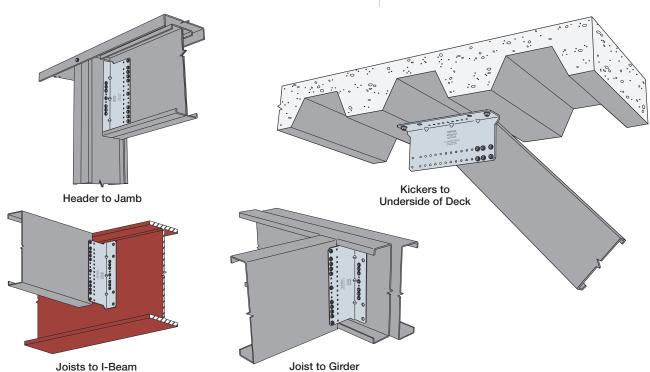

• Use all specified fasteners/anchors

Codes: See p. 13 for Code Reference Key Chart

For detailed product dimensions, refer to p. 99.

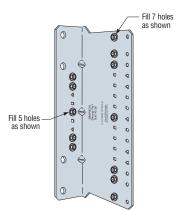

Ordering Information

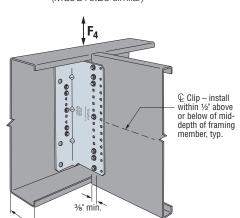
Model No.	Ordering SKU	Package Quantity
SJC8.25	SJC8.25-R15	Box of 15
MSJC8.25	MSJC8.25-R15	DOX OF 13
SJC10.25	SJC10.25-R15	Box of 15
MSJC10.25	MSJC10.25-R15	DOX OF 13



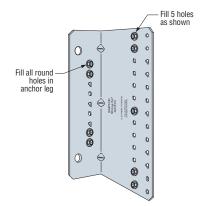
Full dimensions shown on p. 99.

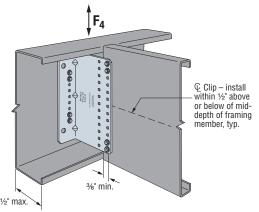
Rigid Connectors


SJC Steel-Joist Connectors


SJC Connectors — CFS to CFS Allowable Loads (lb.)

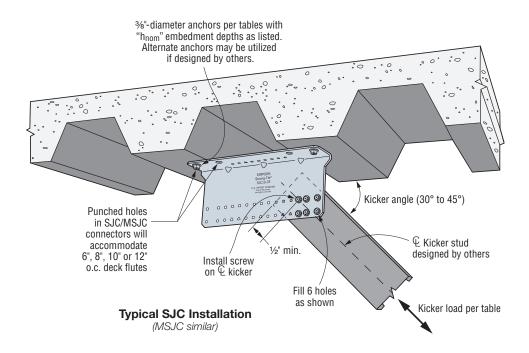
					Fasteners ⁵		Allov	vable F ₄ Load	(lb.) ²	
Model No.	Connector Material Thickness	Clip Length	Framing Member Depth⁴	Pattern ¹	Carried	Carrying		Member kness	Maximum	Code Ref.
	mil (ga.)	(in.)	(in.)	Pattern	Member	Member	54 mil (16 ga.)	68 mil (14 ga.)	Connector Load ³	
				Min.	(4) #10	(4) #10	980	980		
SJC8.25	68 (14)	81/4	10	Max.	(9) #10	(7) #10	1,005	1,490	2,930	
				Inner	(5) #10	(4) #10	1,345	2,005		
				Min.	(4) #10	(4) #10	1,005	1,710		IBC
MSJC8.25	97 (12)	81/4	10	Max.	(9) #10	(7) #10	1,135	1,765	2,930	
				Inner	(5) #10	(4) #10	1,535	2,220		
				Min.	(6) #10	(4) #10	1,170	1,625		IDU
SJC10.25	68 (14)	101/4	12	Max.	(11) #10	(7) #10	1,265	1,625	3,935	
				Inner	(7) #10	(5) #10	1,620	2,170		
			101/4 12	Min.	(6) #10	(4) #10	1,200	2,045		
MSJC10.25	97 (12)	101/4		Max.	(11) #10	(7) #10	1,265	2,045	3,935	
				Inner	(7) #10	(5) #10	1,730	2,635		


- Min. fastener quantity and load values fill all round holes; Max. fastener quantity and load values fill all round and triangular holes; Inner fastener quantity and load values — see illustrations for fastener placement.
- 2. Allowable loads are based on bracing of the members located within 12" of the connection.
- Maximum allowable load for connector that may not be exceeded when designing custom installations.
 Designer is responsible for member and fastener design.
- 4. For 6" and 8" joists, SSC connectors are recommended.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.


SJC10.25 — Inner Fastener Pattern (MSJC10.25 similar)

SJC Installation with Carried Member Fasteners in Inner Row

SJC8.25 – Inner Fastener Pattern (MSJC8.25 similar)


SJC Installation with Carried Member Fasteners in Min. Pattern (fill circle holes min. quantity, circle and triangle holes max. quantity)

SJC Connectors — Kicker Allowable Loads (lb.)

Model No.	Connector Material Thickness mil (ga.)	Clip Length (in.)	Fasteners to Kicker	Kicker Angle ²	Max. Allowable Kicker Load for 33 mil (20 ga.) Min. Kicker (lb.)	Anchor Tension at Max. Allowable Kicker Load (lb.)	Code Ref.
SJC8.25	68 (14)	81⁄4	(6) #10	30°	490	345	
5JU8.25	00 (14)	0 //4	(6) #10	45°	535	570	
C 1010 0F		101/	(0) #10	30°	625	475	IBC. FL
SJC10.25	68 (14)	101/4	(6) #10	45°	530	440	IDU, FL
MC IC10 OF	07 (10)	101/	(0) #10	30°	950	675	
MSJC10.25	97 (12)	101/4	(6) #10	45°	780	680	

- 1. Loads apply to connectors installed perpendicular or parallel to metal deck flutes, with minimum 33 mil (20 ga.) kicker. No increase allowed for kicker with heavier thickness.
- 2. Kicker angle is the acute angle measured relative to the horizontal plane of the metal deck.
- 3. The tabulated value for anchor tension is per anchor. Anchors must be designed for combined shear and tension. Simpson Strong-Tie anchorage solutions are tabulated on p. 98. Alternate anchors may be utilized if designed by others.
- 4. Maximum kicker load and anchorage tension at maximum load determined based on tests.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Example

Determine maximum allowable kicker load and tension load on anchor for MSJC10.25.

Given:

- Kicker load = 400 lb.
- Kicker angle = 35° from horizontal

Calculations

- Interpolate max. allowed kicker load for MSCJ10.25 at 35° :

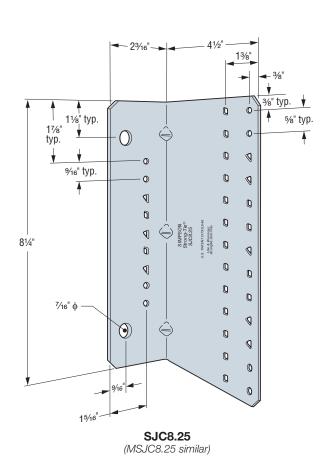
 Max. allowed kicker load for MSCJ10.25 = $950 (950 780)^*(\cos 35^\circ \cos 30^\circ)/(\cos 45^\circ \cos 30^\circ) = 899 \text{ lb.}$ Kicker Load = 400 lb. < 893 lb. **OK**
- Interpolate anchor tension at max. load for MSCJ10.25 at 35° : Anchor tension at maximum load = $675 - (675 - 680)^*(\cos 35^\circ - \cos 30^\circ)/(\cos 45^\circ - \cos 30^\circ) = 676 \text{ lb.}$
- Determine tension load on anchor:
 Tension load on anchor = 677 * 400/893 = 301 lb.

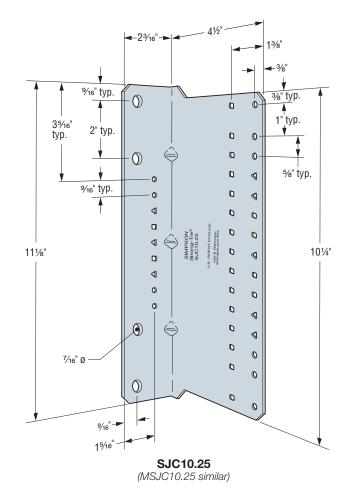
SJC and MSJC Kicker Anchorage Solutions

	Uncracked Concrete, Wind and Seismic in SDC A&B									
	Minimum 2.5" Slab (3,000 psi concrete min.) Over Metal Deck									
Model No.	Kicker Angle	%"-Diameter Simpson Strong-Tie® Anchor Type	Nominal Embedment Depth, h _{nom} (in.)	Maximum Allowable Kicker Load (lb.)						
	30°	Strong-Bolt® 2	21/2	490						
SJC8.25	30	Titen HD®	21/4	490						
3300.23	45°	Strong-Bolt 2	2½	535						
	40	Titen HD	2½	535						
	30°	Strong-Bolt 2	21/2	625						
SJC10.25	30	Titen HD	21/4	625						
30010.20	45°	Strong-Bolt 2	21/2	530						
	40*	Titen HD	21/4	530						

	Cracked Concrete, Wind and Seismic in SDC A&B									
	Minimum 2.5" Slab (3,000 psi concrete min.) Over Metal Deck									
Model No.	Kicker Angle	%"-Diameter Simpson Strong-Tie Anchor Type	Nominal Embedment Depth, h _{nom} (in.)	Maximum Allowable Kicker Load (lb.)						
	30°	Strong-Bolt 2	2¾	490						
SJC8.25	30	Titen HD	21/2	455						
3300.23	45°	Strong-Bolt 2	23/4	535						
	40	Titen HD	21/2	320						
	30°	Strong-Bolt 2	2¾	625						
0.1010.05	30	Titen HD	21/2	435						
SJC10.25	45°	Strong-Bolt 2	23/4	530						
	40	Titen HD	2½	410						

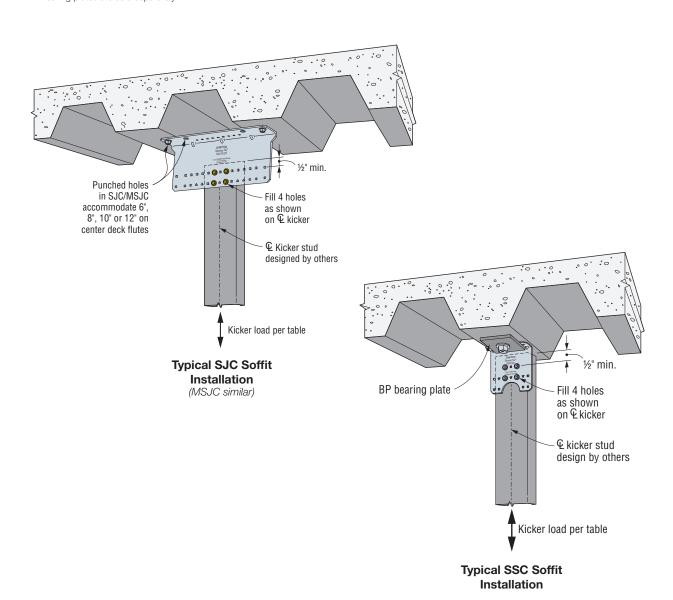
	Cracked Concrete, Seismic in SDC C through F										
	Minimum 2.5" Slab (3,000 psi concrete min.) Over Metal Deck										
Model No.	Kicker Angle	%"-Diameter Simpson Strong-Tie	Nominal Embedment Depth, h _{nom}	Kicke	Allowable r Load b.)						
110.	NO. Aligie	Anchor Type	(in.)	Ω = 1.5	$\Omega = 2.5$						
	Strong-Bolt 2		3%	490	435						
SJC8.25	30°	Titen HD	21/2	255	155						
5300.25	45°	Strong-Bolt 2	3%	535	330						
	45	Titen HD	21/2	185	110						
	30°	Strong-Bolt 2	3%	625	420						
0.1010.05	30	Titen HD	21/2	245	145						
SJC10.25	45°	Strong-Bolt 2	3%	530	410						
	40	Titen HD	21/2	235	140						




For more information on anchors, see Anchoring, Fastening and Restoration Systems for Concrete and Masonry catalog at strongtie.com.

- The allowable maximum kicker load is the minimum of anchor allowable loads or connector allowable loads per p. 97. The anchor allowable loads include checks for anchor shear and tension interaction including the effects of eccentric loading.
- Allowable loads have been determined using ACI 318-14 Chapter 17 anchorage calculations with the minimum concrete compressive strength, f'c and slab thickness listed.
- 3. Strong-Bolt 2 and Titen HD are %"-diameter carbon steel anchor.
- 4. Concrete over metal deck may be Normal Weight or Sand-Lightweight with f'_c of 3,000 psi minimum and 2.5" minimum slab height above upper flute.
- Minimum deck flute height is 1½" (distance from top flute to bottom flute). All other anchor installation requirements shall follow ICC-ES ESR-3037 and ICC-ES ESR-2713.
- Minimum Spacing and Edge distances for bottom of metal deck assemblies shall comply with those required in ICC-ES ESR-3037 for Strong-Bolt 2 anchors and ICC-ES ESR-2713 for Titen HD anchors.
- 7. Load values are based on ACI 318-14, condition B, load factors from ACI 318-14 Section 5.3, no supplemental edge reinforcement for uncracked concrete, $\Psi_{\text{CV}} = 1.0$ for cracked concrete, and periodic special inspection. Reference ICC-ES ESR-3037 and ICC-ES ESR-2713 for further information.
- 8. Allowable Stress Design (ASD) values have been determined by multiplying Load Resistance Factor Design (LRFD) values by a conversion factor, Alpha (α), of 0.7 for seismic loads and 0.6 for wind loads. ASD values for other types or load combinations may be determined using alternate conversion factors.
- 9. Minimum end distance to edge of panel is two times anchor embedment depth.

SJC Utility Clip Dimensions



SJC and SSC Connectors — Soffit Stud Hanger Allowable Loads (lb.)

Madal	Connector	011 1 11		Fasteners	Allowable Tension Load (lb.)		
Model No.		Thickness mil (ga.)	Clip Length (in.)	Anchors	to Stud 33 mil (20 ga.) Min.	No Bearing Plate	BP½-3 Bearing Plate
SJC8.25	5	68 (14)	81/4	(2) 3/8"	(4) #10	465	930
SJC10.2	5	68 (14)	101/4	(2) 3/8"	(4) #10	465	930
SSC4.25	5	68 (14)	41⁄4	(1) 3/8"	(4) #10	220	585

- 1. Loads apply to connectors installed perpendicular or parallel to metal deck flutes.
- 2. Stud member design per designer. Tabulated loads for stud fasteners are based on a minimum stud thickness of 33 mil (20 ga.) with a yield stress of 33 ksi. For 30 mil interior studs with a yield strength of 33 ksi, multiply the tabulated values by 0.9.
- 3. Anchor design per designer. Note that the SJC requires the symmetrical placement of one anchor on each side of the stud centerline.
- 4. For the bearing plate option, use Simpson Strong-Tie® BP½-3 bearing plates at each %"-diameter anchor. Bearing plates are sold separately.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SFC Steel Framing Connectors

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

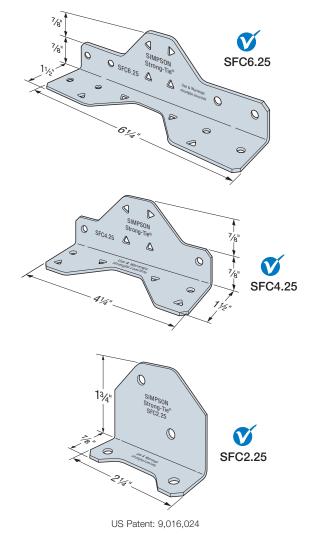
SFC connectors are a low-cost, multi-use utility clips for light to moderate loading conditions in CFS stud-to-stud and stud-to-structure applications where long leg lengths are not required.

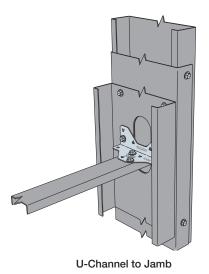
Features:

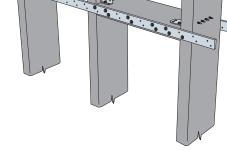
- Reduced number of screws reduces installation cost
- Prepunched holes reduce installation cost by eliminating predrilling
- Intuitive fastener hole positions ensure accurate clip installation in accordance with design, support a wide range of design and application requirements and provide installation flexibility
- In soft-side stud installations, SFC will not interfere with stud lips up to ¾" long*
- · Also suitable for u-channel bridging

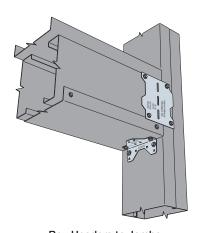
Material: SFC — 54 mil (50 ksi) Finish: Galvanized (G90)

Installation:


• Use all specified fasteners/anchors


Codes: See p. 13 for Code Reference Key Chart

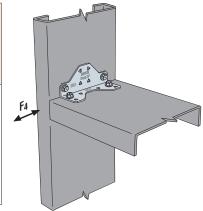

For detailed product dimensions, refer to p. 102.


Ordering Information

Model No.	Ordering SKU	Package Quantity
SFC2.25	SFC2.25-R300	Bucket of 300
SFC4.25	SFC4.25-R175	Bucket of 175
SFC6.25	SFC6.25-R100	Bucket of 100

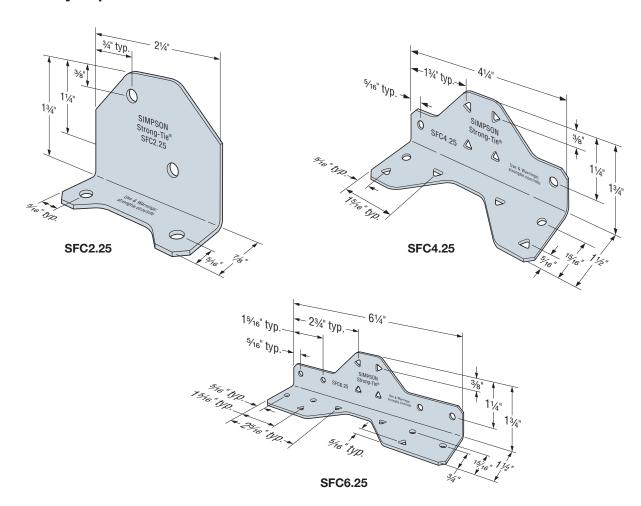
Stud Blocking with CS Coiled Strap

Box Headers to Jambs (also shown S/LS angles)


^{*}SFC2.25 clips will accommodate %" long stiffener clips.

SFC Steel Framing Connectors

SFC Connectors — CFS to CFS Allowable Loads (lb.)


Commontor			Framina		Fastener	S		o.)			
Model Materi	Connector Material Thickness	L (in.)	Framing Member Depth		Carried	Carrying	Minimum	Member T	hickness	Maximum	Code Ref.
140.	mil (ga.)	()	(in.)	Pattern	Member Member	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	Connector Load ³	noi.	
SFC2.25	54 (16)	21/4	2½, 35/8	Min.	(2) #10	(2) #10	295	355	630	630	
SFC4.25	E // /1C)	41/4	6	Min.	(2) #10	(2) #10	355	525	745	1.750	
3504.23	54 (16)	474	0	Max.	(6) #10	(6) #10	575	985	1,750	1,750	IBC
CECC OF	E // /1C)	61/4	8	Min.	(4) #10	(4) #10	590	1,035	1,840	2.640	
SFC6.25 54 (16)	0 //4		Max.	(8) #10	(8) #10	590	1,055	1,880	2,640		

Typical SFC Installation

- Min. fastener quantity and load values fill all round holes;
 Max. fastener quantity and load values fill all round and triangular holes.
- 2. Allowable loads are based on bracing of the members located within 12" of the connection.
- Maximum allowable load for connector that may not be exceeded when designing custom installations.
 Designer is responsible for member and fastener design.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

SFC Utility Clip Dimensions

RCA Rigid Connector Angles

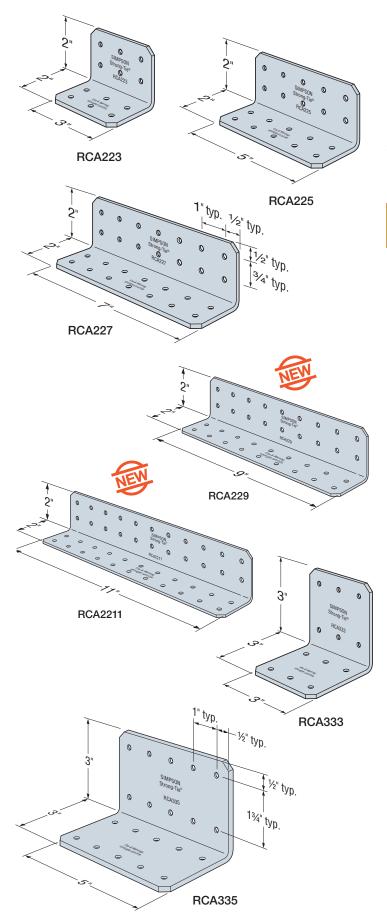
The Simpson Strong-Tie® rigid connector angle is a general purpose clip angle designed for a wide range of cold-formed steel construction applications. With prepunched holes for fastener attachment, these L-shaped clips save time and labor on the job.

Features:

- Use with miscellaneous header/sill connections to jamb studs, jamb stud reinforcement at track, u-channel bridging, stud-blocking, bypass curtain-wall framing, joist connections and other versatile options
- Easy to install, with prepunched holes for quick and accurate fastener attachment

Material: RCAXXX/54 — 54 mil (16 ga.), 50 ksi RCAXXX/68 — 68 mil (14 ga.), 50 ksi RCAXXX/97 — 97 mil (12 ga.), 50 ksi

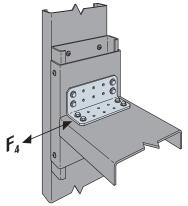
(Note: "XXX" is model number shown below.)

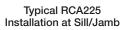

Finish: Galvanized (G90)

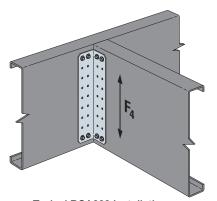
Installation:

• Use all specified anchors/fasteners

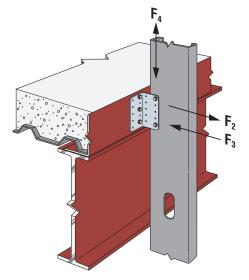
Ordering Information


Model No.	Ordering SKU	Bucket Quantity
RCA223/54	RCA223/54-R150	150
RCA223/68	RCA223/68-R125	125
RCA223/97	RCA223/97-R90	90
RCA225/54	RCA225/54-R90	90
RCA225/68	RCA225/68-R75	75
RCA225/97	RCA225/97-R55	55
RCA227/54	RCA227/54-R65	65
RCA227/68	RCA227/68-R55	55
RCA227/97	RCA227/97-R40	40
RCA229/54	RCA229/54-R50	50
RCA229/68	RCA229/68-R50	50
RCA229/97	RCA229/97-R35	35
RCA2211/54	RCA2211/54-R45	45
RCA2211/68	RCA2211/68-R40	40
RCA2211/97	RCA2211/97-R30	30
RCA333/54	RCA333/54-R100	100
RCA333/68	RCA333/68-R85	85
RCA333/97	RCA333/97-R60	60
RCA335/54	RCA335/54-R60	60
RCA335/68	RCA335/68-R50	50
RCA335/97	RCA335/97-R35	35




Rigid Connectors

RCA Rigid Connector Angles



Typical RCA229 Installation at Joist Connection

Screw Patterns for Rigid Connector Angles

Models	Pattern 3A	Pattern 3B	Pattern 3C	Typical RCA: at Bypas	335 Installation ss Framing
RCA223/54 RCA223/68 RCA223/97 RCA333/54 RCA333/68 RCA333/97					
Models	Pattern 5A	Pattern 5B	Pattern 5C	Pattern 5D	Pattern 5E
RCA225/54 RCA225/68 RCA225/97 RCA335/54 RCA335/68 RCA335/97					
Models	Pattern 7A	Pattern 7B	Pattern 7C	Pattern 7D	Pattern 7E
RCA227/54 RCA227/68 RCA227/97					
Models	Pattern 9A	Pattern 9B	Pattern 9C	Pattern 9D	Pattern 9E
RCA229/54 RCA229/68 RCA229/97					
Models	Pattern 11A	Pattern 11B	Pattern 11C	Pattern 11D	Pattern 11E
RCA2211/54 RCA2211/68 RCA2211/97	90				

RCA Rigid Connector Angles

RCA Rigid Connector Angles Allowable Loads (lb.)

Pattern Patt			Screw	Stud Framing Thickness ¹¹									
F2	Model	No. of #10 Scrows ^{5,6}		;	33 mil (20 ga	.)	4	43 mil (18 ga.	.)	54 mil (16 ga.)			
RCA229/64 4 38 205 586 390 205 580 606 1,095 580 1,095 RCA22068 4 30 310 485 200 310 788 310 310 815 820 RCA22068 4 36 310 680 380 310 805 605 310 805 1,095 RCA22068 4 36 310 680 380 310 805 605 310 805 1,295 RCA22069 4 38 30 680 390 310 805 605 310 805 1,295 RCA22069 4 38 630 680 390 630 1,205 630 1,416 630 1,285 RCA22069 4 38 630 680 390 630 1,205 630 1,465 1,295 RCA22069 4 38 630 630 630 630 1,230 740 330 1,485 1,285 RCA22669 4 5 5 5 5 5 5 5 5 5		#10 3016W3**	rattern	F ₂	F ₃	F ₄	F ₂	F ₃	F ₄	F ₂	F ₃	F ₄	
RCA22997		3	3A	205	495	200	205	590	310	205	590	620	
RCA22998	RCA223/54	4	3B	205	580	390	205	580	605	205	580	1,095	
RCA229/68		6	3C	205	865	480	205	865	740	205	865	1,095	
RCA229/97 A		3	3A	310	495	200	310	765	310	310	815	620	
RCA229/97	RCA223/68	4	3B	310	660	390	310	805	605	310	805	1,210	
RCA223/97		6	3C	310	990	480	310	1,205	740	310	1,205	1,350	
RCA225/64		3	3A	495	495	200	630	765	310	630	1,415	620	
RCA225/96	RCA223/97	4	3B	630	660	390	630	1,020	605	630	1,265	1,210	
RCA225/64 6		6	3C	630	990	480	630	1,530	740	630	1,895	1,485	
RCA225/64 5 5C 340 825 460 340 990 705 340 980 1,310		2	5A	330	330	265	340	390	410	340	390	815	
RCA229/98 SD		4	5B	340	580	535	340	580	830	340	580	1,660	
Texas	RCA225/54	5	5C	340	825	460	340	980	705	340	980	1,310	
RCA225/68		8	5D	340	1,155	915	340	1,155	1,420	340	1,155	1,825	
RCA225/68		10	5E	340	1,445	1,035	340	1,445	1,600	340	1,445	1,825	
RCA225/68 5 5C 520		2	5A	330	330	265	510	510	410	520	545	815	
RCA227/64 RCA227/68 RCA2		4	5B	520	660	535	520	805	830	520	805	1,660	
10 SE S20 1,650 1,035 S20 2,010 1,600 S20 2,010 2,255	RCA225/68	5	5C	520	825	460	520	1,275	705	520	1,360	1,415	
RCA227/64 Fig. 2		8	5D	520	1,320	915	520	1,605	1,420	520	1,605	2,255	
RCA225/97		10	5E	520	1,650	1,035	520	2,010	1,600	520	2,010	2,255	
RCA225/97		2	5A	330	330	265	510	510	410	1,020	945	815	
RCA227/64 RCA227/97 RCA229/97 RCA2							1,020	1,020		1,050	1,265		
RCA227/54 10 5E 1,050 1,650 1,050 1,050 2,550 1,600 1,050 3,155 3,200	RCA225/97	5		825	825	460	1,050	1,275	705	1,050	2,360	1,415	
RCA227/54 4 7A 475 660 545 475 785 840 475 785 1,675 RCA227/54 7 7C 475 1,155 765 475 1,800 1,185 475 580 1920 475 580 1,840 8 7D 475 1,155 1,765 475 1,280 1,185 475 1,280 1,185 1,730 475 1,155 2,025 1,685 1,730 475 1,155 2,255 1,475 1,155 1,720 475 1,155 1,730 475 1,155 2,255 1,475 1,155 2,555 1,475 1,155 1,780 1,155 1,155 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025		8		1,050	1,320		1,050	2,040	1,420	1,050	2,525	2,835	
RCA227/54 RCA227				1,050				2,550	1,600	1,050			
RCA227/54 7 7C 475 1,155 765 475 1,280 1,185 475 1,280 1,685 1,685 1475 1,120 475 1,155 1,730 475 1,155 2,255 2,555 475 1,155 2,255 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 2,555 475 2,025 1,556 725 1,685 725 1,685 725 1,606 1,675 725 1,606 660 660 595 725 1,605 1,730 725 1,605 3,155 4 7 7 7 7 725 1,320 1,120 725 1,605 3,155 725 2,810 3,605 3,460 3,460 3,460													
RCA227/97 RCA227/94 RCA229/94						_							
RCA227/97 A	RCA227/54					-			-		-		
RCA227/68 RCA227/67 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/67 RCA227/68 RCA227/68 RCA227/67 RCA227							-	-	-				
RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/68 RCA227/67 RCA227/68 RCA227/67 RCA227/68 RCA227/67 RCA227					-	-		-					
RCA227/68 7 7C 725 1,155 765 725 1,780 1,185 725 1,780 2,370 8 7D 725 1,320 1,120 725 1,605 1,730 725 1,605 3,155 144 7E 725 2,310 1,685 725 2,810 2,605 725 2,810 3,155 4 7A 660 660 545 1,020 1,020 840 1,470 1,890 1,675 4 7B 660 660 595 1,020 1,020 920 1,470 1,265 1,840 4 7B 660 660 595 1,020 1,020 920 1,470 1,265 1,840 14 7E 1,470 1,320 1,120 1,470 2,525 3,460 14 7E 1,470 2,310 1,685 1,470 3,570 2,605 1,470 4,420 4,490 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>											-		
RCA229/54 8 7D 725 1,320 1,120 725 1,605 1,730 725 1,605 3,155 RCA229/97 14 7E 725 2,310 1,685 725 2,810 2,605 725 2,810 3,155 RCA227/97 4 7A 660 660 545 1,020 1,020 840 1,470 1,890 1,675 4 7B 660 660 595 1,020 1,020 920 1,470 1,265 1,840 8 7D 1,155 1,155 765 1,470 1,785 1,185 1,470 3,080 2,370 14 7E 1,470 2,310 1,685 1,470 2,040 1,730 1,470 2,525 3,460 14 7E 1,470 2,310 1,685 1,470 3,570 2,605 1,470 4,420 4,490 14 9B 615 660 595 615													
RCA229/54 RCA229/54 RCA229/54 RCA229/57	RCA227/68			1		-		-					
RCA229/54 RCA229/54 RCA229/54 RCA229/54 RCA229/54 RCA229/56 RCA229/54						_		-	-		-		
RCA227/97 RCA227/97 A 7B 660 660 595 1,020 1,020 920 1,470 1,265 1,840 7.50 1,155 7.65 1,470 1,785 1,185 1,470 3,080 2,370 8.8 7.0 1,320 1,320 1,120 1,470 2,040 1,730 1,470 2,525 3,460 1,470					-						-		
RCA227/97 RCA227/97 RCA227/97 RCA227/97 RCA229/54 RCA229/67													
RCA229/68 8 7D 1,320 1,320 1,120 1,470 2,040 1,730 1,470 2,525 3,460 14 7E 1,470 2,310 1,685 1,470 3,570 2,605 1,470 4,420 4,490 4 9A 615 660 595 615 1,020 920 615 1,100 1,840 4 9B 615 660 620 615 815 960 615 815 1,920 8 9D 615 1,320 1,210 615 1,630 1,865 615 1,630 3,735 18 9E 615 2,970 2,375 615 3,665 3,670 615 3,665 4,715 4 9B 660 660 620 935 1,020 920 935 1,130 1,920 RCA229/68 9 9C 935 1,485 1,105 935 2,295 1,705 935 3,435 3,410 8 9D 935 1,320 1,210 935 2,040 1,865 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 4 9A 660 660 620 1,020 1,020 920 935 1,610 1,920 RCA229/97 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410 RCA229/97 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410	D04007/07												
RCA229/54 RCA229	RCA227/97			-									
RCA229/54 A					-	· ·			-				
RCA229/54 A					-			-			-		
RCA229/54 9 9C 615 1,485 1,105 615 2,295 1,705 615 2,475 3,410 8 9D 615 1,320 1,210 615 1,630 1,865 615 1,630 3,735 18 9E 615 2,970 2,375 615 3,665 3,670 615 3,665 4,715 4 9A 660 660 595 935 1,020 920 935 1,525 1,840 4 9B 660 660 620 935 1,020 960 935 1,130 1,920 4 9B 660 660 620 935 1,020 960 935 3,435 3,410 8 9D 935 1,320 1,210 935 2,295 1,705 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090											-		
8 9D 615 1,320 1,210 615 1,630 1,865 615 1,630 3,735 18 9E 615 2,970 2,375 615 3,665 3,670 615 3,665 4,715 4 9A 660 660 595 935 1,020 920 935 1,525 1,840 4 9B 660 660 620 935 1,020 960 935 1,130 1,920 8 9 9C 935 1,485 1,105 935 2,295 1,705 935 3,435 3,410 8 9D 935 1,320 1,210 935 2,040 1,865 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 18 9E 935 2,970 2,375 935 4,590 3,870 935 5,090<	DC 4 220 /E 4												
RCA229/68 18 9E 615 2,970 2,375 615 3,665 3,670 615 3,665 4,715 RCA229/68 4 9A 660 660 595 935 1,020 920 935 1,525 1,840 RCA229/68 9 9C 935 1,485 1,105 935 2,295 1,705 935 3,435 3,410 8 9D 935 1,320 1,210 935 2,040 1,865 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 RCA229/97 9A 660 660 595 1,020 1,020 920 1,890 2,040 1,840 4 9B 660 660 620 1,020 1,020 960 1,890 1,610 1,920 8 9D 1,485 1,485 1,105 1,890 <t< td=""><td>NUAZZ9/04</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td></t<>	NUAZZ9/04				-			-	-			-	
RCA229/68					-								
RCA229/68												-	
RCA229/68 9 9C 935 1,485 1,105 935 2,295 1,705 935 3,435 3,410 8 9D 935 1,320 1,210 935 2,040 1,865 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 4 9A 660 660 595 1,020 1,020 920 1,890 2,040 1,840 4 9B 660 660 620 1,020 1,020 960 1,890 1,610 1,920 8 9D 1,320 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735										-			
8 9D 935 1,320 1,210 935 2,040 1,865 935 2,260 3,735 18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 4 9A 660 660 595 1,020 1,020 920 1,890 2,040 1,840 4 9B 660 660 620 1,020 1,020 960 1,890 1,610 1,920 RCA229/97 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410 8 9D 1,320 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735	RCA229/68							-		-			
18 9E 935 2,970 2,375 935 4,590 3,670 935 5,090 5,750 4 9A 660 660 595 1,020 1,020 920 1,890 2,040 1,840 4 9B 660 660 620 1,020 1,020 960 1,890 1,610 1,920 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410 8 9D 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735						· ·			-				
RCA229/97 9 9C 1,485 1,485 1,105 1,890 2,040 1,865 1,890 3,220 3,735					-			-			-		
RCA229/97 4 9B 660 660 620 1,020 1,020 960 1,890 1,610 1,920 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410 8 9D 1,320 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735					,			-				·	
RCA229/97 9 9C 1,485 1,485 1,105 1,890 2,295 1,705 1,890 4,590 3,410 8 9D 1,320 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735											-		
8 9D 1,320 1,320 1,210 1,890 2,040 1,865 1,890 3,220 3,735	RCA229/97												
	HUNLLUIU				-			-	-		-	-	
18 9E 1,890 2,970 2,375 1,890 4,590 3,670 1,890 7,240 7,340		18	9E			2,375							

See footnotes on p. 106.

RCA Rigid Connector Angles

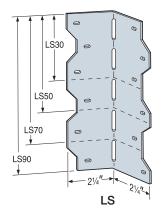
RCA Rigid Connector Angles Allowable Loads (lb.) (cont.)

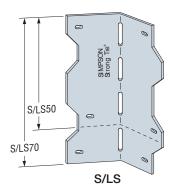
		Screw Pattern	Stud Framing Thickness ¹¹									
Model	No. of #10 Screws ^{5,6}		3	33 mil (20 ga.	.)	4	13 mil (18 ga.	.)	;	54 mil (16 ga	.)	
	" TO GOLGWS	i attorn	F ₂	F ₃	F4	F ₂	F ₃	F4	F ₂	F ₃	F4	
	4	11A	660	660	620	700	1,020	960	700	1,100	1,915	
	4	11B	625	660	635	625	815	980	625	815	1,960	
RCA2211/54	11	11C	750	1,815	1,450	750	2,805	2,245	750	3,030	4,490	
	8	11D	700	1,320	1,250	700	1,630	1,930	700	1,630	3,865	
	22	11E	750	3,630	3,075	750	4,480	4,755	750	4,480	5,765	
RCA2211/54 RCA2211/68 RCA2211/97 RCA333/54 RCA333/97 RCA333/54 RCA333/97	4	11A	660	660	620	1,020	1,020	960	1,140	1,530	1,915	
	4	11B	660	660	635	1,020	1,020	980	1,140	1,130	1,960	
RCA2211/68	11	11C	1,140	1,815	1,450	1,140	2,805	2,245	1,140	4,205	4,490	
	8	11D	1,140	1,320	1,250	1,140	2,040	1,930	1,140	2,260	3,865	
RCA2211/54 RCA2211/68 RCA2211/97 RCA333/54 RCA333/68 RCA333/97 RCA335/54	22	11E	1,140	3,630	3,075	1,140	5,610	4,755	1,140	6,220	7,030	
	4	11A	660	660	620	1,020	1,020	960	2,040	2,040	1,915	
	4	11B	660	660	635	1,020	1,020	980	2,040	1,610	1,960	
RCA2211/97	11	11C	1,815	1,815	1,450	2,310	2,805	2,245	2,310	5,610	4,490	
	8	11D	1,320	1,320	1,250	2,040	2,040	1,930	2,310	3,220	3,865	
	22	11E	2,310	3,630	3,075	2,310	5,610	4,755	2,310	8,850	9,510	
	3	3A	205	440	130	205	440	195	205	440	395	
RCA333/54	4	3B	205	580	325	205	580	505	205	580	1,005	
	6	3C	205	865	430	205	865	665	205	865	1,095	
	3	3A	310	495	130	310	615	195	310	615	395	
RCA333/68	4	3B	310	660	325	310	805	505	310	805	1,005	
RCA333/68	6	3C	310	990	430	310	1,205	665	310	1,205	1,335	
RCA333/68	3	3A	495	495	130	630	765	195	630	1,065	395	
RCA333/97	4	3B	630	660	325	630	1,020	505	630	1,265	1,005	
	6	3C	630	990	430	630	1,530	665	630	1,895	1,335	
	2	5A	330	295	205	340	295	320	340	295	635	
	4	5B	340	580	450	340	580	695	340	580	1,390	
RCA335/54	5	5C	340	735	305	340	735	475	340	735	835	
	8	5D	340	1,155	755	340	1,155	1,170	340	1,155	1,825	
	10	5E	340	1,445	860	340	1,445	1,330	340	1,445	1,825	
	2	5A	330	330	205	510	410	320	520	410	635	
	4	5B	520	660	450	520	805	695	520	805	1,390	
RCA335/68	5	5C	520	825	305	520	1,025	475	520	1,025	945	
	8	5D	520	1,320	755	520	1,605	1,170	520	1,605	2,255	
	10	5E	520	1,650	860	520	2,010	1,330	520	2,010	2,255	
	2	5A	330	330	205	510	510	320	1,020	710	635	
	4	5B	660	660	450	1,020	1,020	695	1,050	1,265	1,390	
RCA335/97	5	5C	825	825	305	1,050	1,275	475	1,050	1,775	945	
	8	5D	1,050	1,320	755	1,050	2,040	1,170	1,050	2,525	2,335	
	10	5E	1,050	1,650	860	1,050	2,550	1,330	1,050	3,155	2,660	

- 1. As applicable, the tabulated values are calculated based on AISI RP18-4, AISI S100 or generally accepted industry standards.
- The tabulated values do not account for anchorage to the support. Anchor strength must be calculated separately and may reduce the capacity of the connection when compared to the tabulated values.
- Tabulated values do not include shear, web crippling, buckling or other local effects in the member. The designer must check member limit states separately.
- 4. For load combinations that include F₄ and/or F₂ and/or F₃, use an appropriate interaction equation.
- 5. #10-16 screws shall have P_{SS} ≥ 1,620 lb. Calculated values are per AISI S100. Screws must be installed with three (minimum) exposed threads.
- 6. The number of screws is for one clip leg that is attached to the supported stud.
- 7. In addition to calculations of net and gross section tension, F₂ values are also calculated and normally controlled by weak-axis bending of the anchored clip leg with the line of bending at the holes nearest the bend radius of the angle. Moment arm of ¾" is used for F₂ loads. The designer is responsible for calculating pullover, pullout and tension strength of the anchors and this may reduce F₂ strength compared to the tabulated values.
- 8. F₃ strength values are computed using the plate buckling provisions of AISI RP18-4.
- 9. For the F₄ strength values it's assumed that all of the connection eccentricity is taken by the screws in the supported stud. F₄ values are also limited by plate shear buckling per AISI RP18-4. The designer is responsible for calculating the shear capacity of the anchorage, which may reduce F₄ strength compared to the tabulated values.
- 10. In addition to the limit states given in notes 7, 8 and 9, F₂, F₃ and F₄ are also limited by screw shear according to the thinnest connected part of the connector and stud.
- 11. For 50 ksi studs, 68 mil (14 ga.) and thicker, use the tabulated values for 54 mil (16 ga.) 50 ksi studs.

LS and S/LS Skewable Angles

LS and S/LS angles are load rated and provide the correct thickness and number of fasteners the specifier is looking for compared with field fabricated clip angles. These angles also have well-defined fastener locations, and testing ensures that the tabulated load values account for connection eccentricities. The connectors are general utility reinforcing angles with multiple uses. LS and S/LS connectors are skewable and can be used to attach members intersecting at angles.

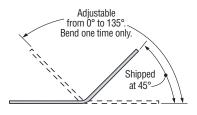

 $\textbf{Material:} \ LS-43 \ \text{mil} \ (18 \ \text{ga.}); \ S/LS-43 \ \text{mil} \ (18 \ \text{ga.})$

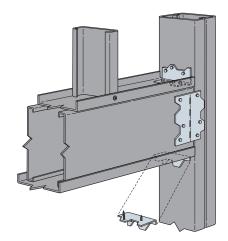

Finish: Galvanized (G90)

Installation:

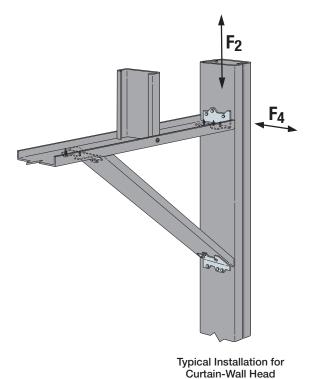
- Use all specified fasteners
- Field-skewable; bend one time only
- CFS framing must be constrained against rotation when using a single connection

Codes: See p. 13 for Code Reference Key Chart




LS and S/LS Allowable Loads (lb.)

	Length (in.)	Fasteners	Allowable Load (lb.)						
Model No.			33 mil (20 ga.)		43 mil (18 ga.)		54 mil (16 ga.)		Code Ref.
			F4	F ₂	F4	F ₂	F4	F ₂	
LS30	3%	(6) #10	200	_	370	_	500	_	
S/LS50	47/8	(4) #10	200	_	370	_	500	_	
S/LS70	6%	(6) #10	465	_	575	_	715	_	
LS90	77/8	(12) #10	465	_	895	_	915	_	


- 1. Loads are for one part only.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

LS and S/LS Top View

Typical Installation for Gravity Headers

SHH Header Hanger

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

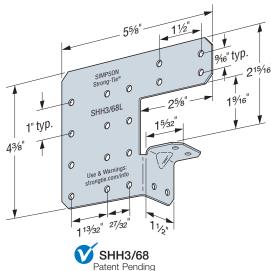
The SHH steel header hanger is used to support traditional CFS box headers that are fabricated with top and bottom tracks, as well as large-flange lay-in headers that are common in curtain-wall construction. The connector geometry minimizes drywall buildup, and the screw count has been minimized through extensive testing. A wide array of value-engineered hole patterns are available that will accommodate different load levels while minimizing installed cost.

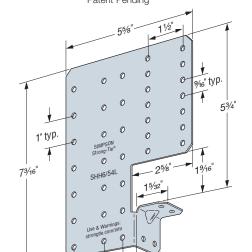
Features:

- The bottom tabs transfer wind load from the horizontal window header to the jamb studs and help support the header assembly during installation.
- Tabulated loads are based on component assembly testing, which assists to mitigate design risk.
- The SHH6 is manufactured in steel thicknesses of 54 mil (16 ga.) and 68 mil (14 ga.) that are intended for use with 6"-deep (min.) box headers, and the SHH3 is manufactured from 68 mil (14 ga.) steel and is intended for 3%" or 4"-deep (max.) box headers and large-flange lay-in headers.
- To enable easier drywall installation, the gusset portion of the SHH is coped to avoid 1½" (max.) track legs.
- The screw-hole layout at the jamb studs accommodates flange sizes of 1%", 2", 2½", 3" and 3½". This versatility allows two lines of fasteners to distribute the axial load.

Material: SHH3/68 – 68 mil (14 ga.), 40 ksi; SHH6/54 — 54 mil (16 ga.), 40 ksi; SHH6/68 — 68 mil (14 ga.), 40 ksi

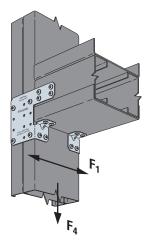
Finish: Galvanized (G90)

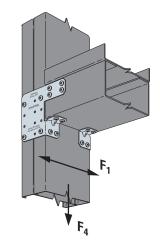

Installation:


- Use all specified anchors/fasteners.
- At each connection to a jamb stud, use one SHH connector on each side of the header. A ½" (max.) gap is allowed between the end of the header and the face of the jamb stud. Use all specified fasteners.

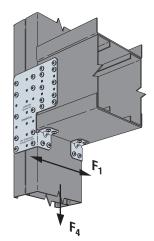
Codes: See p. 13 for Code Reference Key Chart.

Ordering Information: SHH3/68-KT24, SHH6/54-KT24 and SHH6/68-KT24 are each packaged as boxes of 12 right-handed connectors and 12 left-handed connectors.


SHH Header Hanger


SHH Allowable Steel Header Hanger Connector Loads Total for Both Clips (lb.)

Model No.	Screw Pattern	#10 Screws to Jamb (Total per	#10 Screws to Header (Total per	Load Direction	Jamb Stud Thickness		Header S	tud / Track T mil (ga.)	hickness		Code Ref.	
140.	1 attorn	Connection)	Connection)	Direction	mil (ga.)	33 (20)	43 (18)	54 (16)	68 (14)	97 (12)	1101.	
					33 (20)		565		565			
				F ₁	43 (18)	565	1,020					
011110/00	A1 or A2	Flanges (8)	Web (8)		54 (16)	1	1,020		1,845		1	
SHH3/68	(with box header)	Web (4)	Track (4)		33 (20)		1,300		1,300			
				F ₄	43 (18)	1,300	1.740		1,740			
					54 (16)	1	1,740		3,140			
					33 (20)		335		335		1	
	D4 D0			F ₁	43 (18)	335	005		635		1	
011110/00	B1 or B2 (with	Flanges (8)	Flanges (8)		54 (16)	1	635		1,150		1	
SHH3/68	large-flange	Web (4)	Web (4)		33 (20)		1,285		1,285			
	header)			F ₄	43 (18)	1,285	4 775		1,775		1	
					54 (16)	1	1,775		2,275			
		C1 or C2 Flanges (8)			33 (20)		400		400		İ	
			Web (8)	F ₁	43 (18)	400					1	
	C1 or C2				54 (16)		770	770				
011110/54					68 (14)							
SHH6/54		Web (4)	Track (4)	F ₄	33 (20)		1,705	1,705		-		
					43 (18)	1,705	1,705 2,310		2,310			1
					54 (16)			2,310	3,525			1
					68 (14)			3,525	4,180	4,180	1	
					33 (20)		400		400		ĺ	
				F ₁	43 (18)	400			775		İ	
		Flanges (12)	Web (12)		54 (16)	1	775		1,495		İ	
SHH6/54	D1 or D2	Web (4)	Track (4)		33 (20)		1,705		1,705		İ	
				F ₄	43 (18)	1,705			2,365			
					54 (16)		2,365	2,365 5,335			ĺ	
					33 (20)		400		400		1	
				F ₁	43 (18)	400			775		1	
0	F	Flanges (16)	Web (16)		54 (16)	1	775	1,495				
SHH6/54	E1 or E2	Web (4)	Track (4)	F ₄	33 (20)		1,705	1,705			1	
					43 (18)	1,705	0.005		2,365		1	
					54 (16)	1	2,365	5,335			1	


See footnotes on p. 110.

SHH3/68 with Box Header

SHH3/68 with Large-Flange Header

SHH6/54, SHH6/68

SHH Header Hanger

SIMPSON Strong-Tie

SHH Allowable Steel Header Hanger Connector Loads for Both Clips (lb.) (cont.)

Model No.	Screw Pattern	#10 Screws to Jamb (Total per	#10 Screws to Header (Total per	Load Direction	Jamb Stud Thickness		Header S	tud / Track 1 mil (ga.)	Thickness		Coo
110.	T dettorn	Connection) Connection)	mil (ga.)	33 (20)	43 (18)	54 (16)	68 (14)	97 (12)	"		
					33 (20)		40	00	4	00	
				F ₁	43 (18)	400	775		775		
				''	54 (16)	1 100	775 1,565		1,565		
SHH6/54	F1 or F2	Flanges (20)	Web (20)		68 (14)			·		565	
01110701		Web (4)	Track (4)		33 (20)	-		705		705	
				F ₄	43 (18)	1,705	2,3	365		365	-
				4	54 (16)	'	2,365	5,650		350	-
					68 (14)					220	
					33 (20)	-		00		00	-
				_	43 (18)	-	7	75 I		75	-
				F ₁	54 (16)	400			1,5	565	-
					68 (14)	-	775	1,565	2,565		
SHH6/54	G1 or G2	Flanges (28) Web (4)	Web (28) Track (4)		97 (12)	-					-
		Web (4)	Hack (4)		33 (20)	-	1,7			705	-
				_	43 (18)		2,3	365 I		365	-
				F ₄	54 (16)	1,705	2,365			350	-
					68 (14)			5,650		700	4
					97 (12)				7,700	9,710	-
		Flanges (16) Web (4)	Web (16) Track (4)	F ₁	33 (20)	400		00		00	-
					43 (18)		87	/U		70	-
					54 (16)	-	870	1,610		610	-
SHH6/68	E1 or E2				68 (14)		4 -	705	2,565		-
					33 (20)	1,705	1,705 2,365		1,705 2,365		+
					43 (18)		2,303				-
					54 (16) 68 (14)		2,365	5,665		180	-
					33 (20)		11	<u> </u>			1
					43 (18)	-	400 775		400 775		-
				F ₁	54 (16)	400	1/15			565	1
		FI (00)	M. I. (00)		68 (14)	-	775	1,565		565	-
SHH6/68	F1 or F2	Flanges (20) Web (4)	Web (20) Track (4)		33 (20)		1,7	n5			-
					43 (18)	-	2,3		1,705 2,365		1
				F ₄	54 (16)	1,705				5,655	
					68 (14)	1	2,365	5,665		415	1
					33 (20)		40	00		00	1
					43 (18)	1	8			70	1
				F ₁	54 (16)	400				610	1
				'	68 (14)	1	870	1,610		565	1
		Flanges (28)	Weh (28)		97 (12)	1			2,565		1
SHH6/68	G1 or G2	Web (4)	Web (28) Track (4)		33 (20)		1,7	'05		705	1
					43 (18)	1	2,3			365	1
				F ₄	54 (16)	1,705				355	1
					68 (14)	1	2,365	5,665			1
					97 (12)	1	, , , , , ,		7,700	7,700 7,700 10,410	

^{1.} Screws must be located in the patterns shown on p. 111 to achieve listed loads.

^{2.} Connectors must be installed in pairs. Fasteners listed are number of fasteners for both clips in the connection at one end of header.

^{3.} Allowable load is total load at one end of header assembly with both clips (left hand and right hand).

Rigid Connectors

SIMPSON

Strong-Tie

SHH Screw Patterns (Total Number of Screws Both Clips)

SHH3/68 No. of Screws	Pattern A1	Pattern A2
Header Web (8)		
Header Track (4)		
Jamb Flanges (8)	00 00	0000
Jamb Web (4)		

SHH3/68 No. of Screws	Pattern B1	Pattern B2
Header Flange (8)		
Header Web (4)		
Jamb Flanges (8)	Large-flange header	Large-flange header
Jamb Web (4)	Tioddor.	House

SHH6/54 No. of Screws	Pattern C1	Pattern C2
Header Web (8)		
Header Track (4)		
Jamb Flanges (8)	0000	
Jamb Web (4)		

SHH6/54 No. of Screws	Pattern D1	Pattern D2
Header Web (12)		
Header Track (4)		
Jamb Flanges (12)		
Jamb Web (4)		

SHH6/54 or 68 No. of Screws	Pattern E1	Pattern E2
Header Web (16)		
Header Track (4)		
Jamb Flanges (16)	00 00	
Jamb Web (4)		

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SHH6/54 or 68 No. of Screws	Pattern F1	Pattern F2
Header Web (20)		
Header Track (4)		
Jamb Flanges (20)		000
Jamb Web (4)		

SHH6/54 or 68 No. of Screws	Pattern G1	Pattern G2
Header Web (28)		
Header Track (4)	000000000000000000000000000000000000000	0000000
Jamb Flanges (28)		
Jamb Web (4)		

RCA-C Rigid Connector Angle for Concrete

Our lineup of rigid connector angles (RCA) has a new addition with the RCA-C. The RCA-C is an ideal solution for attaching stud framing to concrete supports. This connector provides the most anchor options for attaching to concrete in comparison to other similar connectors on the market. The connector's design includes holes for a 1/2"-diameter anchor, or two 1/4"-diameter concrete screws, accompanied by a wide array of fastening options — thus saving the installer the time and cost of drilling connector holes at the jobsite. In addition, the RCA connectors have been rigorously tested and load rated, giving you the confidence of quality and performance for your job.

Features:

- 2" x 2" legs provide plenty of room to make attachments to structure and stud framing.
- Multiple screw pattern options to stud framing for different
- Can be used as either a heavy-duty shear and tension connector or light-duty moment connection.
- Prepunched holes for screws to stud framing and attachment to concrete. Prepunched holes on anchor leg provide options for (1) 1/2"-diameter anchor, (2) 1/4"-diameter anchors, or (2) 1/4"-diameter concrete screws.
- Attachment to concrete or masonry can be achieved with 1/2"-diameter Titen HD®, 1/2"-diameter Strong-Bolt® 2, 1/4"-diameter Titen HD, or 1/4"-diameter Titen Turbo™.

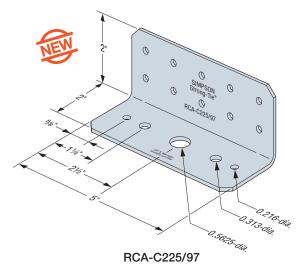
Material: RCA-C — 97 mil (12 ga.), 50 ksi

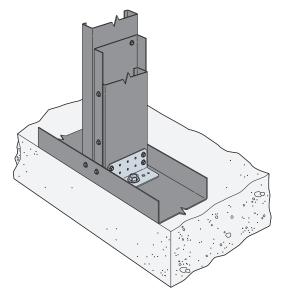
Finish: Galvanized (G90)

Installation:

• Use all specified anchors/fasteners.

Codes: Tested per ICC-ES AC261 and calculations per AISI RP18-4, AISI S100 or generally accepted industry standards. Visit **strongtie.com** for the latest load values and testing information.


Ordering Information: RCA-C225/97-R55


(55 connectors per bucket)

Simpson Strong-Tie® Anchors for RCA-C Attachment to Concrete or Masonry

Anchor Type	Anchor Diameter
Titen HD Heavy-Duty Screw Anchor	½" or ¼"
Strong-Bolt 2 Wedge Anchor	1/2"
Titen Turbo Concrete and Masonry Screw Anchor	1/4"

RCA-C Installation at Post

RCA-C Rigid Connector Angle for Concrete

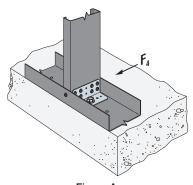


Figure A F₄ Loading (one anchor shown)

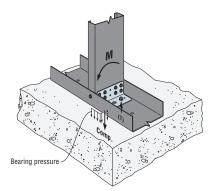


Figure B Anchor Tension, T, Created from Moment (two anchors shown)

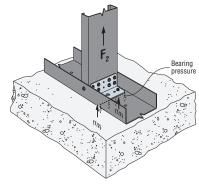


Figure C
Anchor Tension, T, Created from F₂
(two anchors shown)

Table 1: RCA-C Allowable Connector Loads (lb.)

					Connector	А	llowable Loa	ıd	Anchor T	ension, T
Model No.	Anchor Type	Fastener Pattern	No. of #10 Fasteners to Stud	Framing Member Thickness mil (ga.)	Rotational Stiffness β (inkip/rad.)	Moment M F ₂ (lb.)		Shear F ₄ (lb.)	At Allowable Moment, M (lb.)	At Allowable Tension Load, F ₂ (lb.)
					` ' '	` ′	1 1		f'c = 4,000 psi	f'c = 4,000 psi
				33 (20)	130	845	660	425	345	705
		4A	4	43 (18)	160	1,500	1,020	550	615	1,105
	(1) ½"-diameter			54 (16)	165	1,900	1,050	1,050	785	1,140
	Titen HD®			33 (20)	155	1,830	1,050	845	755	1,140
	0r	8A	8	43 (18)	160	3,215	1,050	1,105	1,355	1,140
	(1) ½"-diameter Strong-Bolt® 2			54 (16)	175	4,075	1,050	2,100	1,745	1,140
	Ottorig Boil 2			33 (20)	155	3,430	1,050	845	1,455	1,140
		10A	10	43 (18)	160	4,905	1,050	1,105	2,140	1,140
				54 (16)	175	7,640	1,050	2,100	3,540	1,140
	(2) ¼"-diameter Titen HD	4B	4	33 (20)	155	1,100	660	480	295	705
				43 (18)	200	1,770	1,020	625	480	1,105
		8B	8	54 (16)	220	2,005	1,050	1,185	545	1,140
				33 (20)	170	2,375	1,050	960	645	1,140
RCA-C225/97				43 (18)	220	3,795	1,050	1,250	1,040	1,140
				54 (16)	240	4,300	1,050	2,375	1,180	1,140
			10	33 (20)	170	4,450	1,050	960	1,225	1,140
		10B		43 (18)	220	5,790	1,050	1,250	1,610	1,140
				54 (16)	240	8,060	1,050	2,375	2,285	1,140
				33 (20)	190	1,100	660	480	250	705
		4C	4	43 (18)	250	1,770	1,020	625	405	1,105
				54 (16)	310	2,005	1,050	1,185	460	1,140
	(2) 1/4"-diameter			33 (20)	200	2,375	1,050	960	545	1,140
	(2) ¼ -diameter Titen Turbo™	8C	8	43 (18)	260	3,795	1,050	1,250	880	1,140
				54 (16)	320	4,300	1,050	2,375	995	1,140
				33 (20)	200	4,450	1,050	960	1,035	1,140
		10C	10	43 (18)	260	5,790	1,050	1,250	1,355	1,140
				54 (16)	320	8,060	1,050	2,375	1,910	1,140

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. The designer is responsible for anchorage design. Reference Table 2 on p. 114 for anchorage solutions.
- 3. See illustrations for fastener pattern placement.
- 4. Tabulated values are based on framing members with track and stud of the same thickness and (1) #10 screw into each stud flange unless otherwise noted.
- Tabulated moment values correspond to maximum connector strength without consideration of serviceability. The designer must check out-of-plane deflections using tabulated rotational stiffness.
- 6. Tabulated connector rotational stiffness may be used for any wall heights. The designer must consider member deflection due to bending in the stud member.
- 7. Per IBC 2021, 2018, 2015, 2012 Table 1604.3 footnote f, wind load is permitted to be taken as 0.42 times "component and cladding loads" for deflection checks. For IBC 2009 and earlier, the factor is 0.7 instead of 0.42. Tabulated values have not been adjusted.
- 8. Allowable loads are based on cold-formed steel members with a minimum Fy of 33 ksi and Fu of 45 ksi for 43 mil (18 ga.) and thinner and a minimum Fy of 50 ksi and Fu of 65 ksi for 54 mil (16 ga.) and thicker.
- Connectors subjected to tension, shear and moment loads: F₂/F_{2all} + F₄/F_{4all} + M/M_{all} ≤ 1.0. F₄ interaction with Moment not required to be checked
 for walls 2'-0" or taller. Where: F₂, F₄ and M are the applied ASD tension, shear and moment, respectively. F_{2all}, F_{4all}, M_{all} are the allowable tension, shear
 and moment from Table 1, respectively.
- 10. Anchor tension, T, is the force in the anchor, or both anchors for two-anchor solutions, at maximum allowable, M, or maximum allowable tension, F₂. See Table 2 on p. 114 for pre-engineered anchorage solutions that incorporate anchor T into the solution.
- 11. Anchor tension is calculated using AISC Steel Design Guide 1. The Anchor Bolt Design illustration (Figure B) shows the anchor tension, T, based on an applied moment, M. An illustration for the anchor tension, T, based on a vertical tension load, F₂, shown in Figure C.
- 12. Anchor tension, T, may be interpolated. Examples:
 - M_{req} = 3,312 in.-lb. (given), fastener pattern 10C, 54 mil studs. Anchor tension, T, at allowable moment = (3,312/8,060) x 1,910 = 785 lb.
 - \bullet T_{req} = 525 lb. (given), fastener pattern 4A, 33 mil studs. Anchor tension, T, at allowable tension load, F₂ = (525/660) x 755 = 601 lb.
- 13. Tabulated anchor tension, T, is based on $f'_{C} = 4,000$ psi. For $f'_{C} = 3,000$ psi, use an increase factor of 1.05

RCA-C Rigid Connector Angle for Concrete

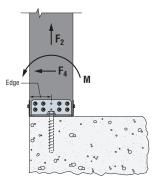


Figure A One Anchor

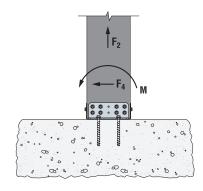


Figure B Two Anchors

Table 2: RCA-C Allowable Anchorage Loads (lb.)

						Uncracked	d 4,000 psi	Concrete		Cracked 4,000 psi Concrete							
Model	Type of	Anchor	Nominal Embedment	Min. Concrete	Min. Anchor	Wind and Seismic in SDC A and B			Wind and Seismic in SDC A and B			Seismic in SDC C and D					
No.	Concrete	Type	. ' '	Thickness,			Allowable			Allowable			Allowable				
		,,,,	h _{nom} (in.)	h _{min.} (in.)	Distance (in.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)			
		(1) 1/2"-diameter	31/4	5	3	3,015	1,165	885	2,190	845	635	785	305	295			
		Titen HD®	074	3	12	3,425	1,320	1,560	2,465	950	1,105	885	340	515			
		(1) 1/2"-diameter	23/4	6	4	2,185	845	975	2,315	895	965	830	320	450			
	SLWC	Strong-Bolt® 2	2/4	Ů	12	2,890	1,115	1,465	2,315	895	1,035	830	320	485			
		(2) 1/4"-diameter	15/8	31/4	1½	1,265	565	445	1,205	540	315	425	190	150			
		Titen HD	170	074	6	2,410	1,025	1,070	1,375	595	680	485	210	315			
		(2) ¼"-diameter Titen Turbo™	13/4	31/4	1¾	1,360	590	495	_	_	_	_	_				
RCA-C225/97			1 /4	074	3	1,955	835	520	_	_	_	_	-				
110/1 0220/3/		(1) 1/2"-diameter	31/4	5	3	4,330	1,670	1,305	3,165	1,225	930	1,150	445	435			
					Titen HD	074	Ů,	12	4,895	1,890	2,295	3,555	1,375	1,625	1,295	500	760
		(1) 1/2"-diameter	23/4	6	4	3,160	1,220	1,435	3,345	1,290	1,420	1,215	470	665			
	NWC	Strong-Bolt 2	2.74	0	12	4,150	1,605	2,150	3,345	1,290	1,525	1,215	470	710			
	14440	(2) 1/4"-diameter	15%	31/4	1½	1,855	825	655	1,765	785	465	625	280	220			
		Titen HD	1 /0	0 /4	6	3,515	1,475	1,455	2,010	860	995	710	310	465			
		(2) 1/4"-diameter	13/4	31/4	13/4	1,990	855	520	_	_		_	_				
		Titen Turbo	1 /4	0 /4	3	2,860	1,205	520	_	_	_	_	_	_			

- Anchor allowable loads have been determined using ACI 314-14 Chapter 17 anchorage calculations with the minimum concrete compressive strength, f'c, and slab thickness listed. Sand-Lightweight Concrete is abbreviated as SLWC, Normal Weight Concrete is abbreviated as NWC.
- 2. Load values are for anchor based on ACI 318-14, condition B, load factors from ACI 318 Section 5.3, no supplemental edge reinforcement, $\Psi_{\text{C,V}} = 1.0$ for cracked concrete and periodic special inspection. Reference ICC-ES or IAPMO-UES evaluation reports for further information.
- 3. Allowable Stress Design (ASD) values were determined by multiplying calculated strength design values by a conversion factor, Alpha (α), of 0.7 for seismic loads and 0.6 for wind loads. ASD values for other load combinations may be determined using alternate conversion factors.
- 4. End distances are assumed as N/A perpendicular to load.
- 5. Tabulated allowable ASD loads for Wind and Seismic in SDC A and B are based on using wind conversion factors and may be increased by 1.17 for seismic SDC A and B only.
- 6. Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17.
- 7. Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the RCA-C allowable load value listed on Table 1 on p. 113.
- 8. Tabulated loads in Table 2 are based on $f'_C = 4,000$ psi. For $f'_C = 3,000$ psi, use an adjustment factor of 0.86.
- 9. For anchor subjected to tension, shear and moment loads:

 $\label{eq:f2-f2-all} When \left(F_4/F_{4all}\right) \leq 0.2 \qquad \qquad F_2/F_{2all} + M/M_{all} \leq 1.0$

 $\label{eq:when of F2/F2all} When \left(F_2/F_{2all} + M/M_{all}\right) \leq 0.2 \qquad \qquad F_4/F_{4all} \leq 1.0$

 $\text{When } (F_4/F_{4\text{all}}) > 0.2 \text{ and } (F_2/F_{2\text{all}} + \text{M/M}_{\text{all}}) > 0.2 \quad (F_2/F_{2\text{all}} + \text{M/M}_{\text{all}}) + (F_4/F_{4\text{all}}) \leq 1.2$

Where: F_2 , F_4 and M are the applied ASD tension, shear and moment, respectively.

 $F_{2all},\,F_{4all},\,M_{all}$ are the allowable tension, shear and moment from Table 2, respectively.

BCA-C Fastener Patterns

11071 0 1 0000		
(1) ½"-D	iameter Titen HD/Stror	ng-Bolt 2
Pattern 4A	Pattern 8A	Pattern 10A
(2	2) ¼"-Diameter Titen H	D
Pattern 4B	Pattern 8B	Pattern 10B
(2)	1/4"-Diameter Titen Tur	·bo
Pattern 4C	Pattern 8C	Pattern 10C

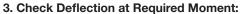
C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC

RCA-C Rigid Connector Angle for Concrete

24

Example #1: Exterior Parapet Stud

- 2021 IBC (ASCE 7-16) and AISI S100-16
- 600S162-43 (33 ksi) stud @ 16" o.c. supported at base
- Parapet height, L = 24"
- Wind design pressure = 55.24 psf (LRFD)
- Deflection Limit, $\Delta_{\text{allow}} = \text{L/240}$ (Ref. IBC Table 1604.3)
- 4,000 psi NWC uncracked, SDC A&B, 3" edge


1. Determine ASD Wind Pressure:

$$p = (0.6) (55.24 \text{ psf}) = 33.14 \text{ psf}$$

 $w = (33.14 \text{ psf}) (16 \text{ in.}) (1 \text{ ft./12 in.}) = 44.19 \text{ plf}$

2. Connector Moment Check:

$$M_{req} = \frac{wL^2}{2} = \frac{(44.19 \, plf)(24 \, in.)^2}{2\left(12\frac{in.}{ft.}\right)} = 1,061 \, in.-lb.$$

From Table 1 for 600S162-43 (33ksi), 6" deep 43 mil stud: Select RCA-C225/97 (Fastener Pattern 4A) with ½" ϕ anchor and (4) #10 screws, attaching to each stud @ 16" o.c. Allowable Moment 1,380 in.-lb. > 1,061 in.-lb. OK

$$\Delta_{req} = \Delta_{stud} + \Delta_{connection} = \frac{(0.7)\,\text{wL}^4}{8\;El_{\text{xe}}} + \left(\frac{(0.7)(\textit{M}_{\textit{req}})}{\beta}\right)L =$$

$$\Delta_{\text{req}} = \left(\frac{(0.7 \times 44.19 \ \text{plf})(1 \ \text{ft./12})(24 \ \text{in.})^{4}}{8 \ (29,500,000 \ \text{psi})(2.32 \ \text{in.}^{4})}\right) + \left(\frac{(0.7)(1,061 \ \text{in.-lb.})}{165,000 \ \text{in.-lb.}}\right) 24 \ \text{in.} = 0.002 \ \text{in.} + 0.108 \ \text{in.} = 0.110 \ \text{in.}$$

$$\Delta_{allow} = \frac{2L}{240} = \frac{2(24 \text{ in.})}{240} = 0.200 \text{ in.} > 0.110 \text{ in.}$$
 OK

Normal weight concrete with $f'_C = 4,000 \text{ psi}$ Table 2 — Uncracked concrete in SDC A&B

(1) 1/2"-diameter Titen HD® with 31/4" embedment and 3" edge

$$F_{4\text{req}} = \frac{(44.19 \, plf)(24 \, in.)}{\left(12 \frac{in.}{ft.}\right)} = 88.4 \, lb.$$
 $F_{4\text{all}} = 1,305 \, lb.$ $F_{4\text{req}}/F_{4\text{all}} = 0.07 < 1 \, \text{OK}$

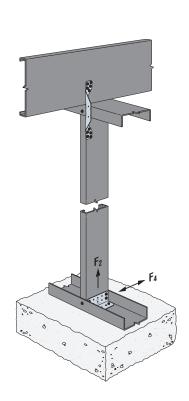
$$M_{req} = 1,061 \text{ in.-lb.}$$
 $M_{all} = 4,330 \text{ in.-lb.}$ $M_{req}/M_{all} = 0.25 < 1 \text{ OK}$

Notes:

- 1. 2021 IBC load combinations for ASD include a factor of 0.6 for wind loads.
- Per IBC table 1604.3 footnote f, 0.42 factor can be used to calculate deflections for component and cladding wind loads for LRFD loads; ASD load conversion is 0.7.

Example #2: Load-Bearing Wall with Tension and Shear on Base Connector

- 2021 IBC (ASCE 7-16) and AISI S100-16
- 600S162-33 (33 ksi) stud @ 16" o.c. load bearing condition
- Base connection 4,000 psi NWC uncracked, SDC A&B, 3" edge (nearest fastener)
- Reactions F₂ = 425 lb., F₄ = 147 lb. (ASD Loads)


Select RCA-C225/97 (Fastener Pattern 4C) with (4) #10 screws and (2) 1/4"-diameter, 13/4" embedded Titen Turbo $^{\text{TM}}$.

1. Determine Connector Allowables and Interactions (Reference Table 1 for Allowables):

 $\begin{aligned} F_{2\text{req}} &= 425 \text{ lb.} & F_{2\text{all}} &= 660 \text{ lb.} & F_{2\text{req}} / F_{2\text{all}} &= 0.64 < 1 \text{ OK} \\ F_{4\text{req}} &= 147 \text{ lb.} & F_{4\text{all}} &= 480 \text{ lb.} & F_{4\text{req}} / F_{4\text{all}} &= 0.31 < 1 \text{ OK} \\ & \text{Interaction} &= 0.95 < 1 \text{ OK} \end{aligned}$

2. Determine Anchorage Allowables and Interactions (Reference Table 2 for Allowables):

$$\begin{split} F_{2\text{req}} = 425 \text{ lb.} & F_{2\text{all}} = 1,205 \text{ lb.} & F_{2\text{req}} / F_{2\text{all}} = 0.35 < 1 \text{ OK} \\ F_{4\text{req}} = 147 \text{ lb.} & F_{4\text{all}} = 520 \text{ lb.} & F_{4\text{req}} / F_{4\text{all}} = 0.28 < 1 \text{ OK} \\ & \text{Interaction} = 0.63 < 1.2 \text{ OK} \end{split}$$

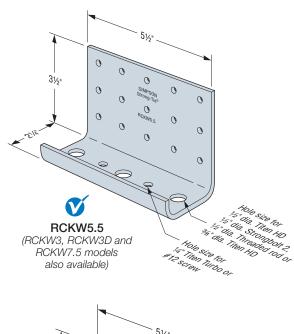
This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

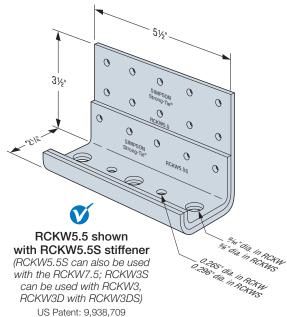
The Simpson Strong-Tie® RCKW is a heavy 171 mil (7 ga.) rigid connector that has been developed to resist an overturning moment at the base of exterior kneewalls and parapets as well as interior partial-height walls or overhead ribbon window conditions. These connectors offer a unique small and large anchor-hole pattern that permits anchorage to both concrete and structural steel. The single-anchor RCKW has been redesigned to have all of the same features as the previous model but with an added two-anchor option that accommodates ½"- or %"-diameter concrete anchors. If load requires more capacity, a stiffener, the RCKWS can be added. The RCKWS is a heavy 171 mil (7 ga.) stiffener that nests onto the RCKW clip. The screw holes and anchor holes in the stiffener line up with those in the RCKW clip, making fastener and anchor installation a snap. The RCKW clip and RCKWS stiffener are sold separately.

Features:

- In addition to our RCKW3 and RCKW3S with a large single bolt hole for 3%" framing, we have the RCKW3D and RCKW3DS, which have two large holes for anchorage. This provides an option for more capacity in 3%"-framed kneewalls.
- Anchorage legs incorporate stiffened flanges, improving overturning moment resistance.
- Large-diameter anchor holes accommodate ½"-diameter concrete screw anchor and wedge anchors, such as the Simpson Strong-Tie Titen HD® heavy-duty screw anchor and the Strong-Bolt® 2 wedge anchor.
- The RCKW5.5 and RCKW7.5 have three large holes for added versatility. The center hole is for a one-anchor solution at the edge or center of slab. The outer holes are for a two-anchor solution that requires higher capacities at the center of slab. In addition, two %" Titen HD screw anchors have been tested in the outer holes for shallow embedment conditions like fluted deck. The RCKW3 and RCKW3S have single large holes in the center, and the RCKW3D and RCKW3DS have two large holes on the outside for increased anchorage capacity.
- The smaller-diameter anchor holes enable attachment to structural steel with #12 self-drilling screws.
- Attachment to CMU can be achieved with Titen HD or Titen Turbo™ concrete and masonry screws.
- For the RCKWS: 171 mil (7 ga.) stiffeners are secured to the RCKW clip with screws, optimizing overturning moment resistance and stiffness.

Material: RCKW and RCKWS - 171 mil (7 ga.), 33 ksi


Coating: Galvanized (G90)


Installation:

- Use all specified screw fasteners. To achieve tabulated load values, use #12-14 screws according to the fastener patterns on p. 121.
- When using the RCKWS, secure the stiffener to the clip with the specified screw fasteners. Screws must be at least 1" long and extend through the connection with a minimum of three exposed threads.
- Use all specified anchors. To achieve tabulated stiffness values, the installation torque for concrete anchors shall be at least 17 ft.-lb. or the torque requirements of the anchor, whichever is greater.
- When using the larger-diameter anchor holes, the bottom track must be predrilled or punched with a 3/4"-diameter hole.

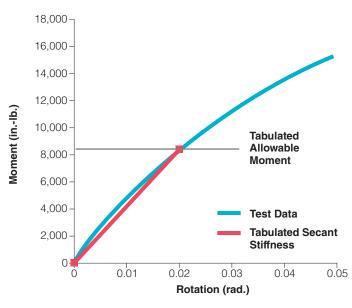
Codes: See p. 13 for Code Reference Key Chart

Ordering Information

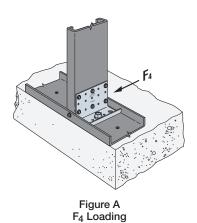
Model No.	Ordering SKU	Package Quantity
RCKW3	RCKW3-R10	10 RCKW3 clips
RCKW3D	RCKW3D-R10	10 RCKW3D clips
RCKW5.5	RCKW5.5-R10	10 RCKW5.5 clips
RCKW7.5	RCKW7.5-R10	10 RCKW7.5 clips
RCKW3S	RCKW3S-R10	10 RCKW3S stiffeners
RCKW3DS	RCKW3DS-R10	10 RCKW3DS stiffeners
RCKW5.5S	RCKW5.5S-R10	10 RCKW5.5S stiffeners

RCKW assembly test with member failure.

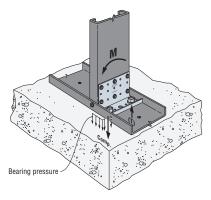
Ease of Specification


Many cold-formed steel connector manufacturers provide limited technical data for their products. As a result, designers often rely on detailed and time-consuming hand calculations for CFS connection design. This often involves assumptions regarding connection eccentricity, prying and connection stiffness.

Simpson Strong-Tie strives for ease of specification by providing comprehensive load tables based on tests that simulate real-world conditions. These load tables ensure that tabulated values reflect not only the strength of the connector, but also the strength of the fasteners, the anchorage, the member near the connection, and the overall stiffness. The photo to the right is an example of member failure near the connection. Such failures are reflected in our tabulated loads because of our assembly testing.


Simplified Stiffness Calculations

Some manufacturers tabulate stiffness values only for the connector. It's often unknown or unclear if their stiffness includes the screw fastener slip and how this varies with the thickness of the stud. Additionally, with some manufacturers, the deflection of the stud must be added to the deflection from the rotation of the connector in order to arrive at the final deflection for design.


Because we have tested the entire assembly, Simpson Strong-Tie tabulates stiffness that includes connector deflection, fastener slip and stud deflection for walls up to 38" in height. Our stiffness also takes into account the thickness of the stud, making it simple for the designer to calculate deflections: Simply divide the required moment by the tabulated stiffness, and then multiply the result by the stud length (Ref. Example #1 on p. 123). For walls over 38", a different approach is required (Ref. Example #2 on pp. 124–125).

(one anchor shown)

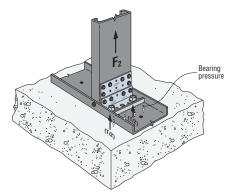


Figure B Anchor Tension, T, Created from Moment (two anchors shown)

Figure C
Anchor Tension, T, Created from F₂
(two anchors shown)

Table 1: RCKW Allowable Loads (lb.) — Concrete Applications

					A	0	Al	lowable Lo	ad		Anchor T	ension, T												
Model No.	Fastener Pattern No.	Anchor Bolt Diameter (in.)	Fasteners to Stud	Framing Members Thickness mil (ga.)	Assembly Rotational Stiffness β _C (inkip /	Connector Rotational Stiffness β_{c} (inkip /	Moment M	Tension F ₂	Shear F4	Mome	owable ent, M o.)		owable Load, F ₂ b.)	Code Ref.										
		(111.)		iiii (ga.)	rad.)	rad.)	(inlb.)	(lb.)	(lb.)	f' _C = 3,000 psi	f' _C = 4,000 psi	f' _C = 3,000 psi	f' _C = 4,000 psi											
				33 (20)	87	93	2,425	860	620	1,870	1,790	1,080	1,055											
RCKW3		(4) 1/	(4) #12	43 (18)	113	115	3,080	1,340	755	2,510	2,355	1,780	1,705	IBC,										
HUNWS	1	(1) ½	(4) #12	54 (16)	128	137	4,330	1,850	1,120	4,120	3,590	2,645	2,470	LA										
				68 (14)	141	153	5,150	1,850	1,120	6,53015	4,57015	2,645	2,470											
				33 (20)	109	119	2,770	860	620	1,165	1,150	1,080	1,055											
DOMMOD	10	(0) 1/	(4) #10	43 (18)	126	136	3,860	1,340	755	1,665	1,630	1,780	1,705											
RCKW3D	1B	(2) ½	(4) #12	54 (16)	165	180	5,530	1,850	1,120	2,480	2,400	2,645	2,470	_										
				68 (14)	302	343	6,280	1,850	1,120	2,870	2,760	2,645	2,470											
								33 (20)	164	175	3,335	1,310	620	2,790	2,590	1,730	1,665							
RCKW3 and		(4) 1/	(9) #12	43 (18)	164	175	4,215	1,710	795	3,935	3,465	2,390	2,250	IBC,										
RCKW3S (Stiffener)	2	(1) ½	(1) ½	(1) ½	(1) ½	(1) ½	(1) ½	(1) ½	(1) 1/2	(1) 1/2	(9) #12	54 (16)	164	175	5,160	2,220		6,70015	4,58515	3,410	3,085	LA		
											68 (14)	164	175	5,160	2,410	1,415	6,70015	4,58515	3,875	3,425				
				33 (20)	205	224	3,815	1,310	620	1,645	1,610	1,730	1,665											
RCKW3D and	and an	(0) 1/	2) ½ (9) #12	(9) #12	(9) #12	(9) #12	(9) #12	43 (18)	303	371	5,215	1,710	795	2,320	2,250	2,390	2,250							
and RCKW3DS (Stiffener)	(2) 1/2	(9) #12						(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	(9) #12	54 (16)	341	410	7,930	2,220	1,120	3,800
	(Stiffener)			68 (14)	341	410	7,930	2,410	1,415	3,800	3,595	3,875	3,425											

See footnotes on p. 120.

Table 1: RCKW Allowable Loads (lb.) — Concrete Applications (cont.)

No. Pather Pat						Assembly	Connector	Al	lowable Lo	ad		Anchor T	ension, T				
Part	Model No.	Pattern	Bolt Diameter		Members Thickness	Rotational Stiffness Bc	Rotational Stiffness				Mom	ent, M	Tension	Load, F ₂			
Part			(III.)		mii (ga.)		rad.)	(inlb.)	(lb.)	(lb.)							
A					30 (20 DW) ^{5,6}	258	280	3,775	1,030	600	1,455	1,435	1,250	1,235			
RCXW5.5 PARCXW5.5				33 (20 STR) ⁶	260	281	4,670	1,140	665	1,830	1,795	1,395	1,375				
RCKWS.5 Lease 10 (mode) 43 (18) (18) (18) (18) (18) (18) (18) (18)		3	(1) 1/2	(6) #12	33 (20)	304	328	4,670	1,140	665	1,830	1,795	1,395	1,375			
RCKWS.5 Parameter Parame			(), /2	(0) " 12	43 (18)	320	338	6,245	1,440	1,035	2,525	2,450	1,790	1,755			
RCKUS.5 14					· , ,		338			1,390	3,465	3,320					
RCKW5.5 Analogo (2) % Analogo (2) % 260 281 4.670 1.140 665 955 950 1.395 1.375 ACKW5.5 4.470 1.140 665 955 950 1.395 1.375 AS (18) 33 (20) 3044 328 4.670 1.140 665 955 950 1.395 1.375 AS (18) 43 (18) 3333 355 6.245 1.440 1.035 1.286 1.270 1.755 AS (18) 43 (18) 4389 8,865 2.455 1.390 2.455* 1.200 2.210* 1.275 3.125 1.256 1.235 3.125 1.256 1.235 3.125 1.256 1.235 3.125 1.276 1.276 1.256 1.236 1.256 1.236 1.256 1.236 1.256 1.236 1.256 1.236 1.256 1.236 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>417</td> <td>438</td> <td></td> <td></td> <td>1,390</td> <td>4,065</td> <td>3,850</td> <td>3,255</td> <td></td> <td></td>					1 1	417	438			1,390	4,065	3,850	3,255				
RCKW5.5 Parameter Param					30 (20 DW) ^{5,6}	258	280	3,775		600	770	765	1,250				
RCKWS.5 Striftener Part					, ,	260	281	4,670	1,140	665	955	950	1,395				
RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S CSIffiener RCKWS.5S	RCKW5.5	3A	(2) 3/8	(6) #12				4,670				950	1,395				
Parison Pari																	
Part Part					` ′						-						
RCKW5.5 RCKW					, ,				-			,					
RCKW5.5 RCKW					` ′												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,												
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$		3B	(2) 1/2	(6) #12				· ·					· ·				
RCKWS.5 AB AB AB AB AB AB AB A											-						
RCKW5.5 and RCKW5.5 (Stiffener) RCKW5.5 (Stiffener												· ·					
RCKW5.5 and RCKW5.5S (Stiffener) 4B (1) ½ 43 (18) 450 490 8,445 2,165 1,035 3,580 3,420 2,815 2,720 BCKW5.5S (Stiffener) 4A (1) ½ 43 (18) 450 490 8,445 2,165 1,035 3,580 3,420 2,815 2,720 BCKW5.5S (Stiffener) 4A (2) % 43 (18) 450 490 8,445 2,165 1,035 1,755 4,115 3,895 BCKW5.5S (Stiffener) 4A (2) % 43 (18) 450 490 8,445 2,165 1,035 1,755 1,740 2,815 2,720 BCKW5.5S (Stiffener) (2) % 43 (18) 450 490 8,445 2,165 1,035 1,755 1,740 2,815 2,720 4B (2) ½ 43 (18) 450 490 8,445 2,165 1,035 1,755 1,740 2,815 2,720 4B (2) ½ 43 (18) 450 490 8,445																	
RCKW5.5 (Stiffener) 48					. ,							-					
RCKW5.5 (Stiffener) 4A		4	(1) ½	(10) #12													
RCKW5.5 (Stiffener) 4A (2) % (10) #12 (10) #12 (10) #12 (10) #12 (11) #12 (6) #12 (14) (14) (14) (14) (14) (14) (14) (14)									-			,					
RCKW5.5S (Stiffener) 4A (2) % (10) #12 43 (18) 450 490 8,445 2,165 1,035 1,755 1,740 2,815 2,720 4,115 3,895 54 (16) 530 576 12,920 2,980 1,390 2,705 6 3,010 4,115 3,895 68 (14) 626 678 14,300 2,980 1,830 3,065 3,010 4,115 3,895 43 (18) 43 (18) 450 490 8,445 2,165 1,660 665 990 985 2,090 2,040 2,815 2,720 43 (18) 43 (18) 450 490 8,445 2,165 1,035 1,755 1,740 2,815 2,720 2,940 2					1 1												
RCKW5.5S (Stiffener) 4A (2) % (10) #12																	
(Stiffener) 4B (2) ½ (10) #12 (6) #12 (6) #12 (6) #12 (8) (14) 626 678 14,300 2,980 1,830 3,065 3,010 4,115 3,895 2,090 2,040 4,115 3,895 1,660 665 990 985 2,090 2,040 2,040 1,035 1,755 1,740 2,815 2,720 1,035 1,755 1,740 2,815 2,720 1,035 1,035 1,755 1,740 2,815 2,720 1,035	and RCKW5.5S	4A	(2) 3/8	(10) #12													
4B																	
4B (2) ½ (10) #12 (10									-	·	,	-,-					
4B (2) ½ (10) #12									-				·				
68 (14) 867 966 16,515 2,980 1,830 3,585 3,505 4,115 3,895 43 (18) 510 536 8,200 1,280 1,200 2,345 2,300 1,550 1,530 54 (16) 554 571 11,400 2,165 1,695 3,370 3,275 2,715 2,655		4B	(2) 1/2	(10) #12	, ,			-	-								
5 (1) ½ (6) #12 33 (20) 389 402 6,445 1,095 795 1,815 1,790 1,315 1,300 43 (18) 510 536 8,200 1,280 1,200 2,345 2,300 1,550 1,530 54 (16) 554 571 11,400 2,165 1,695 3,370 3,275 2,715 2,655			(2) 1/2					-	-		-						
5 (1) ½ (6) #12 (6) #12 (6) #12 (6) #12 (6) #12 (6) #12 (6) #12 (7) 43 (18) 510 536 8,200 1,280 1,280 1,200 2,345 2,300 1,550 1,530 (7) 11,400 2,165 1,695 3,370 3,275 2,715 2,655							1 1				-						
5 (1) ½ (6) #12 54 (16) 554 571 11,400 2,165 1,695 3,370 3,275 2,715 2,655									·			-					
		5	(1) ½	(6) #12				· ·									
68 (14) 605 628 13,895 2,165 1,695 4,225 4,065 2,715 2,655											· ·						
33 (20) 389 402 6,445 1,095 795 1,095 1,090 1,315 1,300								-		-		-					
43 (18) 510 536 8,200 1,280 1,200 1,400 1,395 1,550 1,530																	
RCKW7.5 5A (2) % (6) #12 54 (16) 820 868 12,840 2,165 1,695 2,23016 2,20516 2,715 2,655	RCKW7.5	RCKW7.5 5A	(2) 3/8	(6) #12							-		-				
68 (14) 912 965 14,920 2,165 1,695 2,610 ¹⁶ 2,575 ¹⁶ 2,715 2,655																	
33 (20) 389 402 6,445 1,095 795 1,095 1,090 1,315 1,300					1 1												
43 (18) 510 536 8,200 1,280 1,200 1,400 1,395 1,550 1,530			(2) ½ (6) #12			(2) ½ (6) #12					-						
5B (2) ½ (6) #12 54 (16) 867 927 13,255 2,165 1,695 2,305 2,280 2,715 2,655		5B		(2) ½ (6) #12	(2) ½ (6) #12										· ·		
68 (14) 912 965 15,640 2,165 1,695 2,745 2,705 2,715 2,655												-					

See footnotes on p. 120.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

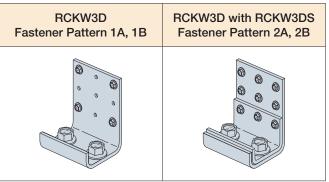
Table 1: RCKW Allowable Loads (lb.) — Concrete Applications (cont.)

					Assembly	Connector	Al	lowable Lo	ad		Anchor T	ension, T																
Model No.	Fastener Pattern No.	Anchor Bolt Diameter	Fasteners to Stud	Framing Members Thickness	Rotational Stiffness Bc	Rotational Stiffness β_{c}	Moment M	Tension F ₂	Shear F4	At Allo Mome (II	ent, M	At Allo Tension (It	Load, F ₂	Code Ref.														
		(in.)		mil (ga.)	(inkip / rad.)	(inkip / rad.)	(inlb.)	(lb.)	(lb.)	f' _C = 3,000 psi	f' _C = 4,000 psi	f' _C = 3,000 psi	f' _C = 4,000 psi															
				33 (20)	495	517	8,705	1,730	795	2,505	2,450	2,130	2,095															
	6 (1) ½	(10) #12	43 (18)	591	623	10,915	2,255	1,200	3,210	3,125	2,840	2,775																
	6 (1) ½	(10) #12	54 (16)	689	720	14,045	2,625	1,695	4,275	4,115	3,360	3,265																
			68 (14)	689	720	16,670	2,665	2,065	5,25415	4,98515	3,420	3,320																
			(10) #12	33 (20)	495	517	8,705	1,730	795	1,490	1,480	2,130	2,095															
RCKW7.5 and	6A	(0) 3/		(10) #12	43 (18)	591	623	10,915	2,255	1,200	1,885	1,865	2,840	2,775	IBC,													
RCKW5.5S (Stiffener)	0A	(2) % (10) #12	(2) 78 (10) #12	(10) #12	(10) #12	(10) #12	% (10) #12	:) %8 (10) #12	54 (16)	873	930	17,175	2,625	1,695	3,03016	2,98516	3,360	3,265	LA									
								68 (14)	959	1,011	18,370	2,665	2,065	3,25516	3,20016	3,420	3,320											
	6B	(2) ½ (10) #12	(2) ½ (1	(2) ½	(2) 14		33 (20)	495	517	8,705	1,730	795	1,490	1,480	2,130	2,095												
						(0) 1/	(2) 1/	(0) 1/	(0) 1/	(2) 16	(2) 16	(2) 1/	(40) (140	(40) (40)	(40) (140	(10) 10	(10) 10	(10) (10)	43 (18)	591	623	10,915	2,255	, , , ,	1,885	1,865	2,840	2,775
					(10) #12	54 (16)	923	991	19,940	2,625	1,695	3,550	3,490	3,360	3,265													
													68 (14)	1,040	1,107	22,555	2,665	2,065	4,060	3,975	3,420	3,320						

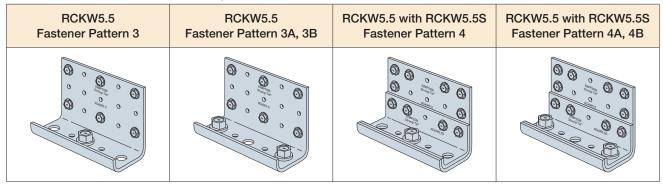
- 1. For additional important information, see General Information and Notes on p. 26.
- 2. The designer is responsible for anchorage design.
- 3. See illustrations for fastener pattern placement.
- 4. Tabulated values are based on framing members with track and stud of the same thickness and (1) #10 screw into each stud flange unless otherwise noted.
- 5. Tabulated values may be used for framing members with track and stud of thickness 20 mil, $F_y = 57$ ksi (20 EQ).
- 6. Tabulated values are applicable for framing members with CFS track of thickness 20 mil, F_V = 57 ksi (20 EQ).
- 7. EQ equivalent, DW drywall, STR structural.
- 8. Tabulated moment values correspond to maximum connector strength without consideration of serviceability. Designer must check out-of-plane deflections using tabulated Rotational Stiffness.
- Tabulated Assembly Rotational Stiffness is applicable for walls at 38" tall with corresponding framing member depth and thickness. Reference Example #1 on p. 123.
- 10. Tabulated Connector Rotational Stiffness may be used for any wall heights; the designer must consider member deflection due to bending in the stud member. Reference Example #2 on pp. 124–125.
- 11. Per IBC 2012 and later Table 1604.3 footnote f, wind load is permitted to be taken as 0.42 times "component and cladding loads" for deflection checks. For IBC 2009 and earlier, the factor is 0.7 instead of 0.42. Tabulated values have not been adjusted.
- 12. Anchor tension, T, is the force in the anchor, or both anchors for two-anchor solutions, at maximum allowable, M, or maximum allowable tension, F₂.
- 13. Tabulated values for anchor tension, T, at allowable tension load, F₂, are provided for total anchor tension for (1) anchor and (2) anchors. See p. 126 for anchorage design tables and illustrations.
- 14. Anchor tension is calculated using AISC Steel Design Guide 1. The 'Anchor Bolt Design' illustration (Figure B) shows the anchor tension, T, based on an applied moment, M. An illustration for the anchor tension, T, based on a vertical tension load, F₂, shown in Figure C.
- 15. Tabulated allowable tension loads for the connectors with ½"-diameter anchor bolts require ASTM F3125, Grade A325 or ASTM A449 high-strength bolts. For A307 Grade A bolt, anchor tension load is limited to 4.410 lb.
- 16. Tabulated allowable tension loads for the connectors with %"-diameter anchor bolts require ASTM F3125, Grade A325 or ASTM A449 high-strength bolts. For A307 Grade A bolt, anchor tension load is limited to 2,200 lb.
- 17. Anchor tension, T, may be interpolated. See footnotes on p. 128.

121

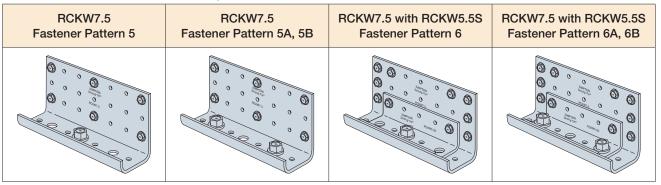
RCKW Kneewall Connectors

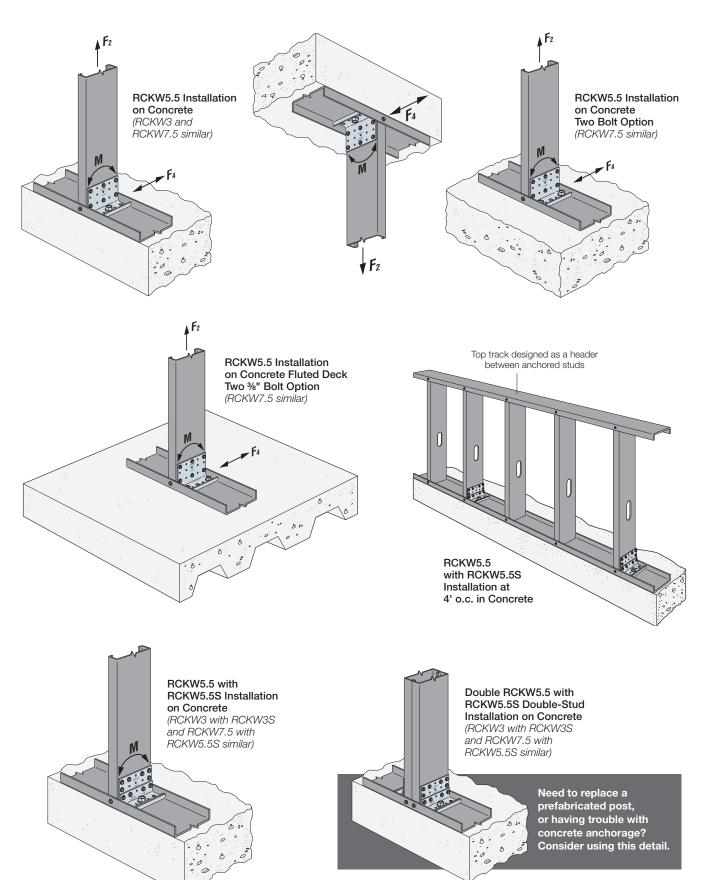


RCKW Fastener Patterns


RCKW3 and RCKW3S Options

RCKW3	RCKW3 with RCKW3S
Fastener Pattern 1	Fastener Pattern 2


RCKW3D and RCKW3DS Options


RCKW5.5 and RCKW5.5S Options

RCKW7.5 and RCKW5.5S Options

Example #1: Exterior Parapet Stud

Given:

- 2021 IBC (ASCE 7-16 and AISI S100-16)
- 600S162-33 (33 ksi) studs @ 16" o.c. supported at the base
- Parapet height, L = 38"-tall studs
- Wind design pressure = 49.67 psf (LRFD)
- Deflection Limits, ∆_{allow} = L/240 (Ref. IBC Table 1604.3)
- 3,000 psi concrete, cracked, SDC A&B, 3" anchor edge

Calculations:

Determine ASD wind pressure:

$$p = (0.6)(49.67 \text{ psf}) = 29.8 \text{ psf}$$

Note: 2021 IBC load combinations for ASD include a factor of 0.6 for wind loads.

$$w = (29.8 \text{ psf}) \frac{16 \text{ in.}}{12 \text{ in.}} = 39.7 \text{ plf}$$

Determine Required Moment:

$$M_{req} = \frac{wL^2}{2} = \frac{(39.7 \, plf)(38 \, in.)^2}{2 \left(12 \frac{in.}{ft.}\right)} = 2,389 \, in.-lb.$$

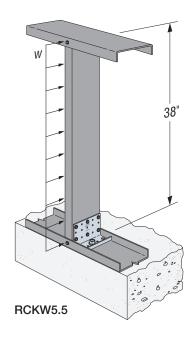
From Table 1 (p. 118–120) for 600S162-33, 6"-deep 33-mil stud:

- Select RCKW5.5 connector, fastener pattern 3, with ½" anchor diameter and (6) #12 self-drilling screws, attaching to each stud @ 16" o.c.
- Allowable Moment = 4,670 in.-lb. > 2,389 in.-lb. **OK**
- Assembly Rotational Stiffness, β = 304,000 in.-lb./rad. for RCKW5.5 connector at 38" wall height

Check Deflection at Required Moment:

$$\Delta_{req} = \left(\frac{(0.7)(M_{req})}{\beta}\right) L = \left(\frac{(0.7)(2,389 \text{ in.-lb.})}{304,000 \frac{\text{in.-lb.}}{\text{rad.}}}\right) 38 \text{ in.} = 0.209 \text{ in.}$$

Note: Per IBC Table 1604.3 footnote f, 0.42 factor can be used to calculate deflections for components and cladding wind loads for LRFD loads. ASD load conversion is 0.7.


Allowable Deflection:

$$\Delta_{allow} = \frac{2L}{240} = \frac{2(38 \text{ in.})}{240} = 0.317 \text{ in.} > 0.209 \text{ in.}$$
 OK

Computer-Assisted Design Note:

Please use kneewall module in Simpson Strong-Tie® CFS Designer™.

Select Anchorage:

Normal weight concrete with $f'_{\text{C}} = 3,000 \text{ psi}$ Table 2 (p. 126–127) — Cracked Concrete, Wind and Seismic in SDC A&B

(1) Titen HD® with 31/4" embedment and 3" edge

 $F_{4req} = 39.7*38/12 = 125.7 lb.$

 $M_{req} = 2,389 \text{ in.-lb.}$

 $F_{4all} = 930^*0.86 = 799.8 lb.$

 $M_{all} = 3,525*0.86 = 3,031 in.-lb.$

*Note: 0.86 comes from note 11, Table 2 (p. 128) (3,000 psi concrete)

 $F_{4reg}/F_{4all} = 125.7/799.8 = 0.16 < 1$ **OK**

 $M_{reg}/M_{all} = 2,389/3,031 = 0.79 < 1$ **OK**

Interaction = 0.16 + 0.79 = 0.95 < 1.2 **OK**

Example #2: High Interior Half-Wall - Concrete Slab, No Edge, Two Anchor

Given:

- 2021 IBC (ASCE 7-16 and AISI S100-16)
- The top track 600T125-54 (50 ksi) spans between 600S162-54 (50 ksi) studs @ spacing, S = 32" o.c. supported at the base
- 6" drywall studs at 16" o.c. as infill between the bottom and top track
- Wall height, L = 48"-tall studs
- Design Load: w = 50 plf or P = 200 lb. concentrated load for guard or handrail applications in accordance with Section 4.5.1 of ASCE (Ref. IBC 1607.9.1 and 1607.9.1.1)
- Deflection Limit, $\Delta_{allow} = L/120$ (Ref. IBC Table 1604.3)
- 4,000 psi NWC, uncracked A&B, no edge, 5" concrete thickness

Calculations:

Design criteria #1 for linear load of 50 lb./ft. Determine Required Concentrated Load, Preq:

$$P = (w)(S) = (50 \text{ plf})(32 \text{ in.}) \left(\frac{1 \text{ ft.}}{12 \text{ in.}}\right) = 133.3 \text{ lb.}$$

Determine Required Moment, Mreq:

$$M_{req} = (P_{req})(L) = (133.3 \text{ lb.})(48 \text{ in.}) = 6,400 \text{ in.-lb.}$$

Design criteria #2 for concentrated load of 200 lb.

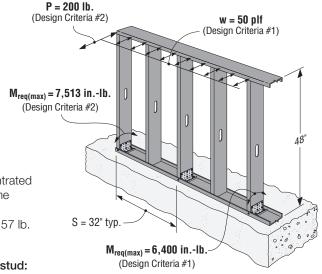
Note: From a 3D structural analysis with the 200 lb. concentrated load at the end stud, a continuous top track distributes some load to adjacent studs so that the worst-case moment is $M_{\text{req(max)}} = 7,513$ in.-lb. and maximum shear is $V_{\text{req(max)}} = 157$ lb. as indicated in the illustration.

From Table 1 (p. 118–120) for 600S162-54, 6"-deep, 54-mil stud:

- Select a RCKW5.5 connector, screw pattern 3B with (6) #12 self-drilling screws and (2) ½"-diameter anchors
- Allowable Moment = 9,995 in.-lb. > 6,400 in.-lb. (for linear load) **OK**
- Allowable Moment = 9,995 in.-lb. > 7,513 in.-lb. (for concentrated load) **OK**
- Connector Rotational Stiffness $\beta_C = 651,000$ in.-lb. / rad.

Check Deflection for Design Criteria #1 at Required Load:

Determine Stud Deflection, Δ_s , at $P_{req} = 133.3$ lb.


$$\Delta_{S} = \frac{P_{req}L^{3}}{3EI_{xe}} = \left(\frac{(133.3 \text{ lb.})(48 \text{ in.})^{3}}{3(29,500,000 \text{ psi})(2.86 \text{ in.}^{4})}\right) = 0.058 \text{ in.}$$

Note: Effective moment of inertia for a 600S162-54 stud is I_{xe} = 2.86 in.⁴

Determine Connector Deflection, Δ_c , at $M_{req} = 6,400$ in.-lb. by utilizing the Connector Rotational Stiffness, $\beta_c = 651,000$ in.-lb. / rad. for RCKW5.5.

$$\Delta_C = \frac{M_{req}}{\beta_C} L = \frac{6,400 \text{ in.-lb.}}{651,000 \frac{\text{in.-lb.}}{rad}} (48 \text{ in.}) = 0.472 \text{ in.}$$

Note: The Connector Rotational Stiffness may be used for any wall height; the designer must consider member deflection due to bending in the stud member. See footnote 10 of Table 1 (p. 120).

RCKW5.5 Installation on Concrete

Example #2: High Interior Half-Wall — Concrete Slab, No Edge, Two Anchor (cont.)

Total Deflection is the sum of the Stud Deflection and the Connector Deflection.

$$\Delta_{total} = \Delta_{S} + \Delta_{C} = 0.058 \text{ in.} + 0.472 \text{ in.} = 0.53 \text{ in.}$$

Allowable Deflection:

$$\Delta_{allow} = \frac{2L}{120} = \frac{(2)(48 \text{ in.})}{120} = 0.800 \text{ in.} > 0.53 \text{ in.}$$
 OK

Check Deflection for Design Criteria #2 at Required Load:

Determine Stud Deflection, Δ_s , at $M_{reg(max)} = 7,513$ in.-lb. from concentrated load.

$$\Delta_S = \frac{M_{req}L^2}{3EI_{Xe}} = \left(\frac{(7,513 \text{ in.-lb.})(48 \text{ in.})^2}{3(29,500,000 \text{ psi})(2.86 \text{ in.}^4)}\right) = 0.068 \text{ in.}$$

Determine Connector Deflection, Δ_c , at $M_{req(max)}$ = 7,513 in.-lb. by utilizing the Connector Rotational Stiffness, β_c = 651,000 in.-lb. / rad. for RCKW5.5.

$$\Delta_C = \frac{M_{req(max)}}{\beta_C} L = \frac{7,513 \text{ in.-lb.}}{651,000 \frac{\text{in.-lb.}}{\text{rad.}}} (48 \text{ in.}) = 0.554 \text{ in.}$$

Total Deflection is the sum of Stud Deflection and Connector Deflection.

$$\Delta_{total} = \Delta_{s} + \Delta_{c} = 0.068 \text{ in.} + 0.554 \text{ in.} = 0.622 \text{ in.}$$

Allowable Deflection:

$$\Delta_{allow} = \frac{2L}{120} = \frac{(2)(48 \text{ in.})}{120} = 0.800 \text{ in.} > 0.622 \text{ in.}$$
 OK

Select Anchorage:

Normal-weight concrete with f'c = 4,000 psi

Table 2 (p. 126–127) — Uncracked Concrete Wind and Seismic in SDC A&B (2) $\frac{1}{2}$ "-diameter Titen HD® with $3\frac{1}{4}$ " embedment F_{4req} = 157 lb.

 $F_{4all} = 3,765$ lb. Table 2 (p. 126–127) two anchors assumed to act in shear with no edge condition

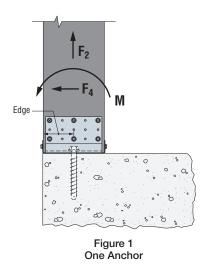
 $F_{4req}/F_{4all} = 157 \text{ lb./3,765 lb.} = 0.04 < 1 \text{ OK}$

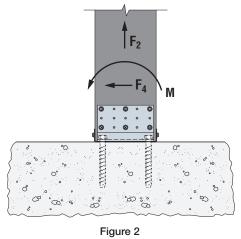
 $M_{req(max)} = 7,513 \text{ in.-lb.}$

 $M_{reg} = 10,800 \text{ in.-lb. Table 2 (p. 126-127)}$

 $M_{reg(max)}/M_{all} = 7,513 \text{ in.-lb.} / 10,280 \text{ in.-lb.} = 0.73 < 1 \text{ OK}$

Interaction = 0.04 + 0.73 = 0.77 < 1.2 **OK**


Note: Per ASCE Section 4.5.1, for handrail and guardrail systems, there is no need to apply the 50 plf linear load and the 200 lb. concentrated load concurrently. Example #2 demonstrates the design for both loading cases, and the outermost anchored stud governs when using the 200 lb. concentrated load.



Computer-Assisted Design Note:

Please use kneewall module in Simpson Strong-Tie® CFS Designer™.

Two Anchors

Table 2: RCKW Allowable Anchorage Loads (lb.)

				Nominal Embedment Depth,	Minimum		Incracked D psi Cond		Cracked 4,000 psi Concrete					
Model	Min. Anchor Edge	Type of	Anchor Type		Minimum Concrete Thickness,	Wind and Seismic in SDC A and B				and Seis		Seismic in SDC C and D		
No.	Distance (in.)	Concrete	Alichor Type	h _{nom} (in.)	h _{min} (in.)	Allowable			Allowable			Allowable		
	(111.)			,	, ,	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F4 (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F4 (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F4 (lb.)
		SLWC	(1) ½"-dia. Titen HD®	31/4	5	1,170	670	410	850	490	295	305	175	135
	17/8	JLWO	(1) 72 -dia. HiteHTID	3¾	6	1,295	745	425	935	535	305	335	190	140
	1 78	NWC	(1) ½"-dia. Titen HD	31/4	5	1,680	965	605	1,230	705	430	445	255	200
		INVIG	(1) /2 did. 11(011110	3¾	6	1,865	1,070	625	1,350	775	445	495	285	210
RCKW3		SLWC	(1) ½"-dia. Titen HD	31/4	5	2,005	1,150	1,560	1,450	835	1,105	530	305	515
NORWS			(1) 72 -uid. HiteHTID	3¾	6	2,515	1,445	2,685	1,840	1,055	2,465	680	390	805
	No edge		(1) ½"-dia. Strong-Bolt® 2	37⁄8	6	2,395	1,375	2,820	1,755	1,010	2,820	645	370	1,185
	No euge		(1) ½"-dia. Titen HD	31/4	5	2,825	1,625	2,295	2,080	1,195	1,625	770	445	760
		NWC	(1) 72 -uia. Titeli fid	3¾	6	3,500	2,010	2,685	2,610	1,500	2,685	980	565	805
			(1) 1/2"-dia. Strong-Bolt 2	37⁄8	6	3,340	1,920	2,820	2,490	1,430	2,820	935	535	1,185
	6	NWC	(2) ½"-dia. Titen HD	31/4	5	6,230	2,005	2,060	4,540	1,495	1,470	4,005	1,325	1,715
RCKW3D	0	INVVC	(<i>2) 7</i> 2 -uia. HileH HD	31/4	6	6,230	2,005	2,260	4,540	1,495	1,615	4,005	1,325	1,880
	No odgo	NWC	(2) ½"-dia. Titen HD	31/4	5	6,230	2,005	2,950	4,540	1,495	2,090	4,005	1,325	2,435
	No edge	INVVC	(2) 72 -uia. Titeti HD	3¾	6	6,230	2,005	2,950	4,540	1,495	2,090	4,005	1,325	2,435

Table continued on next page.

Table 2: RCKW Allowable Anchorage Loads (lb.) (cont.)

						ncracked					cked			
) psi Cond		Win d			si Concrete Seismic		
Model	Min. Anchor Edge	Type of	Anchor Type	Nominal Embedment Depth,	Minimum Concrete Thickness,	in S	and Seis SDC A and	d B	in S	and Seis BDC A and	I B	in SDC C and D		
No.	Distance	Concrete	7 monor Typo	h _{nom}	h _{min}	1	Allowable		Allowable			Allowable		
	(in.)			(in.)	(in.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F4 (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Moment M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)
				31/4	5	3,360	1,055	815	2,435	765	635	870	275	295
		SLWC	(1) ½"-dia. Titen HD®	33/4	6	3,855	1,210	915	2,770	870	655	995	310	305
	3			31/4	5	4,845	1,520	1,305	3,525	1,105	930	1,275	400	435
		NWC	(1) 1/2"-dia. Titen HD	33/4	6	5,535	1,735	1,350	4,015	1,260	965	1,450	455	450
			(4) 1/II dia Titaa IID	31/4	5	3,815	1,195	1,560	2,735	855	1,105	980	305	515
		SLWC	(1) ½"-dia. Titen HD	3¾	6	4,845	1,520	2,685	3,490	1,095	2,465	1,260	395	805
			(1) 1/2"-dia. Strong-Bolt 2	3%	6	4,600	1,440	2,820	3,325	1,040	2,820	1,195	375	1,185
			(1) ½"-dia. Titen HD	31/4	5	5,485	1,720	2,295	3,965	1,245	1,625	1,435	450	760
		NWC	(1) /2 dia. Hitchilib	3¾	6	6,935	2,175	2,685	5,040	1,580	2,685	1,830	575	805
			(1) 1/2"-dia. Strong-Bolt 2	37/8	6	6,585	2,065	2,820	4,795	1,505	2,820	1,740	545	1,185
RCKW5.5		SLWC	(2) %"-dia. Titen HD	2½	4" slab and 31/4" top of metal deck	4,460	1,430	1,020	2,060	700	725	725	250	335
	No select		(2) %"-dia. Strong-Bolt 2	21/4	4	4,360	1,440	700	3,070	1,035	700	1,095	370	330
	No edge	NWC	(2) %"-dia. Titen HD	2½	4" slab and 31/4" top of metal deck	6,505	2,050	1,500	3,020	1,015	1,065	1,070	360	480
			(2) %"-dia. Strong-Bolt 2	21/4	4	6,360	2,065	700	4,505	1,490	700	1,590	540	330
			(2) ½"-dia. Titen HD	31/4	5	7,080	1,900	2,560	5,040	1,380	1,815	1,790	500	845
		SLWC	. ,	3¾	6	9,040	2,265	5,370	6,460	1,650	4,380	2,305	600	1,610
		NIMO	(2) 1/2"-dia. Strong-Bolt 2	3%	6	8,570	2,720	5,645	6,145	2,000	5,500	2,185	735	2,225
			(2) ½"-dia. Titen HD	31/4	5	10,280	2,700	3,765	7,365	1,975	2,665	2,625	725	1,245
		NWC	. ,	3¾	6	13,110	3,185	5,370	9,415	2,350	5,370	3,360	875	1,610
			(2) ½"-dia. Strong-Bolt 2	3%	6	12,425	3,780	5,645	8,945	2,830	5,645	3,190	1,070	2,370
		SLWC	(1) ½"-dia. Titen HD	31/4	5 6	5,265 6,485	1,210 1,490	1,245 1,410	3,760 4,665	865 1,070	890 1,010	1,340 1,670	310 385	415 470
		SLWC	(1) ½"-dia. Strong-Bolt 2	37/8	6	5,145	1,180	1,410	4,580	1,070	1,010	1,635	375	490
	4		(1) 72 -dia. Strong-Doit 2	31/4	5	7,615	1,750	1,830	5,475	1,260	1,310	1,965	450	610
		NWC	(1) ½"-dia. Titen HD	33/4	6	9,345	2,150	2,075	6,760	1,555	1,485	2,440	560	690
		11110	(1) ½"-dia. Strong-Bolt 2	37/8	6	7,445	1,710	2,160	6,640	1,525	1,540	2,385	550	720
				31/4	5	5,265	1,210	1,560	3,760	865	1,105	1,340	310	515
		SLWC	(1) ½"-dia. Titen HD	33/4	6	6,710	1,540	2,685	4,810	1,105	2,465	1,725	395	805
			(1) 1/2"-dia. Strong-Bolt 2	37/8	6	6,365	1,460	2,820	4,580	1,050	2,820	1,635	375	1,185
			(1) 1/II dia Titan IID	31/4	5	7,615	1,750	2,295	5,475	1,260	1,625	1,965	450	760
		NWC	(1) 1/2"-dia. Titen HD	3¾	6	9,680	2,225	2,685	6,985	1,605	2,685	2,510	575	805
			(1) 1/2"-dia. Strong-Bolt 2	37/8	6	9,180	2,110	2,820	6,640	1,525	2,820	2,385	550	1,185
RCKW7.5		SLWC	(2) %"-dia. Titen HD	2½	4" slab and 31/4" top of metal deck	5,365	1,450	1,020	2,475	700	725	870	250	335
	No edge		(2) %"-dia. Strong-Bolt 2	21/4	4	5,245	1,460	700	3,690	1,045	700	1,315	370	330
	No euge	NWC	(2) %"-dia. Titen HD	2½	4" slab and 31/4" top of metal deck	7,835	2,095	1,500	3,630	1,025	1,065	1,285	365	480
	-		(2) %"-dia. Strong-Bolt 2	21/4	4	7,660	2,110	700	5,420	1,515	700	1,910	545	330
			(2) ½"-dia. Titen HD	31/4	5	8,530	1,940	2,560	6,065	1,400	1,815	2,150	500	845
		SLWC	. ,	3¾	6	10,905	2,320	5,370	7,780	1,675	4,380	2,770	600	1,610
			(2) 1/2"-dia. Strong-Bolt 2	37/8	6	10,335	2,805	5,645	7,400	2,040	5,500	2,625	740	2,225
			(2) ½"-dia. Titen HD	31/4	5	12,410	2,780	3,765	8,875	2,020	2,665	3,155	730	1,245
		NWC	. ,	3¾	6	15,855	3,305	5,370	11,360	2,410	5,370	4,040	880	1,610
	ľ	NWC	(2) 1/2"-dia. Strong-Bolt 2	3%	6	15,020	3,965	5,645	10,790	2,920	5,645	3,835	1,080	2,370

See footnotes on p. 128.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Table 2 Footnotes:

- Anchor Allowable Loads have been determined using ACI 318-14 Chapter 17 anchorage calculations with the minimum concrete compressive strength, f'_c, and slab thickness listed. Sand-Lightweight Concrete is abbreviated as 'SLWC', Normal Weight Concrete is abbreviated as 'NWC'.
- 2. Load values are for anchor based on ACI 318-14, condition B, load factors from ACI 318 Section 5.3, no supplemental edge reinforcement, $\Psi_{C,V} = 1.0$ for cracked concrete and periodic special inspection. Reference ICC-ES or IAPMO-UES evaluation reports for further information.
- Load values are based on short-term temperature range of 160°F and 180°F for SET-3G™ and AT-XP® adhesives, respectively. Long-term temperature range is assumed to be 110°F for SET-3G and AT-XP adhesives.
- 4. Allowable Stress Design (ASD) values were determined by multiplying calculated Strength Design values by a conversion factor, Alpha (α), of 0.7 for seismic loads and 0.6 for wind loads. ASD values for other load combinations may be determined using alternate conversion factors.
- End distances are assumed as 1.5 x Min. Edge Distance in one direction and 'N/A' in the other direction. See figure on this page.
- 6. Edge and end distances are assumed as 'N/A' in all directions at locations for (No Edge).
- 7. Tabulated anchorage capacities for RCKW models shown are applied to the same model size with stiffener. For example, a value for model RCKW3 is equivalent to model RCKW3 and RCKW3S.
- 8. Tabulated allowable ASD loads for Wind and Seismic in SDC A and B are based on using wind conversion factors and may be increased by 1.17 for seismic SDC A and B only.
- Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17, unless steel failure governs.
- 10. Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the RCKW allowable load value listed on p. 118–120.
- 11. Tabulated loads in Table 2 are based on $f'_C = 4,000$ psi. For $f'_C = 3,000$ psi, use an adjustment factor of 0.86 for the blue shaded values and 1.0 for all other values.
- 12. For anchor subjected to both tension and shear loads,
 - it shall be designed to satisfy following:
 - For N_{a} / N_{al} $\! \leq$ 0.2, the full allowable load in shear is permitted.
 - For V_a / $V_{al} \leq$ 0.2, the full allowable load in tension is permitted.
 - For all other cases: $N_a / N_{al} + V_a / V_{al} \le 1.2$.

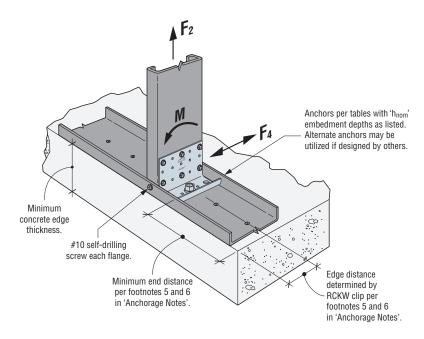
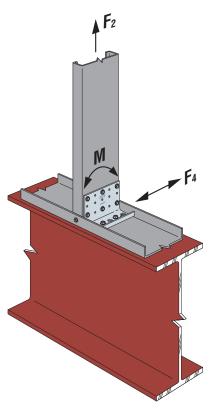
where:

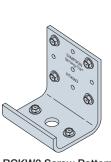
Na = Applied ASD tension load

Nal = Allowable tension load from Table 2

Va = Applied ASD shear load

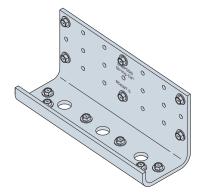
 V_{al} = Allowable shear load from Table 2.


Table 3: RCKW Allowable Loads — Steel Applications with Anchorage

	Framing	Fastener	_	Framing	Assembly	Connector		Allowable Load		
Model No.	Member Depth (in.)	to Structural Steel ²	Fastener to Stud ³	Member Thickness mil (ga.)	Rotational Stiffness ^{6,8} β (inlb./rad)	Rotational Stiffness ^{7,8} βc (inlb./rad)	Moment ^{4,5} M (inlb.)	Tension F ₂ (lb.)	Shear F ₄ (lb.)	Code Ref.
				33 (20)	55,500	58,000	2,105	850	455	
RCKW3	3.625	(2) #12	(4) #12	43 (18)	73,300	76,700	2,570	1,225	745	
				54 (16)	87,260	91,200	2,690	1,115	1,115	
				33 (20)	199,200	209,200	5,165	1,245	650	
RCKW5.5	6.00	(4) #12	(6) #12	43 (18)	272,600	287,100	6,370	1,900	1,060	_
				54 (16)	255,900	266,100	6,430	2,000	1,295	
				33 (20)	456,700	483,200	7,030	965	655	
RCKW7.5	8.00	(6) #12	(6) #12	43 (18)	571,600	603,600	9,595	1,950	1,135	
				54 (16)	693,600	731,600	11,320	2,185	1,710	

- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Designer is responsible for structural steel design.
- 3. See illustrations for fastener patterns.
- 4. Tabulated values are based on framing members with track and stud of the same thickness and #10 screws into each stud flange.
- 5. Tabulated moment values correspond to the maximum connector strength without consideration of serviceability. Designer must check out-of-plane deflections using tabulated Rotational Stiffness.
- 6. Tabulated Assembly Rotational Stiffness is for walls at 38" tall.
- 7. The tabulated Connector Rotational Stiffness is for any wall heights. The designer must consider member deflection due to bending in the stud.
- 8. Per IBC 2015 Table 1604.3 footnote f, wind load is permitted to be taken as 0.42 times "component and cladding loads" for deflection checks. For IBC 2009 and earlier, the factor is 0.7 instead of 0.42.


RCKW5.5 Installation on Structural Steel (RCKW3 and RCKW7.5 similar)

RCKW3 Screw Pattern for Steel Anchorage

RCKW5.5 Screw Pattern for Steel Anchorage

RCKW7.5 Screw Pattern for Steel Anchorage

MSSC4.25KW and MSSC6.25KW Kneewall Connectors

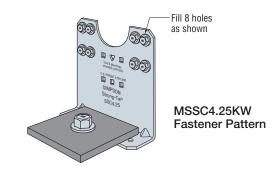
MSSC connectors are designed to work in tandem with Simpson Strong-Tie® BP½-3 bearing plates to provide solutions for moment-resisting kneewall lighter-duty applications.

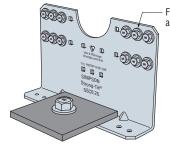
Features:

- One simple custom hole pattern for each stud size simplifies specification and installation
- %" diameter anchor bolt location enables easy tool access

Material: MSSC — 97 mil (50 ksi); BP — 229 mil (33 ksi)

Finish: MSSC — Galvanized (G90); BP — None


Installation:

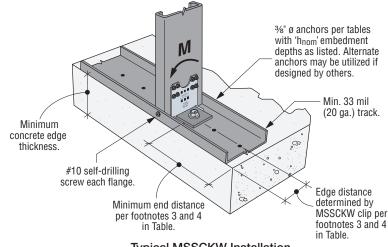

- Use all specified fasteners/anchors
- Install BP½-3 bearing plate over anchor leg of MSSC connectors as shown in the illustrations

Codes: See p. 13 for Code Reference Key Chart

Ordering Information

Model No.	Ordering SKU	Package Quantity
MSSC4.25KW	MSSC4.25KW-KT20	Box of 20 connectors
MSSC6.25KW	MSSC6.25KW-KT20	and 20 BP bearing plates

Fill 12 holes as shown


> MSSC6.25KW Fastener Pattern

Allowable Loads

	Connector		Framing	Faste	ners ⁵	044	All	Anchor	Rotational	
Model No.	Material Thickness mil (ga.)	L (in.)	Member Depth (in.)	Anchor Diameter (in.)	Stud	Stud Thickness mil (ga.)	Allowable Moment, M (inlb.)¹	Tension at Allowable Moment (lb.) ²	Stiffness for Wind Deflection (inlb./rad.) ^{3,4}	Code Ref.
						33 (20)	3,135	1,610		
MSSC4.25KW	97 (12)	41/4	6	3/8	(8) #10	43 (18)	4,320	2,3055	64,800	
						54 (16)	5,830	3,300⁵		IBC, LA
						33 (20)	3,845	1,290		IDU, LA
MSSC6.25KW	97 (12)	61/4	8	3/8	(12) #10	43 (18)	3,845	1,290	110,350	
						54 (16)	8,350	2,9805		

- Tabulated values correspond to maximum connector strength without consideration of serviceability.
 Designer must check out-of-plane deflections using tabulated rotational stiffness.
- 2. Uplift may be linearly interpolated for design moment less than allowable. Designer is responsible for anchorage design.
- 3. Tabulated stiffness is applicable for walls up to 38" tall. For taller walls, the designer must consider additional deflection due to bending in the studs.
- 4. Per IBC 2015 Table 1604.3 footnote f, wind load is permitted to be taken as 0.42 times "component and cladding loads" for deflection checks. For IBC 2009 and earlier, the factor is 0.7 instead of 0.42.
- 5. Tabulated allowable tension loads for the connectors with %"-diameter anchor bolts require ASTM F3125 Grade A325 or ASTM A449 high-strength bolts. For A307 Grade A bolt, anchor tension load is limited to 2,200 lb.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Typical MSSCKW Installation

MSSC4.25KW and MSSC6.25KW Kneewall Connectors

Kneewall Connector Anchorage Solutions

	Minimum Concrete Simpson Strong-Tie® Anchor Type										
	Minimum	3%"-Niameter	Nominal			Allowable Mon	nent, M (inlb.))			
	Concrete	Simpson	Embedment Depth		Edge of Slab ³		Center of Slab⁴				
NO.											
	4" or thicker	Strong Bolt® 2	21/4		_	_	1,220	2,040	2,365		
	4 Of UTICKET	Titen HD®	21/2	1,255	2,090	2,425	1,255	2,090	2,425		
		Strong Bolt 2	21/8	_	_	_	1,555	2,590	2,995		
MCCC4 DEKW	G" or thinker	Titen HD	31/4	1,795	2,995	3,450	2,075	3,465	3,995		
W15504.25KW	o or uncker	SET-3G™	4	725	1,425	1,425	1,930	3,705	3,705		
		AT-XP®	4	750	1,470	1,470	2,005	3,705	3,705		
	Concrete	SET-3G	71/2	670	1,320	1,320	3,610	3,705	3,705		
	thickness ≥ 9.5"	AT-XP	71/2	695	1,360	1,360	3,690	3,705	3,705		
	4" or thicker	Strong Bolt 2	21/4	_	_	_	1,515	2,530	2,930		
	4 OF UTICKET	Titen HD	21/2	1,555	2,590	3,005	1,555	2,590	3,005		
		Strong Bolt 2	27/8	_	_	_	1,930	3,215	3,715		
MSSC6.25KW	6" or thicker	Titen HD	31/4	2,570	4,295	4,950	2,570	4,295	4,950		
IVI3300.23KW	o of thicker	SET-3G	4	1,110	2,170	2,170	2,395	4,595	4,595		
		AT-XP	4	1,135	2,235	2,235	2,480	4,595	4,595		
	Concrete	SET-3G	71/2	1,030	2,015	2,015	4,480	4,595	4,595		
	thickness ≥ 9.5"	AT-XP	7½	1,055	2,065	2,065	4,575	4,595	4,595		

See footnotes on p. 132.

		С	racked Concrete, Wind	I and Seismic i	n SDC A&B ^{8,10}				
	Minimum	%"-Diameter	Nominal	nent, M (inlb.))				
Model	Concrete	Simpson	Embedment Depth		Edge of Slab ³			Center of Slab	
No.	Thickness (h _{min})	Strong-Tie Anchor Type	(h _{nom}) (in.)	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC
	4" or thicker	Strong Bolt 2	21/4	_	_	_	860	1,435	1,660
	4 OF UTICKET	Titen HD	21/2	575	955	1,100	575	955	1,100
		Strong Bolt 2	21/8	_	_	_	1,295	2,150	2,495
MSSC4.25KW	6" or thicker	Titen HD	31/4	1,255	2,095	2,430	1,255	2,095	2,430
W15504.25KW	o or uncker	SET-3G	4	1,175	2,305	2,305	1,485	2,915	2,915
		AT-XP	4	1,220	2,395	2,395	1,560	3,065	3,065
	Concrete	SET-3G	7½	2,200	3,705	3,705	2,790	3,705	3,705
	thickness ≥ 9.5"	AT-XP	71/2	2,290	3,705	3,705	2,935	3,705	3,705
	All or thicker	Strong Bolt 2	21/4	_	_	_	1,070	1,780	2,055
	4" or thicker	Titen HD	21/2	715	1,185	1,365	715	1,185	1,365
		Strong Bolt 2	27/8	_	_	_	1,605	2,665	3,090
MCCCC OFKW	6" or thicker	Titen HD	31/4	1,555	2,600	3,010	1,555	2,600	3,010
MSSC6.25KW	o or triicker	SET-3G	4	1,795	3,505	3,505	1,840	3,615	3,615
		AT-XP	4	1,860	3,645	3,645	1,935	3,800	3,800
	Concrete	SET-3G	7½	3,350	4,595	4,595	3,455	4,595	4,595
	thickness ≥ 9.5"	AT-XP	7½	3,490	4,595	4,595	3,640	4,595	4,595

See footnotes on p. 132.

MSSC4.25KW and MSSC6.25KW Kneewall Connectors

Kneewall Connector Anchorage Solutions (cont.)

			Cracked Concrete, Sei	smic in SDC C	through F ^{9,10}				
	Minimum	%"-Diameter	Nominal			Allowable Mon	nent, M (inlb.))	
Model No.	Concrete Thickness	Simpson Strong-Tie®	Embedment Depth		Edge of Slab ³			Center of Slab ⁴ 3,000 psi NWC 4,000 NW 500 58 335 38 755 87 735 85 1,020 1,0 1,070 1,0 4,325 4,3 620 72 415 48 935 1,0 910 1,0 1,265 1,2 1,330 1,3 5,360 5,3	1
NO.	(h _{min})	Anchor Type	(h _{nom}) (in.)	3,000 psi SLWC	3,000 psi NWC	4,000 psi NWC	3,000 psi SLWC		4,000 psi NWC
	4" or thicker	Strong Bolt® 2	21/4	_	_	_	300	500	580
	4 OF UTICKET	Titen HD®	21/2	200	335	385	200	335	385
		Strong Bolt 2	27/8	_	_	_	450	755	870
MSSC4.25KW	6" or thicker	Titen HD	31/4	440	735	850	440	735	850
WISSU4.25KW	o or triicker	SET-3G™	4	410	805	805	520	1,020	1,020
		AT-XP®	4	430	840	840	550	1,070	1,070
	Concrete	SET-3G	71/2	770	1,495	1,495	975	4,325	4,325
	thickness ≥ 9.5"	AT-XP	71/2	800	1,575	1,575	1,025	4,325	4,325
	4" or thicker	Strong Bolt 2	21/4	_	_	_	375	620	720
	4 of thicker	Titen HD	21/2	250	415	480	250	415	480
		Strong Bolt 2	21/8	_	_	_	560	935	1,080
MSSC6.25KW	6" or thicker	Titen HD	31/4	545	910	1,050	545	910	1,050
WISSUB.25KW	o or triicker	SET-3G	4	625	1,225	1,225	645	1,265	1,265
		AT-XP	4	650	1,275	1,275	680	1,330	1,330
	Concrete	SET-3G	71/2	1,180	5,360	5,360	1,210	5,360	5,360
	thickness ≥ 9.5"	AT-XP	71/2	1,220	5,310	5,310	1,270	5,310	5,310

- Allowable Moments have been determined using ACI 318-14 Chapter 17 anchorage calculations with the minimum concrete compressive strength, f'_C and slab thickness listed. Sand-Lightweight Concrete is abbreviated as 'SLWC', Normal Weight Concrete is abbreviated as 'NWC'.
- - %" Titen HD in 4" concrete: 2.50" (hnom) / 1.77" (hef)
 - %" Titen HD in 6" concrete: 3.25" (h_{nom}) / 2.40" (h_{ef})
 - %" carbon steel Strong-Bolt 2 into 4" concrete: 2.25" (hnom) / 1.875"(hef)
 - %" carbon steel Strong-Bolt 2 into 6" concrete: 2.875" (hnom) / 2.5"(hef)
 - SET-3G or AT-XP adhesive with %" F1554 Gr. 36 all-thread rod in 6" concrete: 4.0" (hom) = 4" (hef)
 - SET-3G or AT-XP adhesive with %" F1554 Gr. 36 all-thread rod in 9.5" concrete: 7.5" (h_{nom}) = 7.5" (h_{ef})
- 3. At edge of slab, edge distances are assumed to be 3.0" and 4.0" (½ of stud width) as determined for 6" and 8" studs, respectively. 'End distances' are assumed as 1.5 x Min. Edge Distance in one direction and 'N/A' in the other direction. See figure on p. 130.
- At center of slab, edge and end distances are assumed as 'N/A' in all directions at locations away from edge of slab. See figure on p. 130.
- 5. Load values are for a single anchor based on ACI 318-14, condition B, load factors from ACI 318-14 Section 5.3, no supplemental edge reinforcement, $\Psi_{\text{C,V}} = 1.0$ for cracked concrete and periodic special inspection. Reference ICC-ES or IAPMO-UES evaluation reports for further information.
- 6. Load values are based on a short-term temperature range of 160°F and 180°F for SET-3G and AT-XP. Long-term temperature range is assumed to be 110°F for both SET-3G and AT-XP. Dry hole conditions are assumed. Other conditions may be evaluated using Anchor Designer™ Software for ACI 318, ETAG and CSA. See **strongtie.com/software**.
- Allowable Stress Design (ASD) values were determined by multiplying calculated LRFD capacities by a conversion factor, Alpha (α), of 0.7
 for seismic loads and 0.6 for wind loads. ASD values for other load combinations may be determined using alternate conversion factors.
- 8. Tabulated allowable ASD loads for Wind and Seismic in SDC A&B are based on using wind conversion factors and may be increased by 1.17 for SDC A&B only.
- Allowable loads have been divided by an Omega (Ω) seismic factor of 2.5 for brittle failure as required by ACI 318-14 Chapter 17, unless steel failure governs.
- 10. Tabulated allowable moments are for MSSC Kneewall Connectors attached to studs with 33 (20) or 43 (18) mil (ga.) thickness. Allowable moment may be increased for MSSC Kneewall Connectors attached to studs with 54 (16) mil (ga.) thickness by multiplying by a factor of 1.16 for MSSC4.25KW and 1.28 for MSSC6.25KW.
- 11. Tabulated capacities assume lateral force applied at height of 38" above concrete. Tabulated capacities are based on maximum allowable anchorage loads only. The capacity of the connection system shall be the minimum of the tabulated value and the allowable load value from the MSSCKW Connectors: Allowable Load Tables.

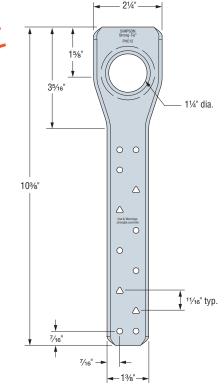
PHC Panel Hoist Clip

The PHC panel hoist clip allows easier installation and lifting of wall panels on the job and at assembly sites. The PHC clip features a small profile design to fit inside holes as small as 1.5". Contractors can either drill holes in the track onsite or have the track manufactured with holes for easier installation of the clip through the top track. The rolled edges and rolled hoist-edge-hole provide greater strength and give the capacity needed for heavy panel projects. Maximum and minimum screw patterns give you options for heavier or lighter load needs. The PHC hoist clip has been assembly tested for tension and panel pick up, providing an increased level of safety for panelizers, installers and engineers.

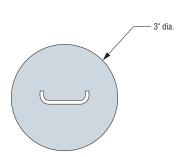
Features:

- Small profile to allow for easy installation through the top track
- Greater top track strength with reduced opening size required for hoist clip to fit through top track
- Rolled stiffener for increased strength across the entire length of clip
- Rolled hoist-edge-hole for increased strength and smooth mounting edge
- Screw pattern options allow for varying load needs; fill round holes for minimum loads, or fill round holes and triangular holes for maximum loads
- Chamfered top corners and minimized distance of material above hoist hole allows for the lifting device to slide freely without getting stuck
- Assembly tested for tension and panel pick up at different angles for attachment to stud web
- Optional panel hoist clip cover (PHC-C) available to cover track hole and create a tight connector fit for the concrete pour when embedding the installed hoist in concrete or other hole cover needs

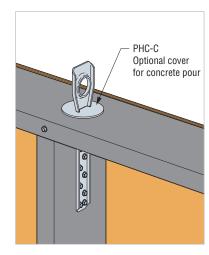
Material: PHC12 — 97 mil (12 ga.), 50 ksi; PHC-C — 33 mil


Finish: Galvanized (G90)

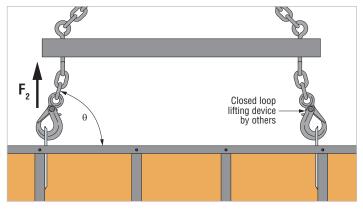
Installation: Use all specified fasteners/anchors


Codes: Testing performed in accordance with ICC-ES AC261. Visit **strongtie.com** for the latest load values and testing information.

Ordering information: PHC12 is a box of 50 connectors PHC-C is a box of 50 covers.



PHC12 Panel Hoist Clip


PHC-C Panel Hoist Clip Cover

(for concrete pour or other hole cover needs, sold separately)

PHC Panel Hoist Clip

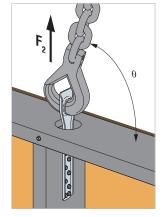
F₄

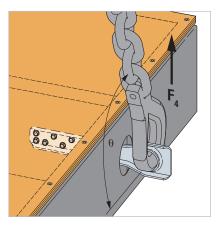
F₂ Tension Load

F₄ Flat Panel Pickup

PHC Allowable Loads per Clip (lb.)

	No. of		PHC12 Attach to Stud Web											
Model No.	#10 Screws to	Stud Thickness mil (ga.)		on Load F ₂	Flat Panel Pickup F ₄									
	Framing	(3)	θ = 45°	θ = 75° to 90°	θ = 45°	θ = 75° to 90°								
		33 (20)	530	1,415	395	460								
	8	43 (18)	695	2,105	515	600								
	(min.	54 (16)	990	2,785	985	985								
	pattern)	68 (14)	1,250	3,220	1,240	1,240								
PHC12		97 (12)	1,250	3,220	1,240	1,240								
PHUIZ		33 (20)	795	2,120	590	690								
	12	43 (18)	1,040	2,785	770	900								
	(max.	54 (16)	1,485	2,785	1,475	1,475								
	pattern)	68 (14)	1,875	3,220	1,860	1,860								
		97 (12)	1,875	3,220	1,860	1,860								


- 1. For additional important information, see General Information and Notes on p. 26.
- 2. Allowable loads are for clip and anchorage to stud.
- 3. Minimum pattern is screws to all round holes; maximum pattern is screws to round and triangle holes.
- 4. Linear interpolation is allowed for angles between 45° and 75°.
- 5. Tabulated values are based on 3%" to 8" framing members with track and stud of the same thickness and 2½" maximum diameter hole centered in the top track for lifting devices.
- 6. Lifting devices should be connected to the PHC12 with a closed-loop attachment of sufficient strength to carry the allowable load.
- 7. The listed allowable tension load is the allowable vertical load of the hoist clip (not the allowable load in direction of force).



Twelve-Screw Pattern

PHC Attached to Stud Web

Special Order Custom Clips and Connectors

Simpson Strong-Tie can make a variety of flat and bent steel clips and connectors for cold-formed steel framing. Most custom clips can be punched with different holes and slots.

Material: 229 mil (3 ga.) maximum, 33 mil (20 ga.) minimum mill-certified steel (carbon and Type 316L stainless steel)

Finish: Galvanized, Simpson Strong-Tie® gray paint. Contact Simpson Strong-Tie for availability.

To Obtain Quote:

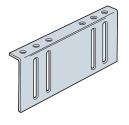
- Supply a CAD drawing in .dwg or .dxf format complete with all dimensions, hole diameter and centerline locations, bend angles, steel strength (min. F_y and F_u), thickness (mil and/or ga.) and finish: (galvanized to G90, G185) or Simpson Strong-Tie gray paint (specify)
- Total shape and size up to a maximum of 48" x 48" (approx. 1/16" tolerance)
- Simpson Strong-Tie does not provide product engineering or load values for special-order custom clips and connectors
- Contact Simpson Strong-Tie for pricing information
- For additional information, please refer to Important Information and General Notes on pp. 14–17 and 26.

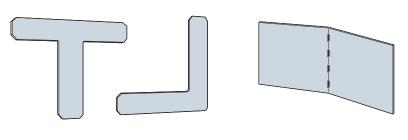
Specification Example:

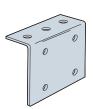
Quantity: XX pieces

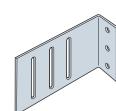
Dimensions: Per the attached CAD drawing (.dwg or .dxf format)

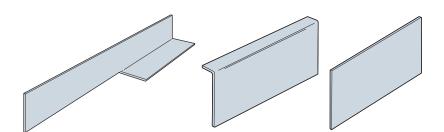
Drawing must be fully dimensioned, including:

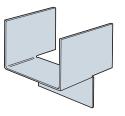

- · Overall dimensions
- Leg dimensions
- · Bend angles (if required)
- Hole/slot sizes and centerlines (if required)

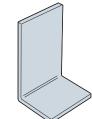

Material Specification: Contact Simpson Strong-Tie for availability


Thickness: 54 mil (16 ga.)


Strength: Min. Yield Strength $(F_y) = 33$ ksi, Min. Tensile Strength $(F_u) = 45$ ksi


Finish: Galvanized (G90)







Simplified Design and Installation Through Innovation

Simpson Strong-Tie® SUBH and MSUBH wall stud bridging connectors for cold-formed steel (CFS) framing offer a compact profile that allows standard 15%" studs to be sistered directly against adjacent studs. The LSUBH connector provides the same installation benefits of the SUBH/MSUBH connectors, and is suitable for many wind- and

load-bearing situations where the load demand is light to moderate. Many applications require only one screw, greatly reducing

labor costs and increasing productivity.

Features:

- Tested to include stud-web strength and stiffness in the tabulated design values
- Design values ensure compliance with AISI S100 Sections C2.2.1 and C2.3 for axially and laterally-loaded studs
- Flexible design solutions for web thicknesses of 33 mil (20 ga.) through 97 mil (12 ga.) and stud sizes from 35%" to 8"
- SUBH and LSUBH accommodates single studs 33 mil (20 ga.) to 54 mil (16 ga.)
- MSUBH accommodates single studs 54 mil (16 ga.) to 97 mil (12 ga.) and back-to-back built-up members ranging from 33 mil (20 ga.) to 54 mil (16 ga.)

 $\textbf{Material:} \ \, \text{LSUBH3.25} \, - \, 33 \, \, \text{mil} \, \, \text{(20 ga.);} \, \, \text{SUBH3.25} \, - \, 43 \, \, \text{mil} \, \, \text{(18 ga.);}$

MSUBH3.25 — 68 mil (14 ga.)

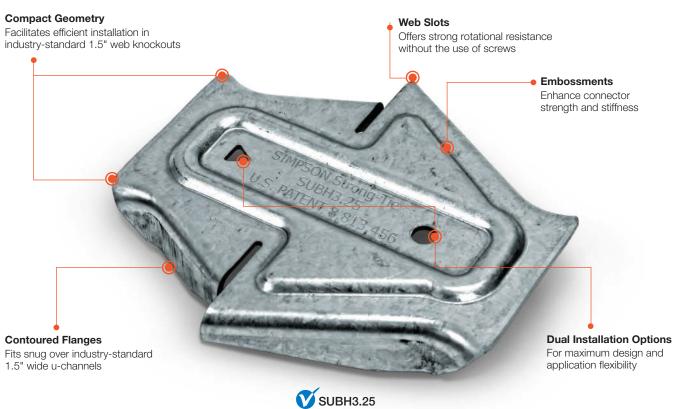
Finish: Galvanized (G90)

Installation:

• See pp. 138 through 140

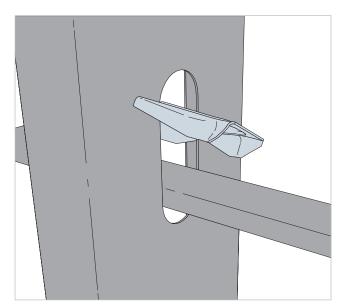
Codes: See p. 13 for Code Reference Key Chart

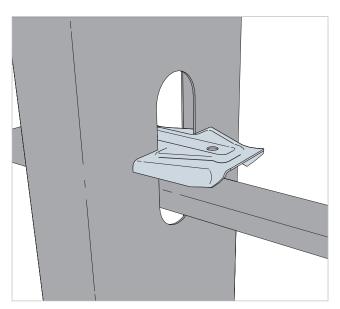
Ordering Information:


LSUBH3.25 and SUBH3.25-R150 (Bucket of 150),

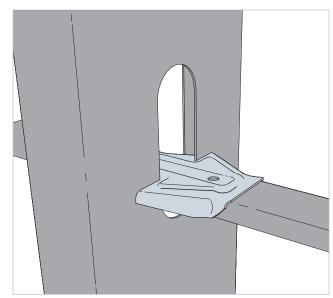
MSUBH3.25-R100 (Bucket of 100)

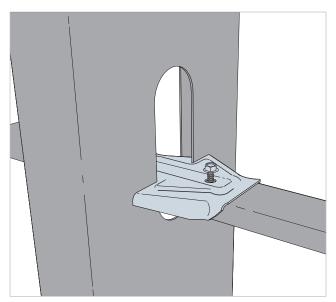
This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.




(LSUBH3.25 and MSUBH3.25 similar) US Patent: 8,813,456

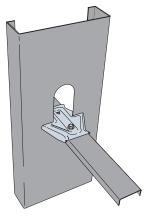
Strong-Tie


Installation Instructions

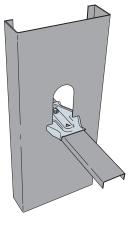

Step 1: With the u-channel in a stable, horizontal position, insert either end of the SUBH into the web knockout at approximately 45°.

Step 2: Rotate the SUBH into a horizontal position aligned with the u-channel so the slots engage the stud web.

Step 3: Slide the SUBH down over the u-channel flanges, ensuring that the connector and u-channel are fully seated. (Note: For installations at slip track, the connector may be installed inverted see p. 139.)



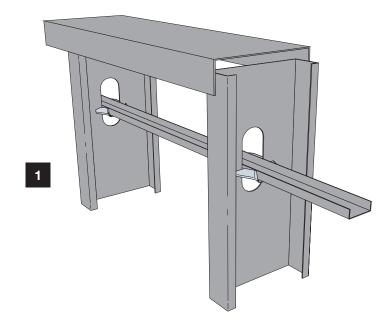
Step 4: Install the specified type and number of screws through the holes of the SUBH into the u-channel.



Installation Details

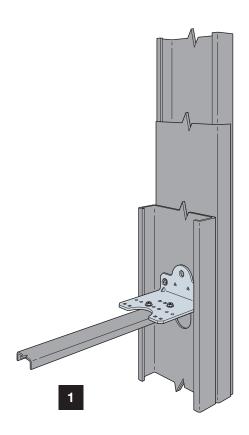
Typical Orientations

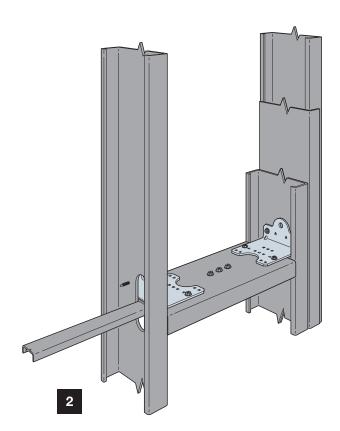

Round Hole Near Side


Round Hole Far Side

2

Recommended Details at Built-Up Studs

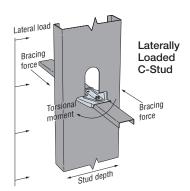

Recommended Detail at Slip Track

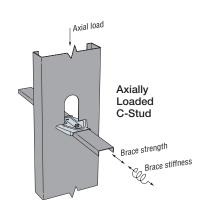


Alternate and Optional U-Channel Bridging Installation Details

Recommended details where knockout access is restricted, or where additional u-channel restraint is needed for load path considerations.

How to Use Bridging Connector Allowable Load Table


The tabulated strength and stiffness values are for use with Sections C2.2.1 and C2.3 of the 2016 edition of AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100-2016) as follows:


Bracing Design for Laterally Loaded C-Studs

- Step 1: Calculate required bracing force for each flange using equation C2.2.1-3
- Step 2: Multiply result by stud depth to obtain torsional moment
- Step 3: Select connector with tabulated allowable torsional moment that exceeds torsional moment from Step 2 for the stud depth and gauge required

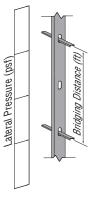
Bracing Design for Axially Loaded C-Studs

- Step 1: Calculate required brace strength using equation C2.3-1
- Step 2: Calculate required brace stiffness using equation C2.3-2a
- Step 3: Select connector with tabulated allowable brace strength that exceeds strength from Step 1 and tabulated brace stiffness that exceeds stiffness from Step 2 for the stud depth and gauge required

SUBH Bridge Clip Connector — Strength and Stiffness

			Laterally Lo	aded C-Stud		Axially I oa	ded C-Stud		
Model No.	Stud Depth (in.)	Stud Thickness mils (ga.)	Allov Torsional	vable	Brace St	vable trength ^{1,2} b.)	Brace S	tiffness³ /in.)	Code Ref.
			Min.	Max.	Min.	Max.	Min.	Max.	
		33 (20)	215	330	155	275	2,300	2,685	
LSUBH3.25		43 (18)	230	370	175	310	5,075	7,585	
		54 (16)	225	370	195	345	5,075	8,100	
	3.50	33 (20)	320	345	230	370	1,450	1,985	
SUBH3.25	or	43 (18)	355	430	255	420	2,780	4,035	
	3.625	54 (16)	420	455	290	475	2,925	3,975]
		54 (16)	550	800	435	630	3,440	4,015	
MSUBH3.25		68 (14)	640	860	860 485 695		4,040	6,145]
		97 (12)	670	860	515	770	6,860	14265]
		33 (20)	225	330	120	140	670	730	
LSUBH3.25		43 (18)	250	395	155	285	1,010	2,075	ļ
		54 (16)	265	395	180	330	1,025	2,565	
		33 (20)	275	385	110	110	605	605	IBC,
SUBH3.25	6.00	43 (18)	295	525	230	250	1,050	1,205	FL, LA
		54 (16)	350	550	275	415	1,130	1,700]
		54 (16)	565	895	385	430	1,630	1,695	J
MSUBH3.25		68 (14)	655	925	455	620	1,860	2,655	
		97 (12)	690	960	505	765	4,070	4,090	
LSUBH3.25		43 (18)	235	375	135	135	815	815]
L30BH3.23		54 (16)	250	375	180	260	1,130	1,130	
SUBH3.25		43 (18)	255	570	190	190	505	535	J
300113.23	8.00	54 (16)	325	605	250	300	895	1,025	
		54 (16)	545	890	270	270	1,025	1,045]
MSUBH3.25		68 (14)	635	925	435	455	1,400	1,400]
		97 (12)	2) 665 955		545	545	2,465	2,465]
MSUBH3.25	10, 12	54 (16)	— 820		_	200	_		

- Allowable loads are for use when utilizing Allowable Stress Design methology. For LRFD loads multiply the ASD tabulated values by 1.6.
- 2. Allowable brace strengths are based on ultimate test load divided by a safety factor. Serviceability limit is not considered, as brace stiffness requirements are given in section C2.3 of AISI S100-2016. Contact Simpson Strong-Tie if nominal brace strength is required.
- Tabulated stiffness values apply to both ASD and LRFD designs.
- Allowable loads consider bridging connection only. It is responsibility of the designer to verify the strength and serviceability of the framing members.
- 5. Min. fastener quantity and tabulated values – fill round hole (one screw total); Max. fastener quantity and tabulated values – fill round and triangle holes (two screws total).
- 6. For 4" and 5.5" stud depth, reference SUBH connector page at strongtie.com.


Bridging, Bracing and Backing

LSUBH — Maximum Vertical Spacing for Rows of U-Channel Bridging (ft.)

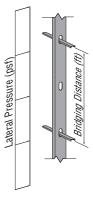
Stud		Stud									Latera	l Stud I	Pressui	re (psf)									
Spacing	Stud Section	Thickness		5	1	0	1	5	2	:0	2	5	3	0	3	5	4	0	4	5	5	50	
(in.)	00011011	mil (ga.)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
		33 (20)	8	8	8	8	8	8	6	8	5	8	4	6	1	5	_	5	1	4	_	4	
	362S162	43 (18)	8	8	8	8	8	8	7	8	5	8	4	7	4	6	_	5		5	_	4	
		54 (16)	8	8	8	8	8	8	7	8	5	8	4	7	4	6	_	5	_	5	_	4	
		33 (20)	8	8	8	8	6	8	5	8	4	6		5		4		4		_			
	362S200	43 (18)	8	8	8	8	7	8	5	8	4	7	_	6	_	5	_	4	_	4	_	_	
		54 (16)	8	8	8	8	7	8	5	8	4	7	_	6	_	5	_	4	_	4	_	_	
	362S250	43 (18)	8	8	8	8	6	8	4	7		5	_	4	_	4	_	_	_	_	_	_	
		54 (16)	8	8	8	8	5	8	4	7		5 8	5	8	4	4	4	6		5		4	
	600S162	33 (20) 43 (18)	8	8	8	8	8	8	8	8	6 7	8	6	8	5	6 8	4	7	4	6		5	
	0003102	54 (16)	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	7	4	6		5	
16		33 (20)	8	8	8	8	8	8	6	8	4	7	4	6		5	_	4	_	4		_	
	600S200	43 (18)	8	8	8	8	8	8	6	8	5	8	4	7	_	6	_	5	_	4	_	4	
	0000200	54 (16)	8	8	8	8	8	8	7	8	5	8	4	7	4	6	_	5	_	4	_	4	
	600S250	43 (18)	8	8	8	8	7	8	5	8	4	6	_	5	_	4	_	4	_	_	_	_	
	600S250	54 (16)	8	8	8	8	7	8	5	8	4	6	_	5	_	4	_	4	_	_	_	_	
	0000100	43 (18)	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	7	4	6	_	6	
	800S162	54 (16)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	7	4	6	
	800S200	43 (18)	8	8	8	8	8	8	7	8	5	8	4	7	4	6	_	5	_	5	_	4	
	0003200	54 (16)	8	8	8	8	8	8	7	8	6	8	5	7	4	6	_	5	_	5	_	4	
	800S250	43 (18)	8	8	8	8	7	8	5	8	4	7	_	5	_	5	_	4	_	_	_	_	
	0000200	54 (16)	8	8	8	8	8	8	6	8	4	7	4	6		5	_	4		4	_	_	
	362S162	33 (20)	8	8 8 8 6 8 4 6 — 5 — 4 —	_	_	_	_	_	_	_												
	362S162 362S162	43 (18)	8	8	8	8	6	8	4	7		6	_	5		4	_	_			_	_	
	3020102	54 (16)	8	8	8	8	6	8	4	7	_	6	_	5	_	4	_					_	
	362S200	33 (20)	8	8	6	8	4	7	_	5		4	_	_		_	_		_	_	_	_	
	362S200 362S200	43 (18)	8	8	7	8	4	8		6		4		4									
		54 (16) 43 (18)	8	8	6	8	4	6		4	_	4		4									
	362S250 362S250	54 (16)	8	8	5	8		6		4													
		33 (20)	8	8	8	8	7	8	5	8	4	6		5		4		4		_	_	_	
	600S162 600S162	43 (18)	8	8	8	8	8	8	6	8	4	7	4	6		5	_	4		4	_	_	
	600S162	54 (16)	8	8	8	8	8	8	6	8	5	7	4	6	_	5		4		4		_	
24	600S200	33 (20)	8	8	8	8	5	8	4	6		4	_	4			_	_		_	_	_	
	600S200	43 (18)	8	8	8	8	6	8	4	7	_	5	_	4	_	4	_	_	_	_	_	_	
	600S200	54 (16)	8	8	8	8	6	8	4	7	_	5	_	4	_	4	_	_	_	_	_	_	
	600S250	43 (18)	8	8	7	8	4	7	_	5	l	4	_	_		_		_		_		_	
	600S250	54 (16)	8	8	7	8	5	7	_	5	_	4	_	_	_	_	_	_	_	_	_	_	
	800S162	43 (18)	8	8	8	8	8	8	6	8	5	8	4	6		5	_	5		4	_	4	
	800S162	54 (16)	8	8	8	8	8	8	7	8	5	8	4	7	4	6	_	5	_	4	_	4	
	800S200	43 (18)	8	8	8	8	6	8	4	7		6		5	_	4	_	_	_	_	_	_	
	800S200	54 (16)	8	8	8	8	6	8	5	7	4	6	_	5	_	4	_	_	_	_	_	_	
	800S250	43 (18)	8	8	7	8	5	7	<u> </u>	5		4				_	_				_	_	
	800S250	54 (16)	8	8	8	8	5	8	4	6	_	4	_	4		—		—	_			_	

1. See General Information and Notes on pp. 15–17 and 26.

2. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.

^{3.} Lateral pressure shall be determined based on load combinations of the applicable code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at working stress level and may be used directly. For designs in accordance with the 2012 IBC and later, wind pressures are at strength level and must be multiplied by 0.6 for ASD load combinations.

^{4. &}quot;Min." designates a solution with the minimum number of fasteners ((1) #10 screw installed in round hole). "Max." designates a solution requiring the maximum number of fasteners ((2) #10 screws; fill both round and triangle holes). Blank areas designate conditions where the LSUBH does not offer a solution.

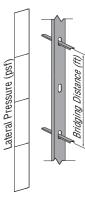

SUBH Design Tables

SIMPSON Strong-Tie

SUBH — Maximum Vertical Spacing for Rows of U-Channel Bridging (ft.)

				Lateral Stud Pressure (psf)																		
Stud Spacing	Stud	Stud Thickness	,	5	1	0	1	5	2	20	2	5	3	0	3	:5	4	10	4	5	5	i0
(in.)	Section	mil (ga.)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		33 (20)	8	8	8	8	8	8	8	8	8	8	6	7	5	6	5	5	4	4	4	4
	362S162	43 (18)	8	8	8	8	8	8	8	8	8	8	7	8	6	7	5	6	5	6	4	5
		54 (16)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	7	6	6	5	5
		33 (20)	8	8	8	8	8	8	7	8	6	6	5	5	4	4	_	4	_	_	_	
	362S200	43 (18)	8	8	8	8	8	8	8	8	6	8	5	6	4	5	4	5		4	_	4
		54 (16)	8	8	8	8	8	8	8	8	8	8	6	7 5	5	6	5	5	4	4	4	4
	362S250	43 (18) 54 (16)	8	8	8	8	8	8	6 8	8	5 6	7	4 5	5	4	5	4	4				
		33 (20)	8	8	8	8	8	8	8	8	8	8	6	8	5	8	5	7	4	6	4	5
	600S162	43 (18)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	8	4	7
4.0		54 (16)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	5	8
16		33 (20)	8	8	8	8	8	8	7	8	6	8	5	7	4	6	_	5	_	4	_	4
	600S200	43 (18)	8	8	8	8	8	8	8	8	6	8	5	8	4	8	4	7	_	6	_	5
		54 (16)	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	7	4	6	_	6
	600S250	43 (18)	8	8	8	8	8	8	6	8	5	8	4	7	_	6	_	5		5	_	4
		54 (16)	8	8	8	8	8	8	7	8	6	8	5	8	4	6	_	6	_	5	_	4
	800S162	43 (18)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	8	4	8
		54 (16)	8	8	8	8	8	8	8 7	8	8	8	8 5	8	7	8	6	8	6	8 7	5	8 7
	800\$200 -	43 (18) 54 (16)	8	8	8	8	8	8	8	8	8	8	6	8	5	8	5	8	4	8	4	7
	800\$250	43 (18)	8	8	8	8	8	8	6	8	4	8	4	8	_	7	_	6	_	6	_	5
		54 (16)	8	8	8	8	8	8	7	8	6	8	5	8	4	8	_	7	_	6	_	5
		33 (20)	8	8	8	8	8	8	6	7 5 5 4 4 — 4 — —	_	_										
	362S162	43 (18)	8	8	8	8	8	8	7	8	6	7	5	6	4	5	_	4	_	4	_	
		54 (16)	8	8	8	8	8	8	8	8	7	7	6	6	5	5	4	4	4	4	_	
		33 (20)	8	8	8	8	6	7	5	5	4	4	_	_	_	_	_	_	_	_	_	_
	362S200	43 (18)	8	8	8	8	7	8	5	6	4	5	_	4	_	_	_			_	_	
		54 (16)	8	8	8	8	8	8	6	7	5	5	4	4	_	4	_	_	_	_	_	
	362S250	43 (18)	8	8	8	8	6 7	7	4 5	5		4	_	_			_	_		_	_	
		54 (16) 33 (20)	8	8	8	8	8	8	6	5	4 5	7	4	6		5	_	4	_	4		
	600S162	43 (18)	8	8	8	8	8	8	7	8	5	8	4	8	4	7		6		5		5
	0000102	54 (16)	8	8	8	8	8	8	8	8	7	8	5	8	5	7	4	6		6	_	5
24		33 (20)	8	8	8	8	6	8	5	7	4	5	_	4	_	4	_	_	_	_	_	
	600S200	43 (18)	8	8	8	8	7	8	5	8	4	7	_	6	_	5	_	4	_	4	_	
		54 (16)	8	8	8	8	8	8	6	8	5	8	4	6	_	5	_	5	_	4	_	4
	600S250	43 (18)	8	8	8	8	5	8	4	7	_	6	_	5	_	4	_	_	_	_	_	
	0000200	54 (16)	8	8	8	8	6	8	5	8	4	6	_	5	_	4	_	4	_	_	_	
	800S162	43 (18)	8	8	8	8	8	8	7	8	5	8	4	8	4	8	_	7	_	7	_	6
		54 (16)	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	8	4	7		6
	800S200	43 (18)	8	8	8	8	6	8	5	8	4	8	_	7	_	6	_	5		5	_	4
		54 (16)	8	8	8	8	8	8	6	8	5	8	4	8	_	7	_	6		5	_	5
	800S250	43 (18)	8	8	8	8	5 6	8	5	8	4	7		6		5 5	_	4		4		
		54 (16)	Q	l o	Q	Ö	0	l o)	ΙÖ	4	_ /	_	0	_	_ 0	_	4		4		_

- 1. See General Information and Notes on pp. 15–17 and 26.
- 2. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.
- 3. Lateral pressure shall be determined based on load combinations of the applicable code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at working stress level and may be used directly. For designs in accordance with the 2012 IBC and later, wind pressures are at strength level and must be multiplied by 0.6 for ASD load combinations.
- 4. "Min." designates a solution with the minimum number of fasteners ((1) #10 screw installed in round hole). "Max." designates a solution requiring the maximum number of fasteners ((2) #10 screws; fill both round and triangle holes). Blank areas designate conditions where the SUBH does not offer a solution.


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

MSUBH — Maximum Vertical Spacing for Rows of U-Channel Bridging (ft.)

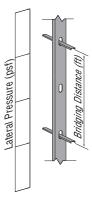
Study (in) Stu												Latera	I Stud I	Pressur	e (psf)			J ()					
Mile Mile	Stud		Stud Thickness			10		1	5	2	20					3	5	4	0	4	5	5	0
363162		Section																					
S62S162 S62 (14) 8 8 8 8 8 8 8 8 8			54 (16)																				
Section Sect		362\$162	. ,			_	_				_	_											
Second S		0020102	. ,				_				_				_								_
97(12)				8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	6	8	5	7
Secretary Secr		362S200	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	7	8	6	8
3628250			97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8
97(12)			54 (16)	8	8	8	8	8	8	8	_	8	8	7	8		8	5	7	4		4	6
600S102		362S250						_															
600S162			1 /																				
97(12) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0000400	. ,			_											-						
600S200		6008162	. ,	_		_					_												
600S200			. ,																				
97(12) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		600S200	. , ,						-														
Fig. 10			. ,																				
600S250		600S250	. ,				_										-						
97(12)			. ,	_		_					_												
S4(16)			. ,				_				_												
97 (12)			. ,																				
16 16 16 18 18 18 18 18		800S162	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
16			97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
97(12) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			54 (16)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8
54 (16) 8 </td <td>16</td> <td>800S200</td> <td>68 (14)</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>7</td> <td>8</td>	16	800S200	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
800S250 68 (14) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 6 8 6			97 (12)	8	8	8	8	8	8	8	8	8	8	8	8		8	8	8	8	8	8	8
97 (12) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8											_	_											
54 (16) 8 </td <td></td> <td>800S250</td> <td>. ,</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td>		800S250	. ,	_		_											-					_	-
1000S162 68 (14) — 8			. ,										_									6	
97 (12) 8 </td <td></td> <td>10000100</td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		10000100	. ,														-						
1000\$200 54 (16) — 8		10008162	. ,			_			-	_	-	_					-	_		_			
1000S200			. ,			_	-			_		_		_		_				_			
97 (12) — 8 — 8 — 8 — 8 — 8 — 8 — 8 — 8 — 8 —		10000000	. ,				_				_												_
1000S250 54 (16) — 8		10003200	. ,				_				_				_								
1000S250 68 (14) — 8			` '														-						
97 (12) 8 </td <td></td> <td>1000S250</td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td>		1000S250	. ,						-		-						-	_				_	
1200S162 54 (16) — 8		10000200	. ,			_		_		_	_	_		_		_		_		_		_	
1200S162 68 (14) — 8			, ,			_						_						_		_			
97 (12) — 8 <t< td=""><td></td><td>1200S162</td><td>. ,</td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td></t<>		1200S162	. ,	_		_		_		_		_		_		_		_		_		_	
1200S200 68 (14) — 8 — 8 — 8 — 8 — 8 — 8 — 8 — 8 — 8 —				_		_		_		_		_		_	_	_		_		_		_	_
97 (12) — 8 <t< td=""><td></td><td></td><td>54 (16)</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td><td>_</td><td>8</td></t<>			54 (16)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
54 (16) - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8		1200S200	68 (14)	_	8	_	8		8	_	8	_	8		8	_	8	_	8	_	8		8
			97 (12)	_	8	_	8	_	8		8	_	8		8	_	8	_	8	_	8		8
1200S250 68 (14) 8			54 (16)		8	_	8		8	_	8	_	8	_	8	_	8	_	8	_	8		8
		1200S250	68 (14)	_	8	_	8	_		_		_		_		_		_		_		_	8
97 (12) - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8			97 (12)		8	_	8		8	_	8	_	8	_	8	_	8	_	8	_	8		8

1. See General Information and Notes on pp. 15-17 and 26.

2. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.

^{3.} Lateral pressure shall be determined based on load combinations of the applicable code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at working stress level and may be used directly. For designs in accordance with the 2012 IBC and later, wind pressures are at strength level and must be multiplied by 0.6 for ASD load combinations.

^{4. &}quot;Min." designates a solution with the minimum number of fasteners ((1) #10 screw installed in round hole). "Max." designates a solution requiring the maximum number of fasteners ((2) #10 screws; fill both round and triangle holes). Blank areas designate conditions where the MSUBH does not offer a solution.


SUBH Design Tables

MSUBH — Maximum Vertical Spacing for Rows of U-Channel Bridging (ft.) (cont.)

IVIOOI		IVIANIII				•	0.011	.9						re (psf)		.9	9 (1.6)	., (/		
Stud Spacing	Stud	Stud Thickness		 5	1	0	1	5	2	:0	2	5	3	0	3	 5	4	0	4	.5	5	50
(in.)	Section	mil (ga.)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
		54 (16)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	5	7	4	6
	362S162	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	6	8	5	7
		97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7
		54 (16)	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	6	4	5	_	5
	362S200	68 (14)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	6	4	5
		97 (12)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7	5	6	4	5
		54 (16)	8	8	8	8	8	8	7	8	5	8	4	7	4	6		5	_	4		4
	362S250	68 (14)	8	8	8	8	8	8	8	8	6	8	5	7	4	6	4	5	_	5		4
		97 (12)	8	8	8	8	8	8	8	8	7	8	6	7	5	6	4	5	4	5	_	4
		54 (16)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8
	600S162	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8
		97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
		54 (16)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	4	7	4	6
	600S200	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	7
		97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	5	7
	0000000	54 (16)	8	8	8	8	8	8	8	8	6	8	5	8	4	7	4	6	_	5		5
	600S250	68 (14)	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	6	4	6	_	5
		97 (12)	8	8	8	8	8	8	8	8	8	8	6 8	8	5 8	8	5 7	7 8	6	6 8	6	5 8
	800S162	54 (16)	8	8		8	8	8	8	8	8	8		8		8	8	8	8	8	7	8
	0003102	68 (14) 97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
		54 (16)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	5	8	4	7
24	800S200	68 (14)	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8	5	7
24	0000200	97 (12)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	8
		54 (16)	8	8	8	8	8	8	8	8	7	8	5	8	5	8	4	7	_	6	_	5
	800S250	68 (14)	8	8	8	8	8	8	8	8	8	8	6	8	5	8	5	7	4	6	4	6
	0000200	97 (12)	8	8	8	8	8	8	8	8	8	8	7	8	6	8	5	7	4	7	4	6
		54 (16)	_	8	_	8	_	8	_	8	_	8		8	_	8	_	8		8	_	8
	1000S162	68 (14)	_	8		8		8		8		8		8	_	8		8		8		8
		97 (12)	_	8		8		8		8		8		8		8	_	8	_	8	_	8
		54 (16)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7
	1000S200	68 (14)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7
		97 (12)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7
		54 (16)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	6	_	5
	1000S250	68 (14)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	6	_	5
		97 (12)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	6	_	5
		54 (16)	_	8	_	8	_	8	_	8	_	8	_	8		8	_	8	_	8	_	8
	1200S162	68 (14)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
		97 (12)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
		54 (16)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
	1200S200	68 (14)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
		97 (12)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	8
		54 (16)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	6	_	6
	1200S250	68 (14)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	6	_	6
		97 (12)	_	8	_	8	_	8	_	8	_	8	_	8	_	8	_	7	_	7	_	6

- 1. See General Information and Notes on pp. 15–17 and 26.
- 2. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.
- 3. Lateral pressure shall be determined based on load combinations of the applicable code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at working stress level and may be used directly. For designs in accordance with the 2012 IBC and later, wind pressures are at strength level and must be multiplied by 0.6 for ASD load combinations.
- 4. "Min." designates a solution with the minimum number of fasteners ((1) #10 screw installed in round hole). "Max." designates a solution requiring the maximum number of fasteners ((2) #10 screws; fill both round and triangle holes). Blank areas designate conditions where the MSUBH does not offer a solution.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC

SUBH Bridging Connectors

Example #1: Curtain-Wall Stud

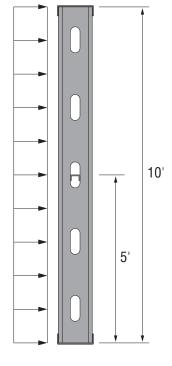
Given

- 2021 IBC (ASCE 7-16 and AISI S100-16)
- 600S162-43 (33 ksi) studs at 24" o.c.
- 10'-tall studs with mid-point bracing (5' o.c.)
- Wind design pressure = 41 psf

Select Connector Using Design Table (p. 143)

ASD wind pressure:

p = (0.6)(41 psf) = 24.6 psf


Note: 2021 IBC load combinations for ASD include a factor of 0.6 for wind loads.

For 600S162-43 stud with SUBH3.25 connector, and 25 psf wind pressure with 5' bracing distance:

SUBH3.25 with Min. fasteners OK

Notes

- 1. Only lateral load has been included for clarity. Design of curtain-wall studs should consider load combinations with vertical load in accordance with the applicable building code (see Example #2).
- 2. Bridging connector may also be designed using Allowable Loads table on p. 141 (see Example #2).

Example #2: Exterior Bearing-Wall Stud

Given

- 2021 IBC (ASCE 7-16 and AISI S100-16)
- 600S162-54 (50 ksi) studs at 24" o.c., 10' tall

Mid-point bracing (5' o.c.)

Required axial stud strength, $P_{ra} = 2,200$ lb.

Distance from shear center to mid-plane of web, m = 0.663" (AISI Manual, Table I-2)

• Wind design pressure = 34 psf

Axially-Loaded Stud Design

Required brace strength (AISI S100 Eq. C2.3-1):

 $P_{br,1} = 0.01P_{ra} = (0.01)(2,200 \text{ lb.}) = 22 \text{ lb.}$

Required brace stiffness (AISI S100 Eq. C2.3-2a):

 $\beta_{rb} = \{2[4-(2/n)]/Lb\}\Omega \\ P_{ra} = \{2[4-(2/1)]/60 \text{ in.}\}(2)(2,200) = 294 \text{ lb./in.}$

From Allowable Loads table (p. 141) for 6"-deep 54-mil stud:

➡ Select SUBH3.25 with Min. fasteners

Allowable brace strength = 275 lb. > 22 lb. **OK**

Brace stiffness = 1,130 lb./in. > 294 lb./in. **OK**

Laterally-Loaded Stud Design

Design load tributary to a single connector:

W = (0.6)(34 psf)(2 ft.)(5 ft.) = 204 lb.

Note: 2021 IBC load combinations for ASD include a factor of 0.6 for wind loads.

Required flange force (AISI S100 Eq. C2.2.1-3):

 $P_{L1} = -P_{L2} = 1.5 (m/d)W = (1.5)(0.663 in./6 in.)(204 lb.) = 33.8 lb.$

Torsional moment:

 $M_Z = P_{L1}d = -P_{L2}d = (33.8 lb.)(6 in.) = 203 in.-lb.$

From Allowable Loads table (p. 141) for 6"-deep 54-mil stud:

Select SUBH3.25 with Min. fasteners

Allowable torsional moment = 350 in.-lb. > 203 in.-lb. OK

Combined-Loading Check

 $(P_{br,1}/Allowable brace strength) + (M_Z/Allowable torsional moment) = (22 lb./275 lb.) + (203 in.-lb./350 in.-lb.) = 0.66 < 1.0$ **OK**

146

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

Simpson Strong-Tie introduces the SBR and DBR spacer bracers for cold-formed steel construction. These spacer bracers reduce the installed cost of cold-formed steel stud walls by enabling faster stud layout while minimizing the need for bridging clips.

The DBR is used for interior walls to eliminate stud bow and allow for quicker drywall attachment, while the SBR is designed for structural exterior walls. Both products provide bracing along the length of the stud, and for head-of-wall slip conditions. The SBR and DBR also come with prepunched slots that eliminate the need to use bridging clips with on-module studs.

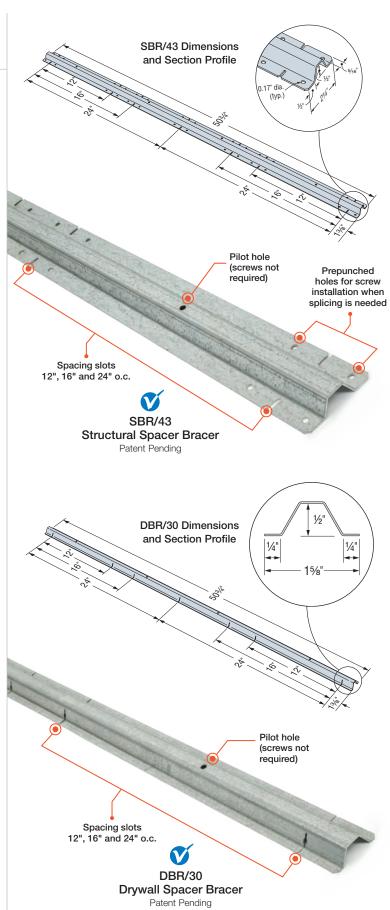
The SBR and DBR spacer bracers come with bracing load data based on assembly testing, thus mitigating risk for designers and maximizing confidence in design specs. In fact, the SBR and DBR are the only spacer bracers on the market with tabulated design values based on assembly tests.

Features:

- SBR and DBR have patent-pending precisionengineered prepunched slots strategically located to enable 12", 16" and 24" on-center stud spacing and can be used to space the studs without having to mark the top track for layout
- The SBR will accommodate 3%" up to 8" studs in thicknesses of 33 mil (20 ga.) through 68 mil (14 ga.)
- The DBR will accommodate 2½", 35%" and 6" studs in thicknesses of 15 mil (25 ga. EQ) through 33 mil (20 ga.)
- Prepunched holes in the SBR provide rapid screw installation when spacer-bracer splices are needed for axial load-bearing studs
- In off-layout or end-of run conditions, the hat-section profiles enable clip attachments to the stud with Simpson Strong-Tie® LSSC or RCA connectors

Installation:

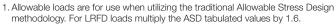
- Spacer bracers are fed through the stud knockout at a 90° angle until studs align with spacer-bracer slots. With the slots engaging the stud web, the spacer-bracer is then rotated back to the flat position so that the slotted flanges are on the bottom.
- For off-layout or end-of-run studs where a spacerbracer slot does not engage a stud, manually snip the spacer-bracer flanges with a ½"-deep slot and secure the spacer bracer to the stud with Simpson Strong-Tie LSSC or RCA connectors. Use all specified fasteners.
- Wear gloves while handling and installing spacer bracers.

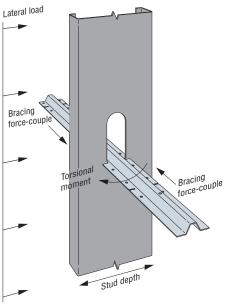

 $\textbf{Material:} \ \mathsf{SBR/43} - \mathsf{43} \ \mathsf{mil} \ \mathsf{(40} \ \mathsf{ksi)};$

DBR/30 — 27 mil (33 ksi) Finish: Galvanized (G90)

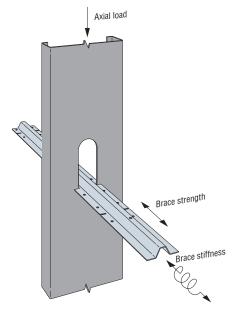
Codes: See p. 13 for Code Reference Key Chart

Ordering Information:


SBR/43-R680 (Pallet 680) SBR/43-R20 (Box of 20) DBR/30-R680 (Pallet 680) DBR/30-R20 (Box of 20)


SBR and DBR Spacer Bracer — Connection Strength and Stiffness

Model No.	Stud Depth (in.)	Stud Thickness mil (ga.)	Allowable Torsional Moment (in./lb.)	Allowable Brace Strength (lb.)	Brace Stiffness (lb./in.)	Code Ref.
		33 (20)	235	390	845	
	35/8	43 (18)	310	435	1,390	
	3%8	54 (16)	400	435	1,390	
		68 (14)	400	435	1,390	
		33 (20)	215	160	495	
SBR/43	6	43 (18)	310	330	765	
5BR/43	0	54 (16)	365	450	840	
		68 (14)	365	450	840	
		33 (20)	200	_	_	
	8	43 (18)	310	_	_	
	0	54 (16)	335	_	_	
		68 (14)	335	_	_	
		15 (25 EQ)	55	_	_	
		18 (25)	55	_	_	
	2½	19 (20 EQ)	60	_	_	
		30 (20 DW)	85	_	_	
DBR/30		33 (20 STR)	90	_	_	
DBN/30		15 (25 EQ)	55	_	_	
		18 (25)	55	_	_	
	6	19 (20 EQ)	60	_	_	
		30 (20 DW)	85	_	_	
		33 (20 STR)	90	_	_	



^{2.} Tabulated Allowable Brace Strengths are based on ultimate test load divided by a safety factor. Serviceability limit is not considered, as brace stiffness requirements are given in section C2.3 of AISI S100-16.

- 3. Tabulated Brace Stiffness values apply to both ASD and LRFD designs.
- 4. Allowable loads consider bridging connection only. It is the responsibility of the designer to verify the strength and serviceability of the framing members.
- 5. EQ equivalent, DW drywall, STR structural.

Laterally Loaded C-Stud with SBR Spacer Bracer (DBR spacer bracer similar)

Axially Loaded C-Stud with SBR Spacer Bracer

Bridging, Bracing and Backing

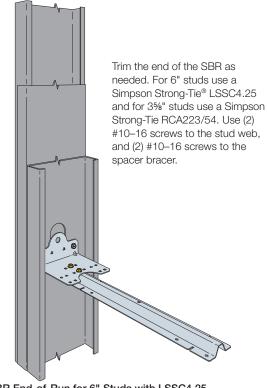
SBR and DBR Gross Properties

Model	Design	Fv	Area ²	l _x ⁴	S _X ³	R _X	l _v ⁴	S _v ³	R _v		Tors	ional Pro	perties		
No.	Thickness (in.)	(ksi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Jx1,000 ⁴ (in.)	C _W ⁶ (in.)	Y ₀ (in.)	m (in.)	R ₀ (in.)	β
SBR/43	0.0468	40	0.126	0.0047	0.1458	0.1936	0.0436	0.0400	0.5891	0.0916	5.56E-04	0.283	0.017	0.681	0.828
DBR/30	0.0289	33	0.060	0.0023	0.0082	0.1936	0.0109	0.0141	0.4259	0.0167	7.05E-05	0.346	0.087	0.582	0.647

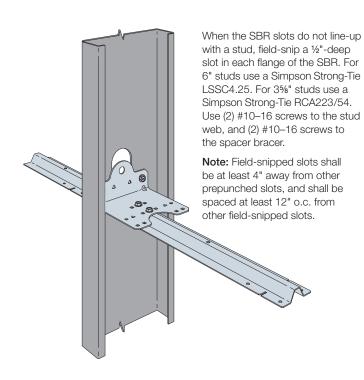
SBR and DBR Net Properties

Model	Area ²	l _x ⁴	S _x ³	R _X	lv ⁴	S _V ³	Rv			Torsional	Properties		
No.	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Jx1,000 ⁴ (in.)	Cw ⁶ (in.)	Y ₀ (in.)	m (in.)	R ₀ (in.)	β
SBR/43	0.085	0.0028	0.0097	0.1816	0.0120	0.0184	0.3765	0.0617	3.43E-05	0.355	0.141	0.548	0.581
DBR/30	0.022	0.0001	0.0004	0.0479	0.0008	0.0027	0.1944	0.0061	1.09E-06	0.086	0.051	0.218	0.844

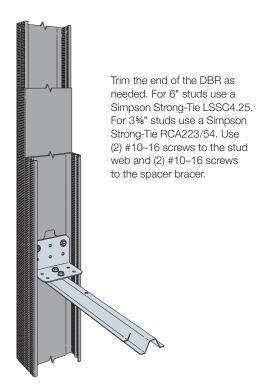
SBR and DBR Allowable Member Strengths

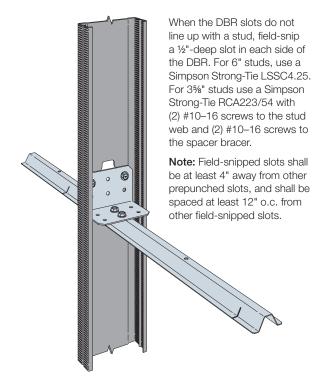

Model No.	M _a (F _y) (inlb.)	Ma (12" o.c.) (inlb.)	Ma (16" o.c.) (inlb.)	Ma (24" o.c.) (inlb.)	Pa (12" o.c.) (lb.)	Pa (16" o.c.) (lb.)	P _a (24" o.c.) (lb.)
SBR/43	369	369	369	360	945	904	618
DBR/30	44	40	38	32	_	_	_

^{1.} Net section properties are based a section that excludes all material that is interrupted by the slots.

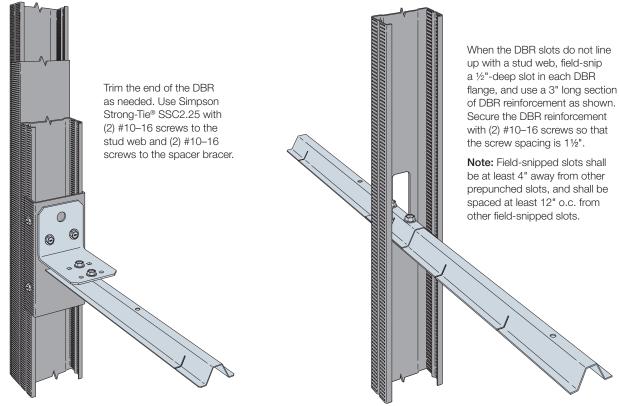

^{2.} Member strengths are based on DSM Analysis (non-prequalified section, $\Omega = 2.0$).

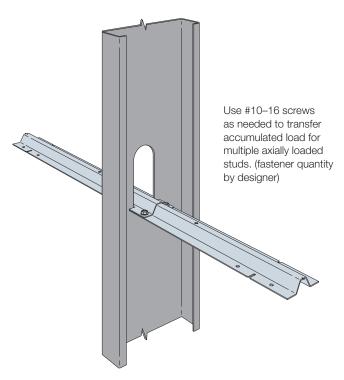
 $^{3.} C_b = 1.67$ has been applied to M_a to account for a triangular moment diagram with zero end moment.




SBR End-of-Run for 6" Studs with LSSC4.25 (3%" studs with RCA 223/54 similar)

SBR Off-Module for 6" Studs with LSSC4.25 (3%" studs with RCA 223/54 similar)

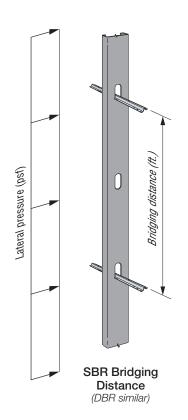

DBR End-of-Run for 3%" Studs with RCA223/54 (6" studs with LSSC4.25 similar)


DBR Off-Module for 35/8" Studs with RCA223/54 (6" studs with LSSC4.25 similar)

DBR End-of-Run for 2.5" Studs with SSC2.25

DBR Off-Module for 21/2" Studs with DBR Reinforcement (DBR and SBR with 3%" studs and 6" studs similar)

Typical SBR Splice for Axially Loaded Studs

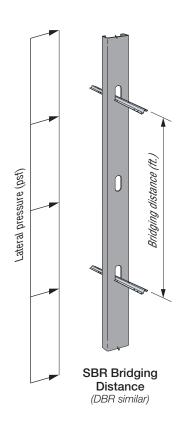

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

SBR/DBR Spacer Bracers

Strong-Tie

SBR/43 Maximum Bridging Distance (ft.)

Stud	Stud	Stud				Latera	al Stud I	Pressur	e (psf)			
Spacing (in.)	Section	Thickness mil (ga.)	5	10	15	20	25	30	35	40	45	50
		33 (20)	8	8	8	8	7	6	5	4	4	_
	362S162	43 (18)	8	8	8	8	8	8	7	6	5	5
	3023102	54 (16)	8	8	8	8	8	8	8	7	7	6
		68 (14)	8	8	8	8	8	8	8	8	7	6
		33 (20)	8	8	8	7	6	5	4	_	_	_
	362S200	43 (18)	8	8	8	8	8	6	5	5	4	4
	3020200	54 (16)	8	8	8	8	8	8	6	6	5	4
12		68 (14)	8	8	8	8	8	8	6	6	5	4
12		33 (20)	8	8	8	8	8	7	6	5	4	4
	600S162	43 (18)	8	8	8	8	8	8	8	7	6	6
	0003102	54 (16)	8	8	8	8	8	8	8	8	8	7
		68 (14)	8	8	8	8	8	8	8	8	8	7
		33 (20)	8	8	8	7	6	5	4	_	_	_
	600S200	43 (18)	8	8	8	8	8	7	6	5	5	4
	0003200	54 (16)	8	8	8	8	8	8	7	6	6	5
		68 (14)	8	8	8	8	8	8	7	6	6	5
		33 (20)	8	8	8	7	5	4	4	_	_	_
	362S162	43 (18)	8	8	8	8	7	6	5	4	4	_
	3023102	54 (16)	8	8	8	8	8	7	6	5	5	4
		68 (14)	8	8	8	8	8	8	6	6	5	4
		33 (20)	8	8	7	5	4	_	_	_	_	_
	362S200	43 (18)	8	8	8	7	6	5	4		_	_
	3023200	54 (16)	8	8	8	8	7	6	5	4	4	_
16		68 (14)	8	8	8	8	7	6	5	4	4	_
10		33 (20)	8	8	8	7	6	5	4		_	_
	600S162	43 (18)	8	8	8	8	8	7	6	5	5	4
	0000102	54 (16)	8	8	8	8	8	8	7	6	6	5
		68 (14)	8	8	8	8	8	8	7	6	6	5
		33 (20)	8	8	7	5	4	_	_	_	_	_
	600S200	43 (18)	8	8	8	8	6	5	4	4	_	_
	0003200	54 (16)	8	8	8	8	8	6	5	5	4	4
		68 (14)	8	8	8	8	8	6	5	5	4	4
		33 (20)	8	8	6	4	_	_	_	_	_	_
	362\$162	43 (18)	8	8	8	6	5	4	_	_	_	_
	3023102	54 (16)	8	8	8	7	6	5	4		_	_
		68 (14)	8	8	8	7	6	5	4		_	_
		33 (20)	8	7	5	_	_	_	_		_	_
	362S200	43 (18)	8	8	6	5	4	_	_	_	_	_
	JUZJZUU	54 (16)	8	8	7	5	4	_	_	_	_	
2/	24 600\$162	68 (14)	8	8	7	5	4	_	_	_	_	_
47		33 (20)	8	8	7	5	4	_		_	—	_
		43 (18)	8	8	8	7	6	5	4	_	_	
600\$162	0000102	54 (16)	8	8	8	8	7	6	5	4	4	
		68 (14)	8	8	8	8	7	6	5	4	4	_
		33 (20)	8	7	5	_	_	_	_	_	_	
	600S200	43 (18)	8	8	7	5	4	_		_	_	
	0000200	54 (16)	8	8	8	6	5	4	_	_	_	_
		68 (14)	8	8	8	6	5	4	_	_	_	_



- 1. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.
- 2. Lateral pressures shall be determined based on the load combinations of the applicable building code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at the working stress level and may be used directly. For designs in accordance with the 2012, 2015, 2018 and 2021 IBC, wind pressures are at the strength level and must be multiplied by 0.6 for ASD load combinations.
- 3. Tabulated values are based on the minimum of the tested connection strength and the calculated SBR/DBR member strength. Studs must be checked separately for unbraced length.
- 4. For 8"-studs tabulated values, reference strongtie.com.

DBR/30 Maximum Bridging Distance (ft.)

Stud Spacing (in.)	Stud Section	Stud Thickness mil (ga.)		d Pressure sf)
(,		(3)	5	10
		15 (25 EQ)	8	5
		18 (25)	8	5
	362S125	19 (20 EQ)	8	5
		30 (20 DW)	8	5
12		33 (20 STR)	8	5
12		15 (25 EQ)	8	6
		18 (25)	8	6
	600S125	19 (20 EQ)	8	6
		30 (20 DW)	8	6
		33 (20 STR)	8	6
		15 (25 EQ)	7	_
		18 (25)	7	_
	362S125	19 (20 EQ)	7	_
		30 (20 DW)	7	_
10		33 (20 STR)	7	_
16		15 (25 EQ)	8	4
		18 (25)	8	4
	600S125	19 (20 EQ)	8	4
		30 (20 DW)	8	4
		33 (20 STR)	8	4
		15 (25 EQ)	4	_
		18 (25)	4	_
	362S125	19 (20 EQ)	4	_
		30 (20 DW)	4	_
24		33 (20 STR)	4	_
24		15 (25 EQ)	4	_
		18 (25)	4	_
	600S125	19 (20 EQ)	4	_
		30 (20 DW)	5	_
		33 (20 STR)	5	_

- 1. Tabulated solutions are for ASD lateral pressure. Contact Simpson Strong-Tie for LRFD solutions.
- 2. Lateral pressures shall be determined based on the load combinations of the applicable building code. For designs in accordance with the 2009 IBC and earlier, wind pressures are at the working stress level and may be used directly. For designs in accordance with the 2012 and later IBC, wind pressures are at the strength level and must be multiplied by 0.6 for ASD load combinations.
- 3. Tabulated values are based on the minimum of the tested connection strength and the calculated SBR/DBR member strength. Studs must be checked separately for unbraced length.

SBR Spacer Bracer

SIMPSON Strong-Tie

Given

- 2021 IBC (ASCE 7-16 and AISI S100-16)
- 600S162-54 (50 ksi) studs at 24" o.c., 10'-stud height
 - Mid-point bracing (5' o.c.)
 - Distance from shear center to mid-plane of web, m = 0.663". (AISI Manual, Table I-2)
- Wind design pressure = 34 psf
- Pra = Required ASD axial load = 3,000 lb.

Axially Loaded Stud

Required brace strength (AISI S100, Eq. C2.3-1)

$$P_{rb} = 0.01P_{ra} = (0.01)(3,000 \text{ lb.}) = 30 \text{ lb.}$$

Required brace stiffness (AISI S100, Eq. C2.3-2a)

$$\beta_{rb} = (2[4-(2/n)]/L_b)(\Omega P_{ra}) = (2[4-(2/n)]/60)(2)(3,000) = 400 \text{ lb./in.}$$

Check connection strength and stiffness from Strength and Stiffness table (p. 148) for the SBR/43 for 6"-deep, 54-mil studs

- Allowable brace strength = 450 lb. > 30 lb. **OK**
- Allowable brace stiffness = 840 lb./in. > 400 lb./in. OK

Check member strength from Allowable Strengths table (p. 148) for the SBR/43 for 24" o.c.

Pa (24" o.c.) = Allowable member strength = 618 lb. > 30 lb. OK

Note: Member stiffness and the effects of accumulated load for multiple axially loaded studs have not been accounted for in the above calculations. Reference CFSEI Tech Note W400-16 for additional guidance on these topics.

Laterally Loaded Stud

ASD Design load tributary to brace:

W = (0.6)(34 psf)(2 ft.)(5 ft.) = 204 lb.

Note: 2021 IBC load combinations for

ASD include a factor of 0.6

Required flange force (AISI S100 Eq. C2.2.1-3)

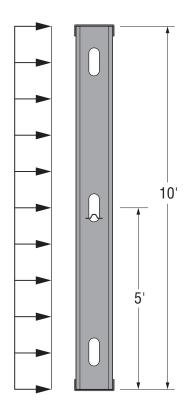
$$P_{L1} = -P_{L2} = 1.5 (m/d)W = (1.5)(0.663 in./6 in.)(204 lb.) = 33.8 lb.$$

Torsional moment

$$M_Z = P_{L1}d = -P_{L2}d = (33.8)(6) = 202.8 \text{ in.-lb.}$$

Moment applied to bridging member

 $M_{\text{m}} = 0.64 M_{\text{Z}} = (0.64)(202.8) = 129.8 \text{ in.-lb.}$


Note: The 0.64 factor is from an analysis of a five-span continuous beam that is loaded with equal support moments (Reference AISI Design Guide D110-07, pp. 2–9, Figure 2-6)

Check connection strength from Strength and Stiffness table (p. 148) for the SBR/43 for 6"-deep, 54-mil studs

Allowable torsional moment = 365 in.-lb. > 202.8 in.-lb. **OK**

Check member strength from Allowable Strengths table (p. 148) for the SBR/43 for 24" o.c.

→ Ma (24" o.c.) = Allowable moment = 360 in.-lb. > 129.8 in.-lb. **OK**

Combined-Loading Check of Connection

(Pbr/Allowable brace strength) + (Mz/Allowable torsional moment) ≤ 1.0 (30 lb./450 lb.) + (202.8 in.-lb./365 in.-lb.) = 0.62 < 1.0 OK

Combined-Loading Check of Bridging Member

Reference AISI Eq. H1.2-1.

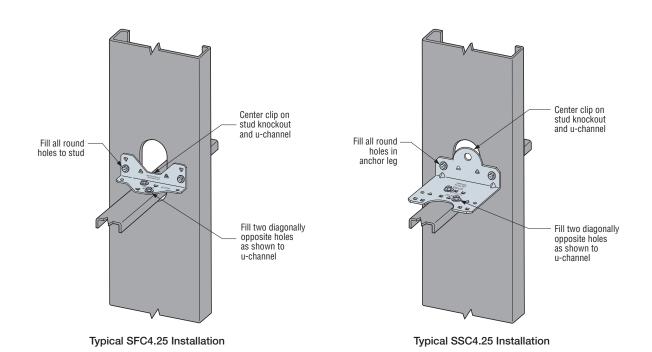
Reference Chapter E for Ω_{C} and Chapter F for Ω_{b} .

$$\frac{\Omega_c P}{P_n} \quad + \quad \frac{\Omega_b M}{M_n} \; \leq 1.0$$

$$P_n = 2P_a$$
 $M_n = 2M_a$

$$\frac{1.8 (30)}{2 (618)} + \frac{1.67 (129.8)}{2 (360)} = 0.34 < 1.0$$
 OK

Note: The allowable strengths given in the Allowable Strengths table (p. 148) have been converted to nominal strengths by multiplying by $\Omega=2.0$.


SFC Steel Framing Connectors / SSC Steel-Stud Connectors

SFC/SSC Connectors - U-Channel Bridging Allowable Loads

	Connector	Ol:-	044	044	Faste	ners ^{1,5}	Laterally Loaded C-Stud	Axially Loa	ded C-Stud	
Model No.	Material Thickness mil (ga.)	Clip Length (in.)	Stud Depth (in.)	Stud Thickness mil (ga.)	Stud	Bridging	Allowable Torsional Moment² (inlb.)	Allowable Brace Strength ^{2, 3} (lb.)	Brace Stiffness ⁴ (lb./in.)	Code Ref.
				33 (20)	(2) #10	(2) #10	275	125	860	
SFC4.25	54 (16)	41⁄4	6	43 (18)	(2) #10	(2) #10	510	190	1,220	
				54 (16)	(2) #10	(2) #10	645	280	2,045	
LSSC4.25	54 (16)	41/4	6	54 (16)	(2) #10	(2) #10	1,085	180	165	IBC
				54 (16)	(2) #10	(2) #10	655	280	2,045	IBC
SSC4.25	68 (14)	41⁄4	6	68 (14)	(2) #10	(2) #10	805	335	2,305	
				97 (12)	(2) #10	(2) #10	920	660	4,230	
LSSC6.25	54 (16)	61/4	8, 10, 12	54 (16)	(2) #10	(2) #10	1,085	180	685	

- 1. See illustrations for fastener placement.
- 2. Allowable loads are for use when utilizing Allowable Stress Design methodology. For LRFD loads, multiply the tabulated ASD values by 1.6.
- 3. Allowable brace strengths are based on ultimate test load divided by a safety factor. Serviceability limit is not considered, as brace stiffness requirements are given in Section C2.3 of AISI S100. Contact Simpson Strong-Tie if nominal brace strength is required.
- 4. Tabulated stiffness values apply to both ASD and LRFD designs.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

DBC Drywall Bridging Connector

Work smarter, not harder

Patented design allows for one- or two-screw installation of the DBC, significantly reducing labor and material cost. The first and only connector load rated for ¾" u-channel, the DBC joins the SUBH line of bridging connectors tested as a system, ensuring that published design capacities capture the influence of stud web depth and thickness.

Features:

- Most applications require only a single screw
- Designed for ¾" u-channel to fit smaller web knockouts common to drywall studs
- Compatible with drywall stud depths of 35/8" and 6" with 11/2" wide knockouts

Material: 33 mil (20 ga.) carbon steel

Finish: Galvanized (G90)

Installation:

- With ¾" x 54 mil (16 ga.) u-channel installed through the stud web knockouts, insert the DBC2.5 through the knockout so that the DBC slots engage the stud web and the DBC flanges engage the u-channel as shown in the illustration
- Use the specified number of #8 screws to fasten the DBC to the u-channel

Codes: See p. 13 for Code Reference

Key Chart

Ordering Information: DBC2.5-R200

(Bucket of 200)

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

DBC Drywall Bridging Connector

DBC — Bridging Connector Strength Allowable Loads

Model	Stud		d Thickness 'ield Strengt		Faste	eners	Laterally Loaded C-Stud Allowable Torsional	Code
No.	Depth	Mil	Gauge ³	Fy (ksi)			Moment (inlb.)	Ref.
		15	25 EQ.	50				
		18	25	33	Min.	(1) #8	65	
		19	20 EQ.	65	IVIIII.	(1) #0	03	
	3%	20	20 EQ.	57				
		30	20 DW	33	Min.	(1) #8	85	
		33	20 00	30	Max.	(2) #8	125	
			20 STR	33	Min.	(1) #8	85	
DBC2.5		33	20 3111	33	Max.	(2) #8	125	
0002.0		15	25 EQ.	50				
		18	25	33	Min	Min. (1) #8 65		
		19	20 EQ.	65	IVIIII.	(1)#0	00	
	6	21	20 EQ.	57				
	0	30	20 DW	33	Min.	(1) #8	85	
		30	20 DW	33	Max.	(2) #8	125	
		33	20 STR	33	Min.	(1) #8	85	
			20311	33	Max.	(2) #8	125	

^{1.} Allowable loads are for use when utilizing Allowable Stress Design methodology.

Design Example

Given

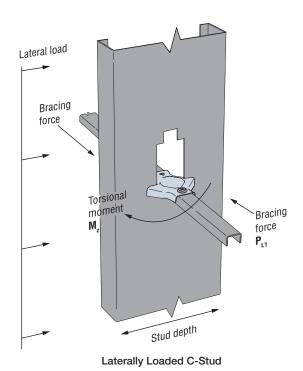
- 600S125-18 (33 ksi) studs at 24" o.c., 10' tall Mid-point bracing (5' o.c.) Distance from shear center to mid-plane of web, m = 0.408 in. (SFIA Technical Guide Version 2022)
- Lateral load = 5 psf

Laterally-Loaded Stud Design

ASD Design load tributary to brace:

$$W = (5 psf)(2 ft.)(5 ft.) = 50 lb.$$

Required bracing force (AISI S100 Eq. C2.2.1-3):


$$P_{L1} = -P_{L2} = 1.5 (m/d)W = (1.5)(0.408 in./6 in.)(50 lb.) = 5.1 lb.$$

Torsional moment:

$$M_Z = P_{L1}d = -P_{L2}d = (5.1 \text{ lb.})(6 \text{ in.}) = 30.6 \text{ in.- lb.}$$

From Allowable Loads table above, for 6"-18 mil stud:

→ Select DBC2.5 with Min. fasteners ((1) #8) Allowable torsional moment = 65 in.- lb. > 30.6 in.- lb. **OK**

For LRFD loads, multiply the ASD tabulated values by 1.6.

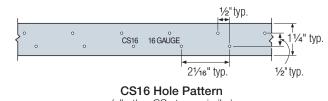
^{2.} Min. fastener quantity and tabulated values — fill round hole (one screw total);

Max. fastener quantity and tabulated values — fill round and triangle holes (two screws total).

^{3.} EQ - equivalent, DW - drywall, STR - structural.

CS Coiled Strap

CS coiled utility straps are an ideal solution when it is desired to brace wall studs via the flanges with strap. These products are packaged in lightweight (about 40 pounds) cartons and can be cut to length on the jobsite.


Materials: See table.

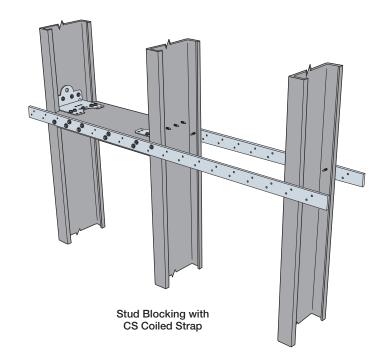
Finish: Galvanized (G90); ZMAX®

Installation:

- Use all specified fasteners; see General Notes.
- Refer to the applicable code for minimum edge and end distance.
- The table shows the maximum allowable loads and the screws required to obtain them. See footnote #1. Fewer screws may be used as given by footnote #3.

Codes: See p. 13 for Code Reference Key Chart

(all other CS straps similar)


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

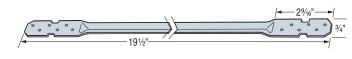
	Total	Connector		Fast	eners (At Block	ing) ⁴	Allowable	
Model No.	Length	Material Thickness mil (ga.)	Width (in.)	Framii	ng Thickness m	il (ga.)	Tension Load	Code Ref.
	(ft.)	IIII (ga.)		33 (20)	43 (18)	54 (16)	(lb.)	
CS16	150	54 (16)	11⁄4	(9) #10	(6) #10	(4) #10	1,550	IBC,
CS20	250	33 (20)	11⁄4	(6) #10	(4) #10	(3) #10	945	FL, LA

- 1. In order to achieve the tabulated loads in the strap, attach each strap to the blocking with the tabulated number of screws.
- 2. Strap length at blocking to achieve tabulated load = number of tabulated screws + 1".
- 3. Calculate the strap value for a reduced number of screws to the blocking as follows:

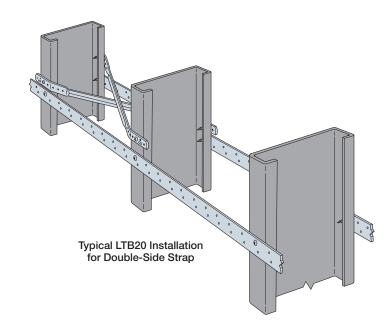
 $\label{eq:Allowable Load} \mbox{Allowable Load} = \frac{\mbox{No. of Screws Used}}{\mbox{No. of Screws in Table}} \mbox{ x Table Load}.$

4. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

LTB Bridging



LTB bridging connectors are a cost-effective solution for bracing between non-load-bearing wall studs when compared with field fabricated blocking and clip angles.


Material: 27 mil (22 ga.) Finish: Galvanized (G90)

Installation:

- Use (2) #10 screws at each end
- The LTB can be utilized with 3%", 6", 8", and 10" studs at 16" o.c.
- LTB works only in tension, so must be used in cross pairs
- Install bridging tightly; loose installation may allow stud movement

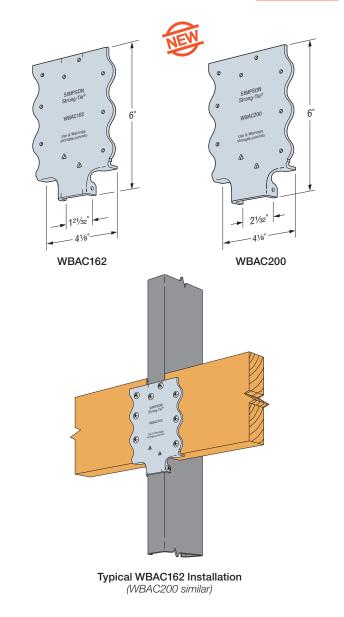
LTB20

WBAC Wood Backing Steel Connector

The WBAC wood backing steel connector is the ideal solution for connecting wood backing to cold-formed steel studs. Perfect for cabinets, shelves, handrails, heavy wall hangings and more, this versatile connector installs easily and provides tested strength. The WBAC is designed to eliminate alignment issues and reduce installation time. Since stiffness and strength are critical for these applications, the fastening pattern into both steel and wood has been engineered to optimize performance.

Features:

- Simple installation using prepunched holes allowing the same screw to be used for both wood backing and stud attachment
- Not limited to just a 15/4" flange, the WBAC has been tested to accommodate 11/4" flanges, 15/4" flanges and 2" flanges
- Works for any stud spacing, predetermined or typical stud spacing not required
- · Sight lines to guide installation alignment
- Unique rolled support bottom tabs provide extra strength and stiffness

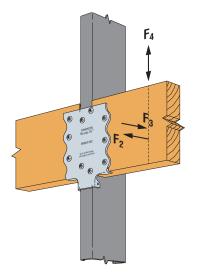

Materials: WBAC162 33 mil (20 ga.), 33 ksi; WBAC200 33 mil (20 ga.), 33 ksi

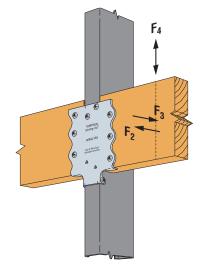
Finish: Galvanized (G90)

Installation:

- Attach to grade lumber or %" fire-rated board
- Use WBAC162 for 1¼" and 1%" flanges, and WBAC200 for 2" flanges
- Drywall stud (11/4" flange) Align top of connector with markings and attach using (4) #8–18 modified truss-head self-drilling screws to stud flange and (3) #8–18 modified truss-head screws to each wood block
- Structural studs (1%" and 2" flange) Attach using (4) #8–18 modified truss-head SDS screws [(2) to stud flange, (1) to lip, and (1) to web] and (3) #8–18 modified truss-head screws to each wood block

Codes: Testing performed in accordance with ICC-ES AC261 Ordering Information: WBAC162-R50, WBAC200-R50

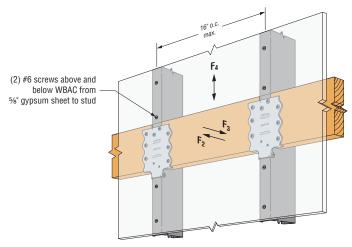



Fastener Patterns

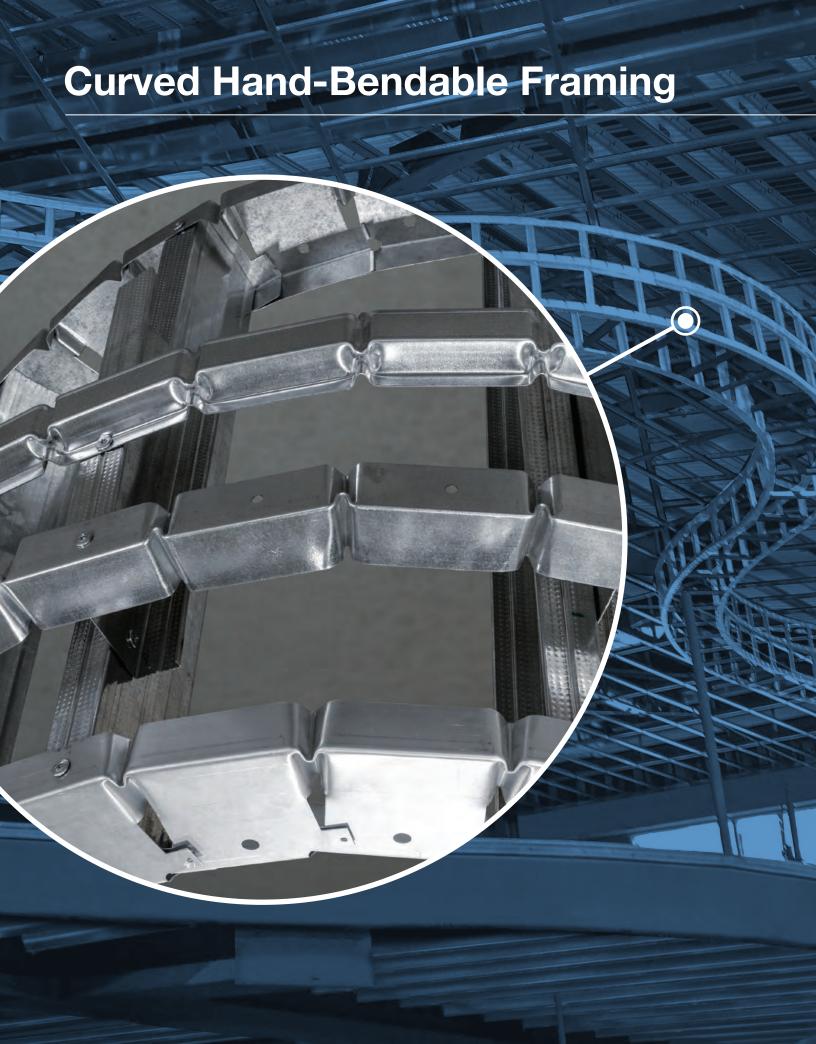
WBAC162 Installation	WBAC162 Installation	WBAC200 Installation
to 11/4" Flange	to 1%" Flange	to 2" Flange
SIMPSON Strong-Tie WBAC162 WBAC162 WBAC162 WBAC162	SIMPSON SITORIF TEP WBAC162 WBAC262 WBAC262 A A	SIMPSON Strong-Tied WBAC200 WBAC200 WB A warmings correlation was a contraction of the contraction of th

WBAC Wood Backing Steel Connector

WBAC162 Installation to 11/4" Flange


WBAC162 Installation to 1%" Flange

WBAC200 Installation to 2" Flange


Allowable Loads on Blocking Supported by WBAC (lb.)

		Stud Steel	Fast	eners		Allowable	Load (lb.)	
Model No.	Stud Thickness mil. (ga.)	Strength, F _y (ksi)	Stud	Wood Blocking	F ₂ @ 1/8" Deflection	F ₂ @ Strength	F ₄ @ 0" Offset	F ₄ @ 3" Offset
				Stud Flange	= 11/4"			
	15 (25 EQ)	50			95	135	275	60
	18 (25)	33			90	160	175	40
WBAC162	19 (20 EQ)	57	(4) #8	(3) #8	95	135	275	60
	30 (20 DW)	33			150	265	285	65
	33 (20 Struct)	33			220	295	320	75
				Stud Flange =	= 15/8"			
	33 (20 Struct)	33			220	295	320	75
WBAC162	43 (18)	33	(4) #8	(3) #8	260	355	355	85
	54 (16)	50			275	405	395	95
				Stud Flange	= 2"			
	33 (20 Struct)	33			220	295	320	75
WBAC200	43 (18)	33	(4) #8	(3) #8	260	355	355	85
	54 (16)	50			275	405	395	95

- 1. Allowable loads may not be increased for wind or seismic load.
- Allowable loads are the lower of tested ultimate load with a safety factor, load at 1/8" deflection (u.o.n.), or fastener calculation limits in accordance with ICC-ES AC261.
- 3. Fasteners to stud and wood blocking are #8–18 (¾" min. long) modified truss-head screws.
- 4. Wood blocking may be any species of solid sawn or engineered lumber with a minimum specific gravity of 0.42.
- 5. Listed capacities do not consider the resistance of the gypsum board. The WBAC connector installed with %" gypsum may be increased by a factor of 1.15, 1.15, and 1.35 for F₂ @ %" deflection, F₄ @ 0" offset, and F₄ @ 3" offset, respectively.
- 6. F₃ is limited to an allowable capacity of 175 lb. with (3) #8–18 (¾" long) modified truss screws to each wood block or 260 lb. with (3) #8–18 (1" long). F₃ tests do not consider resistance of gypsum board.
- 7. F₄ may be interpolated between offset 0" and 3".
- 8. F₂, F₃ and F₄ loads assumed to act at ¼ point of wood blocking.
- 9. For combined loading, use (F₂ @ Strength) and a linear interaction.

WBAC162 Installation to 1%" Stud Flange with Gypsum (see table footnote 5 for addition of gypsum board)

Ready-Track® Framing

Ready-Track framing is the fast and dependable way to frame curved walls on the jobsite. Simple to bend into smooth curves, it holds its shape without fasteners for easy positioning and installation.

- Ideal for curved walls, stairwells, soffits, clouds and complicated compound radiuses
- Handles almost any application when you need material curved along the flange
- Screw holes in the bottom web allow the top-track radius to be locked down for easy replication, once fitted over the bottom track
- Optional screw holes in the leg allow the radius to be easily locked down from the side

Product Information

Model No.	Track Width (in.)	Length (ft.)	Quantity per Bundle*
	20 Gau	ge (30 mil)	
RT250-8	21/2	8	12
RT250-10	21/2	10	10
RT350-8	31/2	8	12
RT362-8	35/8	8	12
RT362-10	35/8	10	10
RT400-8	RT400-8 4		6
RT400-10	4	10	10
RT550-8	5½	8	6
RT600-8	6	8	6
RT600-10	6	10	10
	18 Gaug	ge (43 mil)	
RT362-8-18	35%	8	12
RT362-10-18	35/8	10	10
RT600-8-18	6	8	6
RT600-10-18	6	10	10

^{*}Product is shipped in bundled, straight sections.

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features

Typical Ready-Track Installation

Ready-Arch® Framing

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

Creating arched openings and designs is simpler than ever with Ready-Arch framing members. Round, elliptical or s-shapes are all easy to form on the jobsite without any cutting or additional reinforcement. Ready-Arch members are also ideal for more challenging applications where material needs to curve along the web.

- Ideal for soffits, arches, light coves and elliptical or eyebrow curves for windows and doorways
- 20-gauge (30 mil) steel holds its shape without any fasteners
- Installs to cold-formed steel or wood framing

Product Information

Model No.	Width (in.)	Length (ft.)	Quantity per Bundle*
RA362-8	35/8	8	10
RA600-8	6	8	6

^{*}Product is shipped in bundled, straight sections.

Typical Ready-Arch Installation

Ready-Hat® Framing

Strong-Tie

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

Whether the plans call for framing over a CMU wall or concrete column or just a curved transition from wall to ceiling, the Ready-Hat furring and framing channel is right for the job. This versatile product is easy to form by hand into the exact shape needed and is secured to concrete or CMU walls with powder-driven fasteners or concrete screws.

- Ideal for furring on curved walls or to create coves, barrel vaults, groin vaults, soffits and serpentine ceilings
- Great for wrapping columns or as cross-framing to eliminate drywall butt joints
- 20-gauge (33 mil) steel holds its shape once formed and positioned for easy fastening

Model No.			Length (ft.)	Quantity per Bundle*
RH087-10 7/8 21/2		10	10	

^{*}Product is shipped in bundled, straight sections.

Typical Ready-Hat Installation

Ready-Angle® Framing

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

Ready-Angle framing angle adapts to almost any shape, and curves in multiple directions, so it's easy to form challenging compound curves and s-bends. Use two pieces to replicate curved track for steel and wood studs, to form arches of any depth quickly, or to produce finished corners that are ready for drywall.

- Ideal for s-shapes, spirals, sweeps or virtually any free-form shape
- 20-gauge (30 mil) steel holds its shape without any fasteners
- A versatile product for problem-solving on the jobsite

Product Information

Model No.	Angle Leg (in.)		
RL150-8	RL150-8 1½		12
RL150-10	RL150-10 1½		10

^{*}Product is shipped in bundled, straight sections.

Typical Ready-Angle Installation

Ready Track Bender[™] Custom Framing Tool

The Ready Track Bender is a portable, on-the-jobsite tool that bends studs and track easily, accurately and conveniently by creating compound indentations at consistent intervals along the length of the material.

- Spaces indentations as close as 2" apart for a tight radius, and up to 12" or more apart for a larger radius
- Forms all standard stud and track profiles up to 20-gauge thick and 6" wide
- No flange or web cutting to form radius and no plywood or strap repair needed for strength
- Reliable and precise turn the dial to the desired radius and create uniform bends in piece after piece, all day long
- Tough heavy-gauge steel construction throughout for smooth, trouble-free operation job after job
- Rugged plastic case for easy transportation

Minimum Bend Radius

Track/Stud Width (in.)	Approx. Min. Radius (in.)	Bend Spacing (in.)		
21/2	13	2		
3½ – 4	19	2		
5½-6	27	2		

Models and Capabilities

S150 Standard Tool

- Bends 20-gauge and 25-gauge steel
- Forms track or studs 21/2" to 6" wide
- Can accommodate leg length up to 15/8" high

D150 Deluxe Tool

- Bends 20-gauge and 25-gauge steel
- Forms track or studs 21/2" to 6" wide
- Can accommodate leg length up to 3" high

Ready Trim Bender[™] Custom Framing Tool

The Ready Trim Bender allows the user to bend angles quickly, accurately and conveniently right on the jobsite by creating compound indentations at consistent intervals along the length of the angle. It eliminates the need for old-fashioned tin snips and the trial-and-error method of approximating the right radius.

- Consistently forms the exact radius you need
- Tough heavy-gauge steel construction assures a smooth, trouble-free operation job after job
- • Great for 20-gauge to 25-gauge angles with 1 ½" x 1 ½", 2" x 2" or 3" x 3" legs
- Minimum radius is 30"–44"

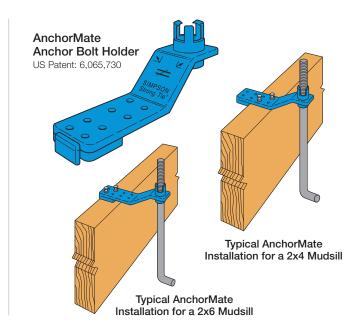
Ready Trim Bender — Model No. AB200

To learn more about how Simpson Strong-Tie can make your curved CFS wall and ceiling framing jobs faster and easier, visit **strongtie.com/cfs**.

Concrete Connectors

AnchorMate® Anchor Bolt Holders

The reusable AnchorMate anchor bolt holder is designed to hold the anchor in place before the concrete pour, as required in some jurisdictions. The gripping section secures the bolt in place without a nut for quicker setup and teardown. It also protects the threads from wet concrete and simplifies trowel finishing.


Features:

- Built-in 2x4 and 2x6 stops eliminate measuring.
- · Color coded for easy size identification.
- Use the 5/4" and 7/4" AnchorMate to secure the SSTB to the formboard before the concrete pour. Alignment arrows (left or right) match the SSTB bolt head arrow.

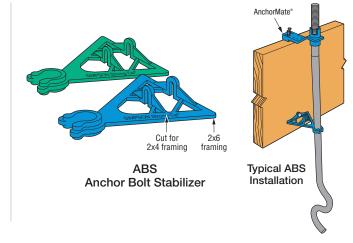
Material: Nylon

Codes: See p. 13 for Code Reference Key Chart

Model No.	Diameter (in.)	Color	Code Ref.
AM½	1/2	Yellow	
AM%	5/8	Blue	
AM¾	3/4	Red	_
AM7/8	7/8	Green	
AM1	1	Black	

ABS Anchor Bolt Stabilizer

The ABS stabilizes the anchor bolt to prevent it from being pushed against the form during the concrete pour.


Features:

- Supports the bolt approximately 8" below the top of the concrete
- Model ABS% is for the %" SSTB and ABS% is for the %" SSTB
- · Thin section limits the effect of a cold joint
- Sized for 2x4 and 2x6 mudsills

Material: Engineered Composite Plastic

Codes: See p. 13 for Code Reference Key Chart

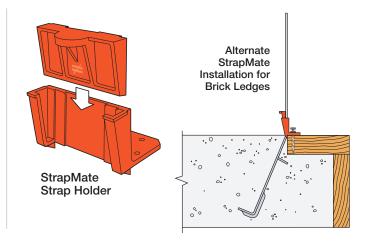
Model No.	Diameter (in.)	Color	Code Ref.
ABS% %		Blue	
ABS7/8	7/8	Green	_

StrapMate® Strap Holder

The StrapMate is designed to keep the STHD and LSTHD straps vertically aligned during the concrete pour to minimize possibility of spalling. The friction fit allows for quick and easy installation.

Features:

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


- The StrapMate is reusable
- Works with STHD, LSTHD

Material: Engineered Composite Plastic

- \bullet Designed to fit % " plywood forms up to 1 % " LVL forms and larger
- The strap is positioned off the front edge of the form board

Codes: See p. 13 for Code Reference Key Chart

Model No.	Nails	Code Ref.	
SM1	(2) 8d duplex	_	

BP/LBP Bearing Plates

Bearing plates give greater bearing surface than standard cut washers, and help distribute the load at these critical connections.

The BP½-3 and BP5⁄-3 are 3" \times 3" bearing plates that meet the latest requirements of the IRC and IBC. These plate washers are available uncoated or with a hot-dip galvanized (HDG) coating.

The BPS and LBPS are bearing plates that offer increased flexibility. The slotted hole allows for adjustability to account for bolts that are not in the middle of the track-bottom plate.

Material: See table

Finish: LBP, LBPS and BP5/8S - Galvanized; BP7/8-2 and BP5/8S - Zinc Plated; BPS, BP - None.

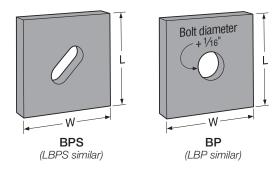
BPs and BPSs may be ordered HDG;

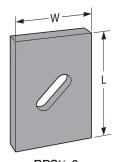
LBP and LBPS products may be ordered ZMAX®; contact Simpson Strong-Tie. Refer to pp. 19–23 for Corrosion Information.

Installation:

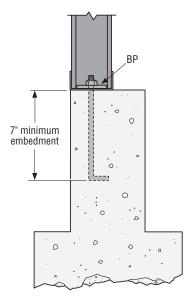
- See General Notes on pp. 14–17.
- BP/BPS For shearwall applications, position edge of plate washer within ½" of sheathed edge of track bottom plate.

Codes: See p. 13 for Code Reference Key Chart


These products are available with additional corrosion protection.


Additional products on this page may also be available with this option.

Check with Simpson Strong-Tie for details.


	Bolt Dia.	Model	Thistones	Dimensi	ons (in.)	Code
	(in.)	No.	Thickness	W	L	Ref.
	3/8	BP3/8-2	3/16"	2	2	IBC, FL
		LBP1/2	9/64"	2	2	
		LBPS1/2	9/64"	3	3	
	1/2	BPS1/2-3	3 ga.	3	3	_
	/2	BPS1/2-6	3 ga.	3	41/2	
		BP1/2	3/16"	2	2	
		BP1/2-3	3 ga.	3	3	IBC, FL
		LBP5/8	%4"	2	2	
		LBPS5/8	%4"	3	3	
		BPS5/8-3	3 ga.	3	3	_
	5/8	BPS5/8-6	3 ga.	3	41/2	
		BP5/8-2	3/16"	2	2	IBC, FL
		BP5/8	1/4"	21/2	21/2	_
		BP5/8-3	3 ga.	3	3	
		BP3/4	5/16"	23/4	23/4	IBC, FL
	3/4	BP3/4-3	3 ga.	3	3	
	74	BPS3/4-3	3 ga.	3	3	
		BPS3/4-6	3 ga.	3	41/2	
	7/8	BP7/8-2	3/8"	1 15/16	21/4	_
	78	BP7/8	5/16"	3	3	
	1	BP1	3/8"	31/2	31/2	

Standard cut washer required with BPS1/2-3, BPS5/8-3, BPS3/4-3, BPS1/2-6, BPS5/8-6 and BPS3/4-6 (not provided) per the 2015 IRC and 2015 SPDWS.

BPS½-6 (other models similar)

Typical BP Installed with a Bottom Track Anchor Bolt

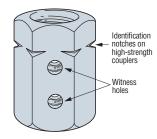
CNW Coupler Nuts

Simpson Strong-Tie coupler nuts are a tested and load-rated method to join threaded rod and anchor bolts. The Witness® holes in each nut provides a means to verify when rods are properly installed. The positive stop feature helps ensure even threading into each end of the nut. The CNW exceeds the specified minimum tensile capacity of corresponding standard-strength bolts and threaded rod. The HSCNW exceeds the specified minimum tensile capacity of corresponding high-strength bolts and threaded rod. Contact Simpson Strong-Tie for other coupler nut sizes.

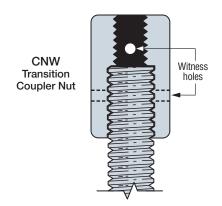
Finish: Zinc Plated

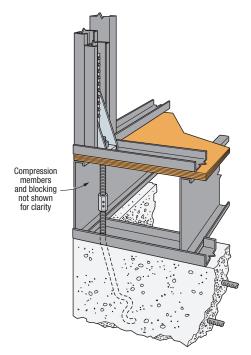
Installation:

- Tighten the two rods until each all-thread rod is visible in the Witness hole. Any portion of thread visible in the Witness hole is a correct installation.
- Standard CNW for use with non-hot-dip galvanized all-thread rod only.
- Couplers available with oversized threads for installation to hot-dip galvanized bolts (order CNW5/8-5/8-OST and CNW7/8-7/8-OST).
- OST couplers are typically oversized on one end of the coupler nut only and will be marked with an "O" on oversized side.
 Contact Simpson Strong-Tie to order.


Codes: See p. 13 for Code Reference Key Chart

Model No.	Rod Diameter (in.)	Allowable Tension Load (100)	Code Ref.
CNW1/2	1/2	4,265	
CNW5/8	5/8	6,675	IBC, FL
CNW3/4	3/4	9,610	
CNW7/8		13,080	
CNW1	1	17,080	
CNW1-1/4	11⁄4	26,690	_
HSCNW3/4	3/4	19,880	
HSCNW1	1	35,345	
	Transition	Couplers	
CNW5/8-1/2	CNW5/8-1/2 % to 1/2		IBC, FL
CNW3/4-5/8	3⁄4 to 5⁄8	6,675	IDU, FL
CNW7/8-5/8	7⁄8 to 5⁄8	6,675	
CNW1-7/8	1 to 7/8	13,080	_


^{1.} Allowable loads shown are based on AISC 360 for A36 and A449 (HS) threaded rods.



CNW Allows Fast Visual Check for Correct All Thread Rod Installation

HSCNW High-Strength Coupler Nut

Typical CNW Rim Joist Installation

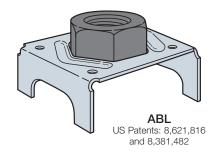
ABL Anchor Bolt Locator

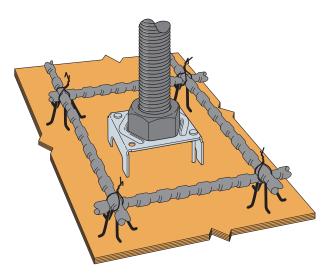
The ABL enables the accurate and secure placement of anchor bolts on concrete-deck forms prior to concrete placement. The structural heavy-hex nut is attached to a pre-formed steel "chair," which eliminates the need for an additional nut on the bottom of the anchor bolt. Electrogalvanized versions available for HDG anchor bolts. Order ABL-OST when using HDG anchor bolts.

Features:

- Designed for optimum concrete flow
- Installed with two nails or two screws
- Meets code requirement for 1" standoff
- The ABL is designed for use with SAR anchors

Material: Nut — Heavy hex; Chair — 14 gauge


Finish: Nut — None or Electro-galvanized;


Chair - G90

Codes: See p. 13 for Code Reference Key Chart

Please visit **strongtie.com** for ABL load ratings.

Model No.	Anchor Bolt Diameter (in.)	Code Ref.
ABL4-1	1/2	
ABL5-1	5/8	
ABL6-1	3/4	
ABL7-1	7/8	_
ABL8-1	1	
ABL9-1	11/8	
ABL10-1	11/4	

Typical ABL Installation

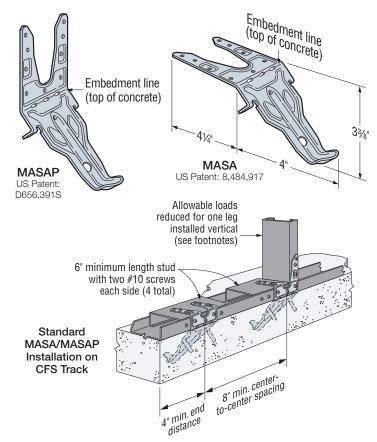
MASA/MASAP Mudsill Anchors

Mudsill anchors have always been a time-saving alternative to anchor bolts, and the MASA anchors provide an even greater load-carrying capacity alternative. For 5%" and ½" mudsill anchor bolts on bottom tracks, the MASA has load capacities that meet or exceed the parallel and perpendicular to plate shear capacity of other cast-in-place anchors. Two versions of the MASA are available — the standard MASA for installation on standard forms, and the MASAP for panelized forms.

The MASA and MASAP are code listed by ICC-ES under the 2006, 2009, 2012 and 2015 IBC® and IRC® and have been tested to meet the requirements of ICC-ES acceptance criteria AC-398 for cracked and uncracked concrete.

Material: 16 gauge

Finish: Galvanized, all available in ZMAX® coating. See Corrosion Information, pp. 19–23.


Installation:

• Use all specified fasteners; see General Notes

MASA/MASAP

- Concrete shall have a minimum $f'_C = 2,500$ psi.
- Spalling Full loads apply for spalls up to a maximum height of 1½" and a maximum depth of ½". Any exposed portion of the mudsill anchor must be protected against possible corrosion.
- Minimum MASA end distance is 4" and minimum center-to-center spacing is 8" for a full load.
- For continuous load path, MASA should be installed on the same side of the wall as uplift connectors.

Codes: See p. 13 for Code Reference Key Chart

Allowable Loads for MASA/MASAP Cast-in-Place Mudsill Anchor on CFS Track

	Faste	ners8	Allowable Load (lb.) ^{1,2,3,4,5} 43 mil (18 ga.) CFS						
Model			Standard Installation						Code
No.	Sides	Top of	w	Wind and SDC A&B ⁶		SDC C-F			Ref.
		Track	Uplift	Parallel to Track ⁷	Perpendicular to Track	Uplift	Parallel to Track ⁷	Perpendicular to Track	
					Non-C	racked			
MASA	(2) #10	/G\ #10	645	1,155	855	565	1,010	750	IBC,
or MASAP	(3) #10	(3) #10 (6) #10	Cracked				FL, LA		
			490	1,155	630	425	1,010	550	

- 1. Allowable loads are governed by tests and may not be increased (C_D = 1.0).
- The tabulated allowable (ASD) loads may be multiplied by 1.67 for designs for wind and in SDC A&B, and by 1.4 for designs in SDC C through F to obtain the LRFD loads.
- 3. Minimum concrete compression strength, f'_C is 2,500 psi.
- 4. Allowable loads are based on a minimum stemwall width of 6".
- For simultaneous loads in more than one direction, the connector must be evaluated using the Unity Equation.
- Per Section 1613 of the 2012, 2015 and 2018 IBC, detached one- and two-family dwellings in SDC C may use the "Wind and SDC A&B" allowable loads.
- 7. Parallel-to-Track loads for One-Leg-Up Installation: SDC A-C = 985 lb., SDC C-F = 860 lb.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Standard MASAP Installation in Concrete

Standard MASA Installation in Concrete

C-CF-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Simpson Strong-Tie® Anchor Solutions for CFS Construction

The most frequently applicable and suitable Simpson Strong-Tie Anchors used with CFS installations. For further information and more anchorage solutions, please visit **strongtie.com**.

✓ = Code listed

√ = Tested

- = Not tested

					Base M	aterials		
	Pro	duct	Con	crete	Concrete	CN	1U	Othor
			Cracked	Uncracked	on Metal Deck	Grout-Filled	Hollow	Other
Adhesive Anchors	SET-3G™	SET-3G	√	✓	_	_	_	_
Adhesive	AT-XP®	AFSRP AFSRP	✓	✓	_	√	✓	
	Titen HD® (THD) (reference pp. 175–179)		√	√	✓	√	_	_
Mechanical Anchors	Titen HD® Countersunk Screw Anchor		√	√	✓	√	_	_
Mechanica	Strong-Bolt® 2 (STB2)		✓	✓	√	√	_	_
	Tie-Wire (TW)		_	✓	✓	_	_	_

SIMPSON Strong-Tie

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Simpson Strong-Tie® Anchor Solutions for CFS Construction

✓ = Code listed ✓ = Tested — = Not tested

					Base M	laterials		
	Pro	duct	Con	crete	Concrete	CI	ИU	Other
			Cracked	Uncracked	on Metal Deck	Grout-Filled	Hollow	Unier
	Titen Turbo™ (TNT)			✓		✓	✓	_
	Drop-in Anchors (DIAB and DIA-S)			√	✓	_		Hollow Core
Mechanical Anchors	Hollow Drop-In (HDIA)			√			√	
	Zinc Nailon™ (ZN)			√				
	Crimp Drive® (CD)			√	√	_		_
	Powder-Actuated Fasteners (PDPAT, PDPA) (reference pp. 180–182)		_	√	✓	√	√	Steel 🗸
Direct Fastening	Gas-Actuated Fasteners (GDP, GDPS)	000000000	_	✓	✓	✓	✓	Steel
	Gas-Actuated Fasteners (GDPSK)		_	_	_	_		Plywood/ OSB to CFS

A high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. The Titen HD offers low installation torque and outstanding performance. Designed for use in dry, interior, non-corrosive environments or temporary outdoor applications.

Features

- Tested in accordance with ACI 355.2, AC193 and AC106
- Qualified for static and seismic loading conditions
- · Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes
- Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility
- No special drill bit required designed to install using standard-sized ANSI tolerance drill bits
- Hex-washer head requires no separate washer, unless required by code, and provides a clean installed appearance
- Removable ideal for temporary anchoring (e.g. formwork, bracing) or applications where fixtures may need to be moved
- · Reuse of the anchor will not achieve listed loads and is not recommended

Codes: ICC-ES ESR-2713 (concrete);

ICC-ES ESR-1056 (masonry);

City of LA Supplement within ESR-2713 (concrete);

City of LA Supplement within ESR-1056 (masonry);

Florida FL15730 (concrete and masonry);

FM 3017082, 3035761 and 3043442;

Multiple DOT listings

Material: Carbon steel

Coating: Zinc plated or mechanically galvanized.

Not recommended for permanent exterior use or highly corrosive environments.

Installation

Holes in steel fixtures to be mounted should match the diameter specified in the table below.

Use a Titen HD screw anchor one time only — installing the anchor multiple it imes may result in excessive thread wear and reduce load capacity.

Do not use impact wrenches to install into hollow CMU.

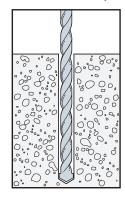
Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.

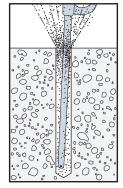
- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- Tighten the anchor into the base material until the hex-washer head contacts the fixture.

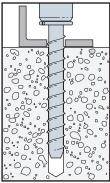
Additional Installation Information

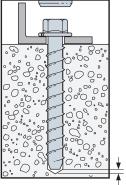
Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Steel Fixture Hole Size (in.)	Minimum Hole Depth Overdrill (in.)
1/4	3/8	3% to 7/16	1/8
3/8	%16	½ to %6	1/4
1/2	3/4	5% to 11/16	1/2
5/8	15/16	3⁄4 to 13⁄16	1/2
3/4	11/8	7⁄8 to 15∕16	1/2

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or thinner cold-formed steel members.






Serrated teeth on the tip of the Titen HD screw anchor facilitate cutting and reduce installation torque.


Titen HD Screw Anchor

Installation Sequence

Minimum overdrill. See table.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Heavy-Duty Screw Anchor

Titen HD Anchor Product Data — Zinc Plated¹

Size	Model	Drill Bit	Wrench	Qua	ntity
(in.)	No.	Dia. (in.)	Size (in.)	Box	Carton
1/4 x 17/8	THDB25178H	1/4	3/8	100	500
1/4 x 23/4	THDB25234H	1/4	3/8	50	250
1/4 x 3	THDB25300H	1/4	3/8	50	250
1/4 x 31/2	THDB25312H	1/4	3/8	50	250
1/4 x 4	THDB25400H	1/4	3/8	50	250
3/8 x 13/4	THD37134H ^{2,3}	3/8	%16	50	250
3/8 X 21/2	THD37212H ^{2,3}	3/8	%16	50	200
3% x 3	THD37300H	3/8	%16	50	200
3/8 x 4	THD37400H	3/8	%16	50	200
3% x 5	THD37500H	3/8	%16	50	100
3/8 X 6	THD37600H	3/8	%16	50	100
½ x 3	THD50300H ^{2,4}	1/2	3/4	25	100
½ x 4	THD50400H	1/2	3/4	20	80
½ x 5	THD50500H	1/2	3/4	20	80
½ x 6	THD50600H	1/2	3/4	20	80
½ x 6½	THD50612H	1/2	3/4	20	40
½ x 8	THD50800H	1/2	3/4	20	40
½ x 12	THD501200H	1/2	3/4	5	25
½ x 13	THD501300H	1/2	3/4	5	25
½ x 14	THD501400H	1/2	3/4	5	25
½ x 15	THD501500H	1/2	3/4	5	25
5/8 x 4	THDB62400H ^{2,4}	5/8	15/16	10	40
% x 5	THDB62500H	5/8	15/16	10	40
5⁄8 x 6	THDB62600H	5/8	15/16	10	40
5/8 X 6 1/2	THDB62612H	5/8	15/16	10	40
5% x 8	THDB62800H	5/8	15/16	10	20
% x 10	THDB62100H	5/8	15/16	10	20
3/4 x 4	THD75400H ^{2,5}	3/4	11/8	10	40
3⁄4 x 5	THD75500H	3/4	11/8	5	20
3⁄4 x 6	THDT75600H	3/4	11/8	5	20
3/4 x 7	THD75700H	3/4	11/8	5	10
3/4 x 81/2	THD75812H	3/4	11/8	5	10
3⁄4 x 10	THD75100H	3/4	11/8	5	10

- 1. Length of anchor is measured from underside of the head to end of anchor.
- 2. These models do not meet minimum embedment depth requirements for strength design.
- 3. Installation torque shall not exceed 25 ft.-lb. using a manual torque wrench or maximum torque rating of 100 ft.-lb. when installed with impact wrench.
- 4. Installation torque shall not exceed 50 ft.-lb. using a manual torque wrench or maximum torque rating of 100 ft.-lb. when installed with impact wrench.
- 5. Installation torque shall not exceed 50 ft.-lb. using a manual torque wrench or maximum torque rating of 135 ft.-lb. when installed with impact wrench.

Titen HD Anchor Product Data — Mechanically Galvanized

Size	Model	Drill Bit	Wrench	Qua	ntity
(in.)	No.	Dia. (in.)	Size (in.)	Box	Carton
3% x 3	THD37300HMG			50	200
3% x 4	THD37400HMG	3/8	9/16	50	200
3% x 5	THD37500HMG	9/8	%16	50	100
3% x 6	THD37600HMG			50	100
½ x 4	THD50400HMG			20	80
½ x 5	THD50500HMG			20	80
½ x 6	THD50600HMG	1/2	3/4	20	80
½ x 6½	THD50612HMG			20	40
½ x 8	THD50800HMG			20	40
% x 5	THDB62500HMG			10	40
5% x 6	THDB62600HMG	5/8	15/16	10	40
% x 6½	THDB62612HMG	98 1916		10	40
% x 8	THDB62800HMG			10	20
3/4 X 6	THDT75600HMG			5	20
3/4 X 8 1/2	THD75812HMG	3/4 11		5	10
3⁄4 x 10	THD75100HMG			5	10

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. Visit strongtie.com/info for more corrosion information.

Table 1: Titen HD — Tension Loads Attaching Cold-Formed Steel to Normal-Weight Concrete (lb.)⁶

Anchor	Drill	Edge	End	Min. Emb.	Concrete	Spacing		Concrete ≥	2,500 psi ^{3,4}		(Cold-Formed	Steel (ASD)	Cold-Formed Steel (ASD) ⁵				
Size (in.)	Bit (in.)	Distance (in.)	Distance (in.)	Depth (in.)	Thickness (in.)	(in.)	LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)				
		1½	3	1%	31/4	6	470	630	330	375								
1/4 x 1 1//8		13/4	3	1%	31/4	6	530	705	370	425								
	1/4	3	3	1%	31/4	6	540	715	375	430	390	EOE	920	1,160				
	74	1½	3	2½	3½	6	725	965	510	580	390	505						
1/4 x 23/4		13/4	3	21/2	3½	6	790	1,050	555	630								
		3	3	2½	3½	6	930	1,240	650	745								
3/8 X 3	3/8	13/4	3	21/2	4	6	600	800	420	480	585	760	1,380	1,740				
		13/4	4	31⁄4	5	8	940	1,255	660	755								
½ x 4	1/2	3	4	31/4	5	8	1,320	1,760	925	1,055	585	760	1,380	1,740				
		4	4	31/4	5	8	1,490	1,985	1,045	1,190								

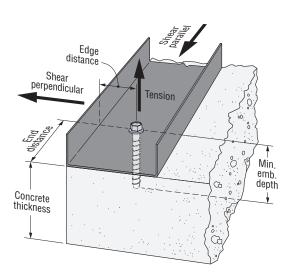
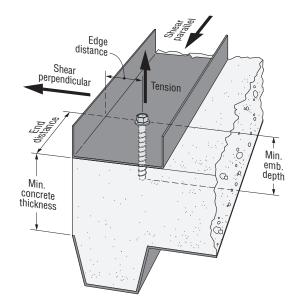

See footnotes on p. 179.

Table 2: Titen HD — Shear Loads Perpendicular to Edge in Normal-Weight Concrete (lb.)⁶


Anchor	Drill	Edge	End	Min. Emb.	Concrete	Spacing		Concrete ≥	2,500 psi ^{3,4}		(Cold-Formed	Steel (ASD)	5
Size (in.)	Bit (in.)	Distance (in.)	Distance (in.)	Depth (in.)	Thickness (in.)	(in.)	LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)
		1 ½	3	1%	31/4	6	305	305	215	185				
1/4 x 1 1//8		13/4	3	1 1 1/8	31/4	6	385	385	270	230				
	1/4	3	3	1%	31/4	9	555	555	390	335	350	455	830	1,045
	74	1 ½	3	21/2	3½	6	340	340	235	205	300			
1/4 x 23/4		13/4	3	21/2	31/2	6	425	425	300	255				
		3	3	21/2	31/2	9	635	635	445	380				
3% x 3	3/8	13/4	7	21/2	4	51/4	475	475	335	285	510	685	1 240	1,565
98 X S	98	3	7	21/2	4	9	1,000	1,000	700	600	310	000	1,240	1,505
16 v 4	1/2	13/4	8	31/4	5	51/4	545	545	380	325	595	880	1 055	2.005
½ x 4	/2	3	8	31/4	5	9	1,225	1,225	860	735	. 595	000	1,655	2,085

See footnotes on p. 179.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Edge and end distances for Titen HD in concrete slab corner condition. (reference table 1, 2 and 3)

Edge and end distances for Titen HD in concrete over metal deck. (reference table 4, 5 and 6)

Table 3: Titen HD — Shear Loads Parallel to Edge in Normal-Weight Concrete (lb./ft.)6

Anchor	Drill	Edge	End	Min.	Concrete		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Cold-Formed Steel (ASD		Steel (ASD)	5	
Size (in.)	Bit (in.)		Distance (in.)	Emb. Depth (in.)	Thickness (in.)	Spacing	LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)	
						0'-6"	790	790	550	470	700	910	1,660	2,090	
						0'-8"	595	595	415	355	525	685	1,245	1,570	
						1'- 0"	395	395	275	235	350	455	830	1,045	
1/4 x 1 7/8	1/4	1 1/2	3	1%	31/4	1'- 4"	295	295	205	175	265	340	625	785	
74 A 1 78	74	1 72	3	1 78	374	2' - 0"	200	200	140	120	175	230	415	525	
						2' - 8"	150	150	105	90	130	170	310	390	
						4'-0"	100	100	70	60	90	115	210	260	
						6'-0"	65	65	45	40	60	75	140	175	
						0' - 9"	740	740	520	445	465	605	1,105	1,395	
						1'- 0"	555	555	390	335	350	455	830	1,045	
						1'- 4"	415	415	295	250	265	340	625	785	
1/4 x 17/8	1/4	3	3	1%	31/4	2'-0"	280	280	195	170	175	230	415	525	
						2' - 8"	210	210	145	125	130	170	310	390	
						4' - 0"	140	140	100	85	90	115	210	260	
						6'-0"	95	95	65	55	60	75	140	175	
							0' – 9"	845	845	595	505	465	605	1,105	1,395
						1'- 0"	635	635	445	380	350	455	830	1,045	
						1'- 4"	475	475	335	285	265	340	625	785	
1/4 x 23/4	1/4	3	3	2½	31/2	2' - 0"	320	320	225	190	175	230	415	525	
						2' – 8"	240	240	165	145	130	170	310	390	
						4' - 0"	160	160	110	95	90	115	210	260	
						6'-0"	105	105	75	65	60	75	140	175	
						0' - 8"	1,770	1,770	1,240	1,060	765	1,030	1,860	2,350	
						1'- 0"	1,180	1,180	825	710	510	685	1,240	1,565	
						1'- 4"	885	885	620	530	385	515	930	1,175	
3% x 3	3/8	3	7	2½	4	2'-0"	590	590	415	355	255	340	620	780	
						2' - 8"	445	445	310	265	190	255	465	585	
						4'-0"	295	295	205	175	130	170	310	390	
						6'-0"	195	195	135	115	85	115	205	260	
						0' - 8"	2,505	2,505	1,755	1,505	895	1,320	2,485	3,130	
					1'-0"	1,670	1,670	1,170	1,000	595	880	1,655	2,085		
					1'- 4"	1,255	1,255	880	755	445	660	1,240	1,565		
½ x 4	1/2	3	8	31/4	5	2'-0"	835	835	585	500	300	440	830	1,045	
						2' - 8"	625	625	440	375	220	330	620	780	
						4' - 0"	420	420	295	250	150	220	415	520	
						6' - 0"	280	280	195	170	100	145	275	350	

See footnotes on p. 179.

Table 4: Titen HD — Tension Loads Attaching Cold-Formed Steel to Top of Normal-Weight Concrete over Metal Deck (lb.)^{6,11}

Anchor	Drill	Min.	Min.	Emb.	Min.		Concrete ≥ 3,000 psi				Cold-Formed Steel (ASD) ⁵			5
Size (in.)	Bit (in.)	Edge Distance (in.)	End Distance (in.)	Depth (in.)	Concrete Thickness (in.)		LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)
1/4 x 1 7/8	1/4	3½	3¾	1 5/8	21/2	31/2	580	775	405	545	390	505	920	1,160
% x 3	3/8	3	71/4	21/2	31/4	3	660	880	460	615	585	760	1,380	1,740

See footnotes below.

Table 5: Titen HD — Shear Loads Perpendicular to Edge in Top of Normal-Weight Concrete over Metal Deck (lb.)^{6,11}

Anchor	Drill	Min.	Min.	Emb.	Min.			Concrete ≥ 3,000 psi ^{3,4}			Cold-Formed Steel (ASD) ⁵				
Size (in.)	Bit (in.)	Edge Distance (in.)	End Distance (in.)	Depth (in.)	Concrete Thickness (in.)	Spacing (in.)	LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)	
1/4 x 1 7/8	1/4	3½	3¾	1%	21/2	31/2	450	450	315	315	350	455	830	1,045	
3% x 3	3/8	3	71/4	2½	31/4	3	660	660	460	460	510	685	1,240	1,565	

See footnotes below.

Table 6: Titen HD — Shear Loads Parallel to Edge in Top of Normal-Weight Concrete over Metal Deck (lb./ft.)^{6,11}

Anchor	Drill	Min.	Min.	Emb.	Min. Concrete			Concrete ≥	3,000 psi ^{3,4}		(Cold-Formed	Steel (ASD)	5
Size (in.)	Rit	Edge Distance (in.)	End Distance (in.)	Depth (in.)	Concrete Thickness (in.)	Spacing	LRFD ^{1,9,10} (Seismic)	LRFD ^{1,8,10} (Wind)	ASD ^{2,9,10} (Seismic)	ASD ^{2,8,10} (Wind)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	68 mil (14 ga.)
1/4 X 1 7/8	1/4	31/2	33/4	1%	21/2	1'-0"	635	635	445	445	350	455	830	1,045
74 X 1 78	74	3 72	374	1 78	2 72	1'-4"	475	475	335	335	265	340	625	785
						0'-9"	1,590	1,590	1,115	1,115	680	915	1,655	2,085
3% x 3	3/8	3	71/4	2½	31/4	1'-0"	1,195	1,195	835	835	510	685	1,240	1,565
						1'-4"	895	895	625	625	385	515	930	1,175

See footnotes below.

Footnotes

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- 1. Anchorage designs conform to ACI 318-14 Chapter 17 and assume cracked concrete with no supplementary reinforcement.
- Allowable Stress Design (ASD) values are obtained by multiplying Load Resistance Factor Design (LRFD) capacities by 0.7 for seismic and 0.6 for wind.
- 3. Anchor is considered as an individual anchor without influence from other anchors. For tables 2 and 3, shear load is applied perpendicular and parallel to the edge of concrete respectively.
- 4. Concrete shall have a minimum f'c of 2,500 psi, 3,000 psi for metal deck. Reference ICC-ES ESR-2713 for further information.
- 5. Cold-Formed Steel (CFS) tension pullover values are based on AISI S-100, Eq. J4.4.2-1, $d_W = 0.50$ " (½" THD), $d_W = 0.75$ " (¾" and ½" THD) and $\Omega = 3.0$. Reference General Notes for CFS properties. To convert from ASD to LRFD multiply value by 1.5. Tension values where applicable do not account for weak axis bending in the sill member.
- 6. Governing load is the lesser of concrete and CFS.
- 7. For conditions not covered by this table, use the Simpson Strong-Tie $^{\circ}$ Anchor Designer $^{\mathsf{TM}}$ software available at $\mathbf{strongtie.com}$.
- 8. Wind design includes SDC A&B.
- The listed load values are governed by a brittle failure mode, the Designer shall consider ductility requirements of ACI 318-14 Section 17.2.3.4.3 for designing anchorage in Seismic Design Category C–F.
- 10. For installation in sand-lightweight concrete, concrete values shall be be multiplied by 0.68.
- 11. For tables 4, 5 and 6, metal deck configuration to comply with Figure 5 of ICC-ES ESR-2713.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Powder-Actuated Fasteners

PDPA — 0.300"-Diameter Head with 0.157"-Diameter Shank Powder Drive Pins

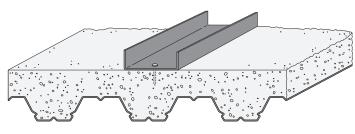
Model	P	in	Qua	ntity	Comp Powder-Act	atible uated Tools
No.	Length (in.)	Shank Dia. (in.)	Pack	Carton	Simpson Strong-Tie	Others
PDPA-50	1/2					
PDPA-50K	½ knurled					
PDPA-62K	5⁄8 knurled					
PDPA-75	3/4					
PDPA-100	1					
PDPA-106	1 1/16					
PDPA-125	11⁄4				PTP-27L	
PDPA-131	1 5/16	0.157	100	1,000	PT-27 PT-22A	Other major brands
PDPA-150	1½				PT-22HA	
PDPA-187	1%					
PDPA-200	2					
PDPA-250	2½					
PDPA-250MG	2½					
PDPA-287	27/8					
PDPA-287MG	27/8					

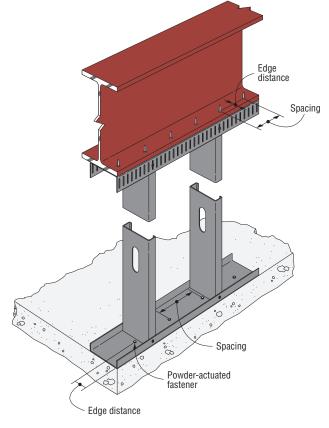
Note: The PDPA-250MG and PDPD-287MG models have mechanically galvanized (Class 65) finish.

PDPAT — 0.300"-Diameter Head with 0.157"-Diameter Shank Powder Drive Pins with Top Hat

Model No.	Pin		Quantity		Compatible Powder-Actuated Tools	
	Length (in.)	Shank Dia. (in.)	Pack	Carton	Simpson Strong-Tie	Others
PDPAT-50K	½ knurled	0.157	100	1,000	PTP-27L PT-27 PT-22A PT-22HA	Other major brands
PDPAT-62KP	% knurled					
PDPAT-75	3/4					
PDPAT-100	1					

 $\label{eq:Note:PDPAT-62KP} \textbf{Note:} \ \ \text{PDPAT-62KP} \ \ \text{is a point protrusion pin.} \ \ \text{The point of the pin is designed to slightly protrude from the tool to aid in hole location.}$


Powder-Actuated Fasteners


PDPA and PDPAT Pins — Allowable Shear and Tension Loads

								Base Mater	rial					Atta	ached Mate	erial
Model	Dia.	Pin		rmal Wei Concrete			ghtweight (ed Steel De				A36 Steel ²	!		Cold	-Formed S	teel ³
Type	(in.)	Spacing	Emb. Depth (in.)	2,500 psi	4,000 psi	Emb. Depth (in.)	Concrete ¹ (Top)	Lower Flute ⁸ (Bottom)	3⁄16"	1/4"	3/8"	1/2"	3/4"	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)
							Allo	wable She	ar Load ^{4,5,1}	³ (lb./ft.)						
		0'-6"	1	570	620	1	450	560	820	730	77010	770 ¹⁰	650°	760 ¹²	99012	1,800 ¹²
		0 -0	11/4	720	840	1¼	840	640	020	730	770"	770	000	700-	990"	1,000
		0'-8"	1	430	465	1	340	420	615	550	580 ¹⁰	580 ¹⁰	490°	570 ¹²	745 ¹²	1,350 ¹²
		0-0	1¼	540	630	1¼	630	480	010	330	300	300	100	010	, 10	1,000
	0.157	7 1'-0" or -	1	285	310	1	225	280	410	365	385 ¹⁰	385 ¹⁰	325 ⁹	380 ¹²	495 ¹²	90012
PDPA	0.137		1¼	360	420	1¼	420	320		303	303	300	323	300	430	300
PDPAT		2'-0"	1	145	155	1	115	140	205	185	195 ¹⁰	195 ¹⁰	165 ⁹	190 ¹²	250 ¹²	450 ¹²
		2 -0	11⁄4	180	210	1¼	210	160	200	100	190	190	100	190	250	450
		3'-0"	1	95	105	1	75	95	135	120	130 ¹⁰	130 ¹⁰	110 ⁹	125 ¹²	165 ¹²	30012
		3 -0	1¼	120	140	1¼	140	105	133	120	130	130	110	120	100	300
							Al	lowable Te	nsion Load	l ^{4,5} (lb.)						
	0.157	_	1	210	310	1	150	145	260	370	38010	530 ¹⁰	195 ⁹	22511	29511	53511
	0.137		1¼	320	380	1¼	320	170	200	370	300	330	100	220	230	333

- 1. For concrete the minimum edge distance and spacing is 31/2" and 5", respectively.
- For A36 steel, the minimum edge distance and spacing is 0.5" and 1", respectively. Entire pointed portion of the fastener must fully penetrate steel base material unless noted otherwise.
- Cold-formed steel (CFS) values are based on AISI-S100. Reference General Notes for CFS properties.
- 4. Governing load is the lesser of the base material and CFS.
- 5. Allowable loads are based on ICC-ES ESR-2138.
- 6. Concrete shall have a minimum compressive strength of $f'_{C} = 3,000$ psi.
- For steel deck, the minimum depth and thickness is 3" and 33 mil (20 ga.), respectively. Steel deck must have a minimum yield strength of 38,000 psi.
- 8. For installation through steel deck, the minimum edge and end distance is 1½" and 4", respectively with 4" minimum spacing.
- 9. Based upon a minimum penetration depth of 0.46" (11.7 mm).
- 10. For applications to structural steel, the fastener must be driven to where at least some of the point of the fastener penetrates through the steel substrate.
- 11. The following CFS allowable tension loads may be used for PDPAT: 390 lb. (33 mil), 505 lb. (43 mil), 915 lb. (54 mil).
- 12. CFS allowable shear load may be multiplied by 1.15 for PDPAT fastener.
- Shear loads listed do not account for indirect tension due to eccentricity
 of load at the deflection track. Designer to evaluate combined loading
 as needed.
- 14. A "-" in the pin spacing means no spacing or load directly at fastener.

PDPA In Lightweight Concrete Over Steel Deck

Typical Powder-Actuated Fastener Installation

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Powder-Actuated Fasteners

Strong-Tie

PDPA in 4,000 psi Normal-Weight Concrete

Fastener	Shank Diameter (in.)	Fastener Length (in.)	Edge Distance (in.)	Spacing in Load Dir. (in.)	Track Width (in.)	Number of Fasteners	Allowable Shear Load (lb.)
				_	35%	1	240
PDPA-100		4	21/4	3/4	378	2	310
PDPA-100		I	Z 74	_	- 6	1	240
	0.157			21/4	0	2	510
	0.157			_	35%	1	325
PDPA-125		1.25	21/4	3/4	3%8	2	490
FDFA-125		1.25	Z 1/4	_	G	1	325
				21/4	6	2	590

- 1. Allowable loads are based on fasteners installed through 16 ga. cold-formed steel ($F_{\rm y}$ > 33 ksi).
- 2. Minimum concrete thickness must be three times the fastener length.
- 3. Edge distance and spacing are shown in figures below.

PDPA in 3,000 psi Sand-Lightweight Concrete

Fastener	Shank Diameter (in.)	Fastener Length (in.)	Edge Distance (in.)	Spacing in Load Dir. (in.)	Track Width (in.)	Number of Fasteners	Allowable Shear Load (lb.)
				_	35/8	1	235
PDPA-100		1	21/4	3/4	3%	2	310
PDPA-100		I	2 74	_	6	1	235
				21/4	0	2	445
				_	35/8	1	245
PDPA-125	0.457	4.05	01/	3/4	378	2	455
PDPA-125	0.157	1.25	21/4	_	6	1	245
				21/4	0	2	530
				_	05/	1	245
PDPA-150		1.5	21/4	3/4	3%	2	470
FDFA-150		0.1	Z 7/4	_	C	1	245
				21/4	6	2	530

- 1. Allowable loads are based on fasteners installed through 16 ga. cold-formed steel ($F_{\rm y} > 33$ ksi).
- $2.\,\mbox{Minimum}$ concrete thickness must be three times the fastener length.
- $3.\,\mathrm{Edge}$ distance and spacing are shown in figures below.

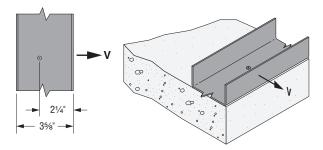


Figure 1: 3%" Track - One Fastener

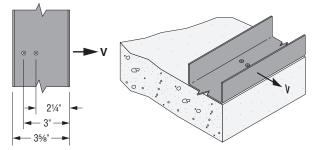


Figure 2: 3%" Track - Two Fasteners

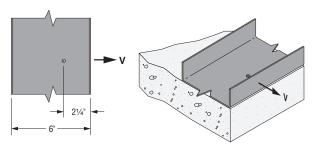


Figure 3: 6" Track - One Fastener

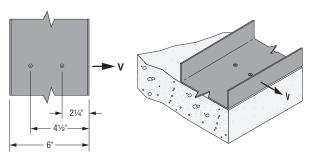
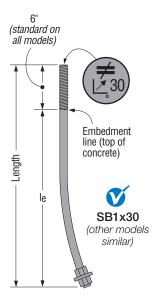


Figure 4: 6" Track - Two Fasteners

SB Anchor Bolt

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

The SB anchor bolt offers an anchorage solution for our holdowns that call for a %"-diameter, a %"-diameter and a 1"-diameter anchor.


SB anchor bolts are code listed by ICC-ES under the 2012/2015/2018/2021 IBC and IRC.

Features:

- · Identification on the bolt head showing embedment angle and model
- Sweep geometry to optimize position in form
- · Rolled thread for higher tensile capacity
- Hex nuts and plate washer fixed in position
- Available in HDG for additional corrosion resistance

Material: ASTM F1554, Grade 36

Finish: None. May be ordered HDG; contact Simpson Strong-Tie.

SSTB® Anchor Bolt

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

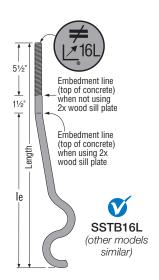
The SSTB anchor bolt is designed for maximum performance as an anchor bolt for holdowns and Simpson Strong-Tie® Strong-Wall® shearwalls. Extensive testing has been done to determine the design load capacity of the SSTB when installed in many common applications.

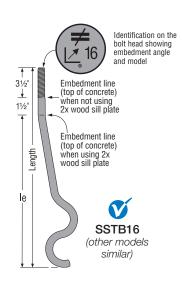
The Simpson Strong-Tie SSTB anchor bolts are code listed by ICC-ES under the 2012, 2015, 2018 and 2021 IBC $^{\circ}$ and IRC $^{\circ}$.

Features:

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Identification on the bolt head showing embedment angle and model
- · Offset angle reduces side bursting, and provides more concrete cover
- Rolled thread for higher tensile capacity
- Stamped embedment line aids installation
- Available in HDG for additional corrosion resistance

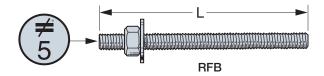

Material: ASTM F-1554, Grade 36


Finish: None. May be ordered HDG; contact Simpson Strong-Tie.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

		Di	mensions (in.)	
Model No.	Stemwall Width	Diameter	Length	Min. Embed. (l _e)
SB5/8X24	6	5/8	24	18
SB7/8X24	8	7/8	24	18
SB1X30	8	1	30	24
SSTB16	6	5/8	17% (16L = 19%)	12%
SSTB20	6	5/8	21 % (20L = 24%)	16%
SSTB24	6	5/8	25 % (24L = 28%)	20%
SSTB28	8	7/8	29 % (28L = 32%)	241/8
SSTB34	8	7/8	34%	28 1/8
SSTB36	8	7/8	36%	28%

For SB and SSTB allowable tension loads, details and installation procedure, please reference strongtie.com.


RFB Retrofit Bolts

RFBs are clean, oil-free, pre-cut threaded rod, supplied with nut and washer. Offers a complete engineered anchoring system when used with Simpson Strong-Tie adhesive. Inspection is easy; the head is stamped with rod length and No-Equal® symbol for identification after installation.

Material: ASTM F1554 Grade 36

Finish: Zinc Plated (unless otherwise noted), available in HDG (per ASTM A153); stainless steel (RFB#5x8SS only)

These products are available with additional corrosion protection.

Additional products on this page may also be available with this option.

Check with Simpson Strong-Tie for details.

Model No.	Length, L (in.)	Bolt Diameter (in.)
RFB#4X4	4	1/2
RFB#4X5	5	1/2
RFB#4X6	6	1/2
RFB#4X7	7	1/2
RFB#4X10	10	1/2
RFB#4x8HDGP2	8	1/2
RFB#5X5	5	5/8
RFB#5X8	8	5/8
RFB#5X10	10	5/8
RFB#5x12HDGP2	12	5/8
RFB#5X16	16	5/8
RFB#6X10.5	10½	3/4

^{1.} RFB#4X8HDG-R and RFB#5X12HDG-R are only available with a hot-dip galvanized coating. They are retail packaged and are sold 10 per carton.

^{2.} Washer provided on all RFB (except RFB#5x8SS).

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

PAB Pre-Assembled Anchor Bolt

The PAB anchor bolt is a versatile cast-in-place anchor bolt ideal for high-tension-load applications, such as rod systems and shearwalls. It features a plate washer, at the embedded end, sandwiched between two fixed hex nuts and a head stamp for easy identification after the pour.

- Available in diameters from ½" to 1¼" in lengths from 12" to 36" (in 6" increments)
- · Available in standard and high-strength steel
- Head stamp contains the No Equal sign, diameter designation and an "H" on high-strength rods

Material:

Standard Steel — ASTM F1554 Grade 36, A36 or A307; F_u = 58 ksi High-Strength Steel (up to 1" dia.) — ASTM A449; F_u = 120 ksi High-Strength Steel (1½" and 1½" dia.) — ASTM A193 B7 or F1554 Grade 105; F_u = 125 ksi

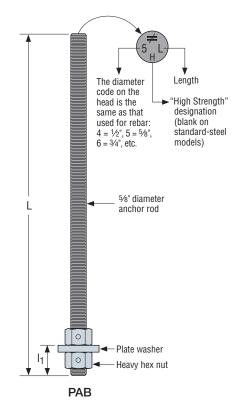
Finish: None. May be ordered in HDG; contact Simpson Strong-Tie.

Installation:

 On HDG PABs, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563; for example, Simpson Strong-Tie® NUT%-OST, NUT%-OST, CNW%-OST, CNW%-OST.
 OST couplers are typically oversized on one end of the coupler nut only and will be marked with an "O" on oversized side. Couplers may be special ordered with both ends oversized. Contact Simpson Strong-Tie.

Related Software

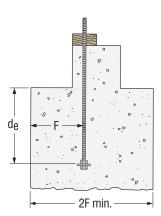
The Simpson Strong-Tie Anchor Designer™ Software analyzes and suggests anchor solutions using the ACI 318 strength-design methodology (or CAN/CSA A23.3 Annex D Limit States Design methodology). It provides cracked and uncracked-concrete anchorage solutions for numerous Simpson Strong-Tie mechanical and adhesive anchors as well as the PAB anchor bolt. With its easy-to-use graphical user interface, the software makes it easy for the designer to identify anchorage solutions without having to perform time-consuming calculations by hand. See **strongtie.com/software**.


How to Specify and Order:

- When calling out PAB anchor bolts, substitute the desired length after the "-" in the Root Model Number
- For a %" x 18" anchor bolt, the model number would be PAB5-18 (or PAB5H-18 for high strength)

PAB Anchor Bolt

Diameter	Plate		Root Mo	odel No.	Longtho
(in.)	Washer Size (in.)	l ₁ (in.)	Standard Strength	High Strength	Lengths (in.)
1/2	3% x 1 ½ x 1 ½	11/8	PAB4-XX	PAB4H–XX	
5/8	½ x 1¾ x 1¾	1%	PAB5-XX	PAB5H-XX	
3/4	½ x 2¼ x 2¼	1 ½	PAB6-XX	PAB6H-XX	12" to 36"
7/8	½ x 2½ x 2½	1%	PAB7-XX	PAB7H-XX	(in 6"
1	% x 3 x 2¾	17/8	PAB8-XX	PAB8H–XX	increments)
11/8	% x 3½ x 3¼	2	PAB9-XX	PAB9H–XX	
1 1/4	3/4 x 31/2 x 31/2	21/4	PAB10-XX	PAB10H-XX	


- 1. Lengths greater than 36" are available as a special order.
- 2. Plate washers are designed to develop the capacity of the bolt.

Naming Legend

*Units in 1/8" Increments (Ex: 9 = 9/8" or 11/8")

Design loads are calculated using a full shear cone. Coverage on each side of the bolt shall be a minimum of F or reductions must be taken.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

PAB Pre-Assembled Anchor Bolt

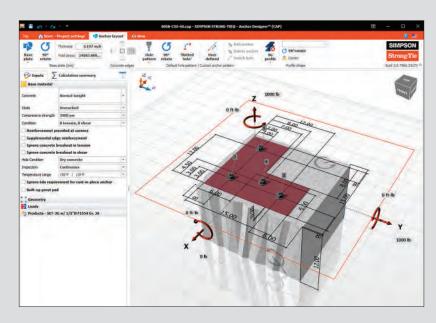
PAB Anchor Bolt - Anchorage Solutions

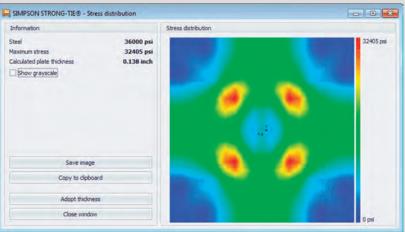
				2,500 psi	Concrete			3,000 ps	Concrete	
Design Criteria	Diameter (in.)	Anchor Bolt	Dimer (ir	nsions n.)	Tensio	n Load		nsions n.)	Tensio	n Load
			de	F	ASD	LRFD	de	F	ASD	LRFD
	1/2	PAB4	41/2	7	4,270	6,405	4	6	4,270	6,405
	5/8	PAB5	4	6	4,030	6,720	4	6	4,415	7,360
	78	FADO	6	9	6,675	10,010	5½	8½	6,675	10,010
	3/4	PAB6	5½	81/2	6,500	10,835	5	7½	6,175	10,290
	74	FADO	7½	11½	9,610	14,415	7	101/2	9,610	14,415
		PAB7	6	9	7,405	12,345	5½	81/2	7,120	11,870
	7/8	FAD7	9	13½	13,080	19,620	8½	13	13,080	19,620
Wind	78	PAB7H	9	13½	13,610	22,680	81/2	13	13,680	22,805
wiiiu		FAD/II	14	21	27,060	40,590	131/2	201/2	27,060	40,590
		PAB8	8	12	11,405	19,005	7½	11½	11,340	18,900
	1	PADO	101/2	16	17,080	25,565	10	15	17,080	25,560
	l I	PAB8H	101/2	16	17,150	28,580	10	15	17,460	29,100
		17,0011	16½	25	35,345	53,015	15½	231/2	35,345	53,015
	11/8	PAB9	9	131⁄2	13,610	22,680	8	12	12,495	20,820
	1 78		121⁄2	19	21,620	32,430	12	18	21,620	32,430
	11⁄4	PAB10	14	21	26,690	40,035	13½	201/2	26,690	40,035
	1/2	PAB4	5	7½	4,270	6,405	41/2	7	4,270	6,405
	5/8	PAB5	6½	10	6,675	10,010	6	9	6,675	10,010
	3/4	PAB6	7½	11½	9,060	12,940	7	101/2	8,945	12,780
	74	TADO	8	12	9,610	14,415	7½	11½	9,610	14,415
		PAB7	9	13½	11,905	17,010	81/2	13	11,970	17,100
	7/8	FAD7	10	15	13,080	19,620	9½	14½	13,080	19,620
	78	PAB7H	14½	22	25,350	36,215	13½	201/2	24,650	35,215
Seismic		TADITI	15½	23½	27,060	40,590	14½	22	27,060	40,590
OGISITIIC		PAB8	11	16½	15,996	22,850	101/2	16	16,435	23,480
	1	TADO	11½	17½	17,080	25,625	11	16½	17,080	25,625
	ı	PAB8H	17	25½	33,045	47,205	16	24	32,720	46,740
		LWD0U	18	27	35,345	53,015	17	251/2	35,345	53,015
	11/8 PAB9	DARO	121/2	19	19,795	28,275	12	18	20,255	28,940
	1 78	FAD9	13½	201⁄2	21,620	32,430	121/2	19	21,620	32,430
	11/4	PAB10	14½	22	25,350	36,215	14	21	26,190	37,415
	1 74	FADIU	15	221/2	26,690	40,035	141/2	22	26,690	40,035

- $1.\ Anchorage\ designs\ conform\ to\ ACI\ 318-14\ and\ assume\ cracked\ concrete\ with\ no\ supplementary\ reinforcement.$
- Seismic indicates Seismic Design Category C-F and designs comply with ACl318-19, Section 17.10.5.3.
 Per Section 1613 of the 2012/2015/2018/2021 IBC, detached one- and two-family dwellings in SDC C may use wind values.
- 3. Wind includes Seismic Design Category A and B.
- 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by designer. The registered design professional may specify alternative embedment, footing size, and anchor bolt.
- 5. Where tension loads are governed by anchor steel, the design provisions from AISC 360 are used to determine the tensile steel limit. LRFD values are calculated by multiplying the nominal AISC steel capacity by a 0.75 phi factor, and allowable values are calculated by dividing the AISC nominal capacity by a 2.0 omega factor.
- 6. Where tension loads are governed by ACI 318 concrete limit, the Allowable Stress Design (ASD) values are obtained by multiplying Load Resistance Factor Design (LRFD) capacities by 0.7 for Seismic and by 0.6 for Wind.

Anchor Software

Anchor Designer™ Software for ACI 318, ETAG and CSA


Simpson Strong-Tie® Anchor Designer Software is the latest anchorage design tool for structural engineers to satisfy the strength design provisions and methodologies. Anchor Designer will quickly and accurately analyze an existing design or suggest anchorage solutions based upon user-defined design elements in cracked and uncracked concrete conditions.


The real-time design is visually represented in a fully interactive 3D graphic user interface, supports Imperial and Metric-sized Simpson Strong-Tie mechanical and adhesive anchors, and offers cast-in-place anchor solutions. Anchor Designer can calculate single anchor solutions or with multiple anchors in a single plate. Anchor locations are fully customizable to assist engineers in complex design conditions.

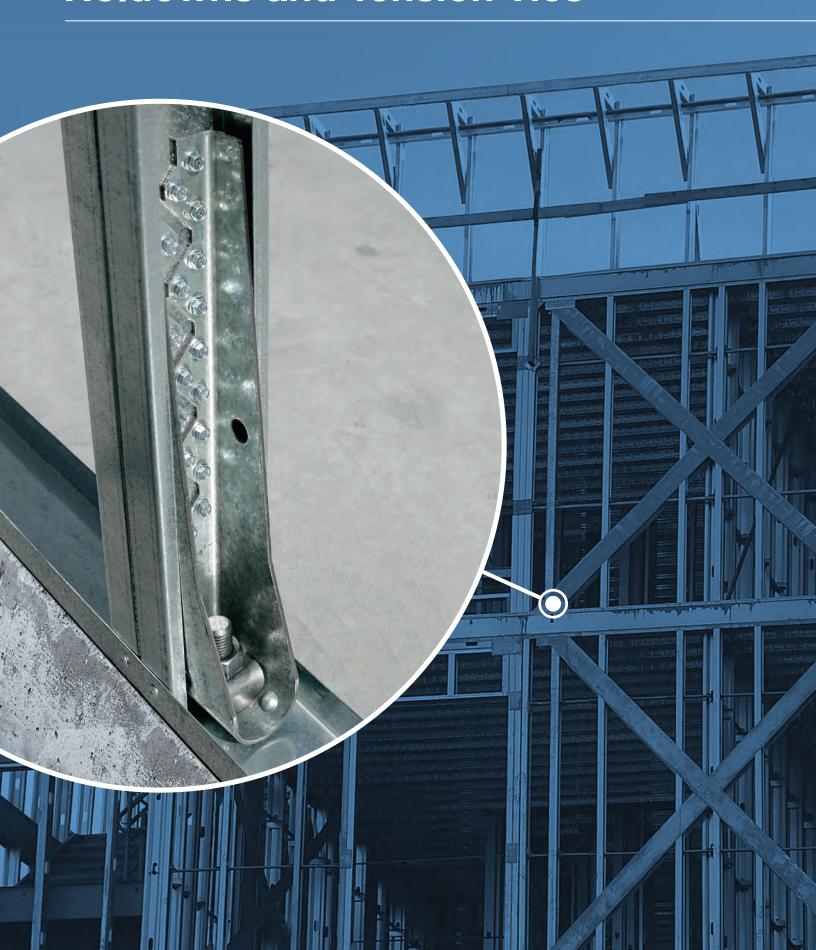
Features include:

- Design standards: ACI 318-14 Chapter 17/ACI 318-11 Appendix D, CAN/CSA A23.3 Annex D, ETAG 001 Annex C or EOTA TR029.
- Customizable anchor pattern.
- Easy-to-use menus.
- Ability to calculate multiple anchor solutions at once.
- Multi-lingual options include English, German, French, Spanish, Polish and Danish languages.
- Rectangular, circular, L-shape and T-shape base plate geometries with the option to include slotted holes.
- And much more!

Visit: strongtie.com/softwareandwebapplications/category

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Simpson Strong-Tie® Fasteners for CFS Construction



Below is a list of Simpson Strong-Tie fasteners and tested base materials. This list does not represent the complete line of Simpson Strong-Tie offerings, but the most suitable fasteners for CFS construction.

✓ = Code listed ✓ = Tested — = Not tested

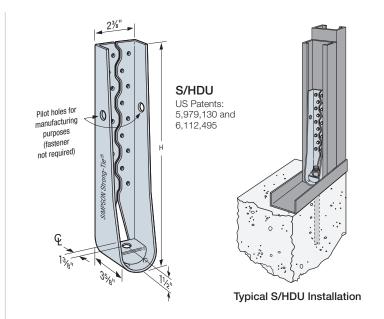
							Fastened N	/laterials		
		Product		Single/ Collated	CFS to CFS	CFS to Structural Steel	Sheathing to CFS	Dens Glass to CFS	Drywall to CFS	Wood to CFS
	Strong-Drive® XL LARGE-HEAD METAL Screw		#12 hex head L = 11/4"	Single/ collated	✓	✓				
	Strong-Drive XM MEDIUM-HEAD METAL Screw		#12 hex head L = 11/4"	Single/ collated	✓	✓	_			
	Strong-Drive XE EXTERIOR STRUCTURAL METAL Screw		#10 hex head L = 3/4"	Single/ collated	√					
	Strong-Drive FPHSD FRAMING-TO-CFS Screw		#10, #12 flat pan head L = 3/4"	Single/ collated	√	_	_			
	Strong-Drive PPHD SHEATHING-TO-CFS Screw		#8, #10, #12 flat head L = 13/4" to 3"	Single/ collated		_	✓	✓		
Fasteners	Strong-Drive SELF-DRILLING X METAL Screw		#10, #12 hex head L = 3/4" to 11/2"	Single/ collated	√	✓				
Fast	Strong-Drive TB WOOD-TO-STEEL Screw		#12, #14 flat head L = 13/4" to 3"	Single/ collated						√
	Self-Drilling E Metal Screw	MANA	#14 hex head L = 1"	Single	√	✓				
	DWFSD Drywall-to-CFS Screw		#6, #8 bugle head L = 11/4" to 2"	Collated				√	✓	
	CBSDQ Sheathing-to-CFS Screw		#8, #10 ribbed flat head L = 15/8" to 21/4"	Collated	_	_	✓	_	_	_
	DWF Drywall-to-CFS Screw		#6 bugle head L = 1 1/4" to 1 5%"	Collated					✓	
	PHSD Framing-to-CFS Screw		#8 pan head L = 3/4"	Collated	✓		_			

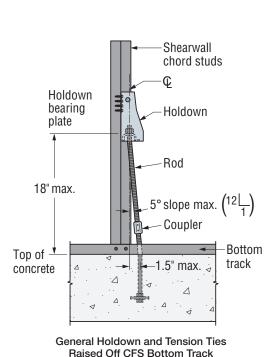
Holdowns and Tension Ties

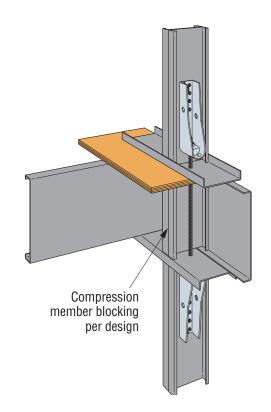
S/HDU Holdowns

SIMPSON
Strong-Tie

The S/HDU series of holdowns combines performance with ease of installation. The pre-deflected geometry virtually eliminates material stretch, resulting in low deflection under load. Installation using self-drilling screws into the studs reduces installation time and saves labor cost.


Material: 118 mil (10 ga.) Finish: Galvanized (G90)


Installation:


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Use all specified fasteners; see General Notes
- Use standard #14 self-drilling screws to fasten to studs
- Anchor bolt washer is not required
- See SB, SSTB and PAB anchor bolts on pp. 183 and 185 for cast-in-place anchorage options
- See SET-3G[™] and AT-XP[®] adhesive products at strongtie.com for anchor bolt retrofit options

Codes: See p. 13 for Code Reference Key Chart

Typical S/HDU Floor-to-Floor Installation

S/HDU Holdowns

SIMPSON Strong-Tie

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

		Faste	eners		AS	SD	LR	FD	Nominal			
Model	H (in.)	Anchor Bolt Diameter ¹ (in.)	Stud Fasteners	Stud Member Thickness ² mil (ga.)	Tension Load (lb.)	Deflection at ASD Load ⁴ (in.)	Tension Load (lb.)	Deflection at LRFD Load ⁴ (in.)	Tension Load ⁵ (lb.)	Code Ref.		
				33 (20)	1,195	0.069	1,795	0.116	3,575			
				43 (18)	1,780	0.068	2,670	0.106	5,095] –		
				54 (16)	2,550	0.031	4,080	0.053	6,900			
S/HDU4	7%	5/8	(6) #14	2-33 (2-20)	2,320	0.093	3,705	0.149	5,685			
				2-43 (2-18)	3,825	0.115	6,105	0.190	9,365	IBC		
				2-54 (2-16)	3,970	0.093	6,345	0.156	9,730	FL, L		
				3/16" A36 Steel	4,470	0.063	7,165	0.103	12,120]		
				33 (20)	2,390	0.064	3,590	0.119	6,590			
				43 (18)	3,295	0.054	5,270	0.108	8,915			
				54 (16)	5,100	0.073	8,160	0.167	13,805] _		
C/UDUC	102/	5%	5/8	(12) #14	68 (14)	5,570	0.052	8,915	0.095	15,075	1	
S/HDU6	10%	9/8	(12)#14	2-33 (2-20)	4,895	0.125	8,495	0.250	10,470			
				2-43 (2-18)	6,125	0.119	9,690	0.250	15,460	IBO		
				2-54 (2-16)	6,125	0.108	9,785	0.234	15,005	FL,		
				3/16" A36 Steel	7,000	0.069	10,000	0.185	14,695			
				33 (20)	2,855	0.029	4,570	0.045	7,730			
				43 (18)	3,725	0.037	5,960	0.061	10,080	1		
				54 (16)	6,750	0.071	10,805	0.131	18,270	1 -		
				68 (14)	8,355	0.087	13,370	0.159	22,610	1		
S/HDU9	127/8	7/8	(18) #14	97 (12)	8,355	0.087	13,370	0.159	22,610	1		
				2-33 (2-20)	6,965	0.103	11,125	0.189	13,165			
				2-43 (2-18)	9,255	0.125	15,485	0.250	21,810	IBO		
						2-54 (2-16)	9,990	0.106	15,960	0.225	24,480	FL,
				3/16" A36 Steel	14,625	0.136	20,890	0.185	31,455	1		
				43 (18)	4,225	0.039	6,765	0.062	11,440			
				54 (16)	7,665	0.070	12,265	0.109	20,740	1		
				68 (14)	9,655	0.087	15,450	0.143	26,130] _		
				97 (12) ³	14,925	0.129	23,880	0.235	40,385	1		
C/UDII11	105/	7/-	(07) #14	2-33 (2-20)	6,965	0.103	11,125	0.189	13,165			
S/HDU11	16%	7/8	(27) #14	2-43 (2-18)	9,595	0.096	15,330	0.162	23,515			
				2-54 (2-16)	9,675	0.110	15,460	0.158	23,710	IBO		
					2-43 (2-18)3	11,100	0.125	17,500	0.250	24,955	FL, I	
				2-54 (2-16) ³	12,175	0.125	19,445	0.243	29,825	1 2, 27		
				3/16" A36 Steel ³	16,010	0.127	22,875	0.185	31,715			

^{1.} The designer shall specify the foundation anchor material type, embedment, and configuration. Some of the tabulated holdown tension loads exceed the tensile strength of typical ASTM A36 or A307 anchor bolts.

^{2.} It is acceptable to use the capacity listed for the thickest single member or back-to-back members for thicker stud members in the same configuration. Stud design by specifier.

^{3.} A heavy hex nut for the anchor bolt is required to achieve the table loads for S/HDU11.

^{4.} Deflection at ASD or LRFD is the deflection of the fastener slip, holdown deformation, and anchor rod elongation for holdowns installed up to 4" above the top of concrete when loaded to the ASD and LRFD load, respectively. Holdowns may be installed raised to 18" above the top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for. This movement is strictly due to the holdown deformation under a static load test attached to members listed in the table above.

^{5.} The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design under section E1 of AISI S400 that categorized the holdowns as capacity-protected components. Based on AISI S400, the nominal load shall be greater than or equal to the required strength. Per AISI S400, holdowns are Capacity Protected Components and they are not part of the designated energy-dissipating mechanism. Nominal strength to resist amplified seismic load is not required.

^{6.} See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

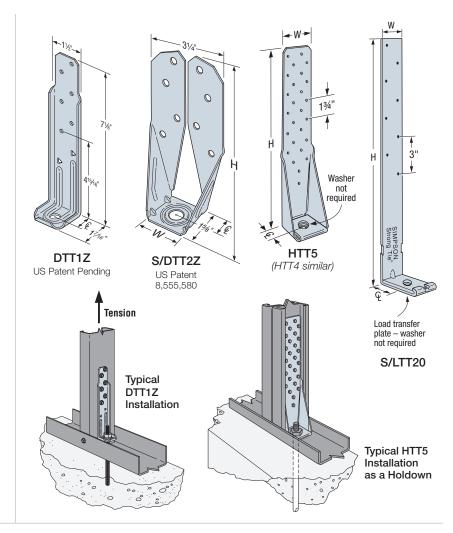
S/LTT, S/DTT and HTT Tension Ties

The HTT is a single-piece formed tension tie — no rivets, and a four-ply formed seat. No washers are required.

S/DTT2Z tension tie is suitable for lighter-duty holdown applications on single or back-to-back studs, and installed easily with #14 self-drilling screws.

The HTT, S/DTT and S/LTT tension ties are ideal for retrofit or new construction projects. They provide high-strength, post-pour, concrete-to-steel connections

Material: HTT — 111 mil (11 ga.) DTT1Z, S/DTT2Z — 68 mil (14 ga.) S/LTT20 — Strap: 97 mil (12 ga.);


Plate: 229 mil (3 ga.)

Finish: HTT, S/LTT — Galvanized (G90); DTT1Z, S/DTT2Z — ZMAX® coating

Installation:

- Use all specified fasteners.
- Use the specified number of type of screws to attach the strap portion to the steel stud. Bolt the base to the wall or foundation with a suitable anchor; see table for the required bolt diameter.
- S/DTT2Z requires a standard cut washer (included) be installed between the nut and the seat.
- Do not install S/LTT20 raised off of the bottom track.
- See SB and SSTB Anchor Bolts on p. 183 for anchorage options.
- See SET-3G[™] and AT-XP[®] adhesive products at strongtie.com for anchor bolt retrofit options.

Codes: See p. 13 for Code Reference Key Chart

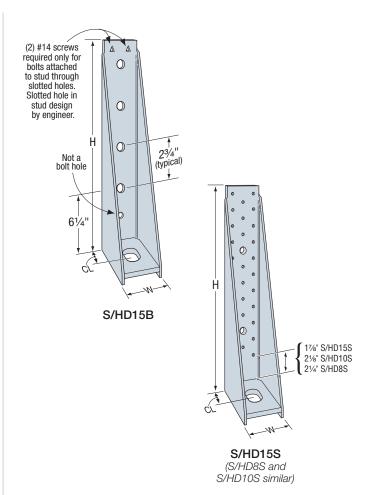
These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

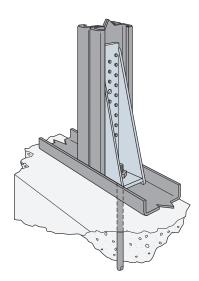
	Dim	ensions	(in.)	Fasteners		Stud	AS	SD	LR	FD	Nominal	
Model	W	Н	Ģ	Anchor Bolt Diameter ¹ (in.)	Stud Fasteners ⁵	Member Thickness mil (ga.)	Tension Load (lb.)	Deflection at ASD Load ³ (in.)	Tension Load (lb.)	Deflection at LRFD Load ³ (in.)	Tension Load ⁴ (lb.)	Code Ref.
DTT1Z	1 ½	71/8	3/4	3/8	(6) #10	33 (20)	905	0.156	1,270	0.250	3,485	_
S/LTT20	2	20	1½	1/2	(8) #10	33 (20)	1,200	0.125	1,890	0.250	4,625	
						33 (20)	1,570	0.138	2,200	0.250	4,265	
S/DTT2Z	1 %	615/16	13/16	1/2	(8) #14	43 (18)	1,685	0.151	2,355	0.250	5,570	
						2-33 (2-20)	1,735	0.153	2,430	0.250	5,735	
HTT4	2½	12%	13/8	5/8	(10) #10	33 (20)	3,180	0.104	4,770	0.187	8,215	IBC, FL, LA
П114	Z/2	1278	198	78	(18) #10	2-33 (2-20)	4,395	0.125	6,675	0.250	11,835	
						43 (18)	4,150	0.125	6,425	0.250	11,585	
HTT5	2½	16	1%	5%	(26) #10	2-43 (2-18)	4,670	0.125	6,970	0.250	12,195	
						1-54 (1-16)	4,150	0.125	6,425	0.250	12,365	

- 1. The designer shall specify the foundation anchor material type, embedment and configuration.
- 2. Stud design by specifier. Tabulated loads are based on a minimum stud thickness for fastener connection.
- 3. Deflection at ASD or LRFD includes fastener slip, holdown deformation and anchor rod elongation for holdowns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18" above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for. See bottom of p. 191 for installation detail.
- 4. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design in accordance with section C5 of AISI S213 that requires a tension tie to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver.
- 5. It is acceptable to use the capacity listed for the thickest single member or back-to-back members for thicker stud members in the same configuration.
- 6. See the current Fastening Systems catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

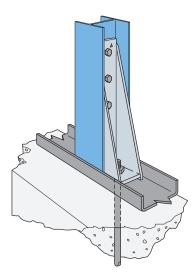
S/HDS and S/HDB Holdowns

The S/HD series of holdowns is designed for installation with either screws or bolts into the studs or column. The S/HDS series installs with #14 screws and has been designed to utilize fewer fasteners to reduce installation time. The S/HDB series is ideal for bolt-on applications where the cold-formed stud manufacturer can prepunch the bolt holes.

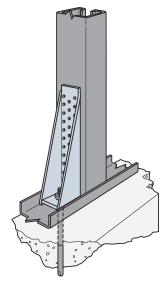

Material: See table


Finish: Simpson Strong-Tie® gray paint. Hot-dip galvanized is available; see Corrosion Information, pp. 19–23.

Installation:


- Use all specified fasteners; some models have extra fastener holes. See General Notes.
- Anchor bolt washer is not required.
- Standard washers are required on stud bolt nuts for model S/HDB.
- Thin wall socket (OD = 2" maximum) is required for S/HD15 to tighten the 1" anchor bolt.
- Stud bolts use A307.
- Boundary members (back-to-back studs) design shall be by designer.
- S/HDS and S/HDB holdowns can be welded per designer's recommendation and specification. To tie back-to-back stud members together, the designer must determine the fasteners required to bind members to act as one unit.
 Welders and welding procedures shall be qualified as specified in AWS D1.3. Welded connections used for cold-formed steel structural members in which the thickness of the thinnest connected part is 0.18 inch or less shall comply to AISI S100 Specification Section E2.
- See SB, SSTB and PAB Anchor Bolts on pp. 183 and 185 for anchorage options.
- See SET-3G[™] and AT-XP[®] adhesive products at strongtie.com for anchor bolt retrofit options.

Codes: See p. 13 for Code Reference Key Chart



Typical S/HD10S Back-to-Back Stud Installation

Typical S/HD10B PACO Column Installation See Code Report

Typical S/HD10S Heavy-Duty (Large Flange) Stud Application See Code Report

S/HDS and S/HDB Holdowns

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

					Fast	eners		AS	SD	LR	FD	Nominal	
Model No.	Mil (ga.)	H (in.)	W (in.)	Ф (in.)	Anchor Bolt Dia. ¹ (in.)	Stud Fasteners ⁷	Stud Member Thickness mil (ga.)	Tension Load (lb.)	Deflection at ASD Load ⁴ (in.)	Tension Load (lb.)	Deflection at LRFD Load ⁴ (in.)	Tension Load (lb.)	Code Ref.
							2-33 (2-20)	7,335	0.12	11,715	0.204	13,720	
S/HD8S	118	11	25/16	1½	7/8	(17) #14 ⁷	2-43 (2-18)	8,750	0.086	13,975	0.146	21,435	
3/11003	(10)	"	2716	1 72	78	(17)#14	2-54 (2-16)	8,855	0.106	14,145	0.162	21,700	
							3/16" A36 steel	10,840	0.053	17,335	0.072	32,525	
							2-33 (2-20)	7,400	0.122	11,815	0.192	13,835	
S/HD10S	118	131/2	25/16	11/2	7/8	(22) #14 ⁷	2-43 (2-18)	11,120	0.112	17,755	0.124	20,795	
3/110103	(10)	1372	Z 716	1 72	78	(22) #14	2-54 (2-16)	12,220	0.096	19,520	0.145	29,940	
							3/16" A36 steel	12,375	0.043	19,820	0.061	33,535	
							2-43 (2-18)	12,110	0.096	19,340	0.164	22,645	
S/HD15S	171 (7)	17	25/16	1 %16	1	(30) #147	2-54 (2-16)	13,500	0.11	21,565	0.13	33,075	
							¾e" A36 steel	15,810	0.043	25,320	0.065	42,845	IBC,
							2-33 (2-20)	3,895	0.081	5,620	0.144	8,645	FL, LA
S/HD8B	171	11	25/16	1½	7/8	(2) ¾" dia.	2-43 (2-18)	5,345	0.098	7,710	0.146	11,865	
3/11000	(7)	''	2716	1 72	78	(2) 74 uia.	2-54 (2-16)	8,950	0.082	14,280	0.141	20,310	
							3/16" A36 steel	9,080	0.069	14,545	0.104	22,975	
							2-33 (2-20)	5,840	0.070	8,430	0.124	12,970	
S/HD10B	118	131/2	25/16	1 ½	7/8	(3) ¾" dia.	2-43 (2-18)	8,015	0.087	11,565	0.12	17,795	
3/110100	(10)	1372	2716	1 72	78	(5) 74 uia.	2-54 (2-16)	12,090	0.125	19,720	0.23	28,050	
							¾6" A36 steel	15,635	0.102	24,955	0.123	35,495	
							2-43 (2-18)	10,690	0.118	15,425	0.179	22,165	
S/HD15B	171 (7)	17	25/16	1 %	1	(4) 3/4" dia.	2-54 (2-16)	16,020	0.090	25,565	0.121	36,360	
							3/16" A36 steel	18,690	0.104	29,825	0.139	42,425	

- The designer shall specify the foundation anchor material type, embedment and configuration.
 Some of the tabulated holdown tension loads exceed the tension strength of typical ASTM A36 or A307 anchor bolts.
- 2. Stud design by specifier. Tabulated loads are based on a minimum stud thickness for fastener connection.
- 3. ¼" self-drilling screws may be substituted for #14 self-tapping screws.
- 4. Deflection at ASD or LRFD includes fastener slip, holdown deformation and anchor rod elongation for holdowns installed up to 4" above top of concrete. Holdowns may be installed raised, up to 18" above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for. See bottom of p. 191 for installation detail.
- 5. The Nominal Tension Load is based on the tested average ultimate (peak) load and is provided for design in accordance with section C5 of AISI S213 that requires a holdown to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver.
- Not all fastener holes for S/HDS holdowns need to be filled, as additional fastener holes provided. Install fasteners symmetrically.
- 7. It is acceptable to use the capacity listed for 2–54 (2–16) member for thicker stud members in the same configuration.
- 8. See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

PA/HPA Purlin Anchors

PA/HPA purlin anchors offer solutions for CFS to concrete and concrete block connections which satisfy code requirements. The HPA offers the highest capacity in concrete. The PAs dual embedment line allows installation in concrete or concrete block.

Material: PA − 12 gauge; HPA − 10 gauge

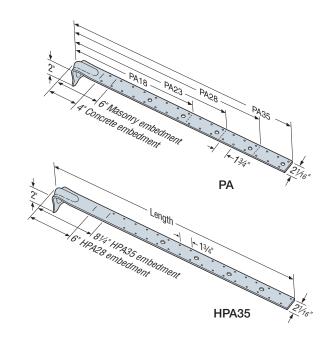
Finish: Galvanized. PAs available in HDG or ZMAX® coating.

Installation:

- Use all specified fasteners; some models have extra fastener holes. See General Notes.
- Purlin anchor must hook around rebar.
- Allowable loads are for a horizontal installation into the side of a concrete or masonry wall.
- Strap may be bent one full cycle.
 (Bent vertical 90° then bent horizontal.)

Edge Distance — Minimum concrete edge distance is 5". Minimum concrete block left-to-right edge distance is 20".

Concrete Block Wall — The minimum wall specifications are:

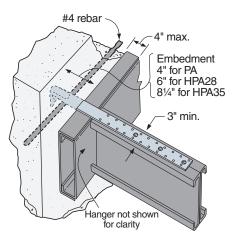

- A One #4 vertical rebar, 32" long, 16" each side of anchor.
- B Two courses of grout filled block above and below the anchor (no cold joints allowed).
- C A horizontal bond beam with two #4 rebars, 40" long, a maximum of two courses above or below the anchor.
- \square Minimum masonry compressive strength, $f'_m = 1,500$ psi.

Options: See S/LTT and HTT Tension Ties for alternate retrofit solutions

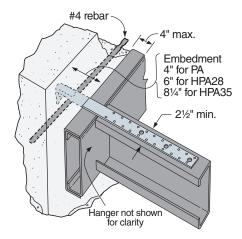
Codes: See p. 13 for Code Reference Key Chart

ASCE 12.11.2.2.5 states:

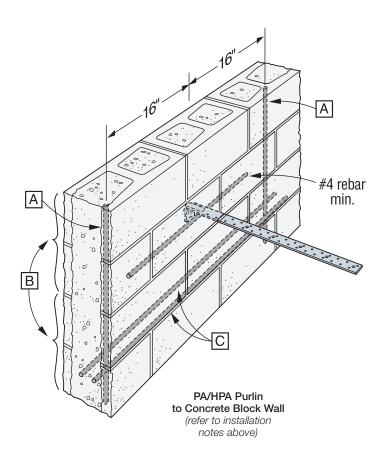
... Diaphragm to structural wall anchorage using embedded straps shall have the straps attached to, or hooked around the reinforcing steel or otherwise terminated to effectively transfer forces to the reinforcing steel.


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

			Win	d and SDC	A&B — All	lowable Load	l (lb.)			
				Fasteners ^a	ı	Tension	Load			
Model	Strap Length	le ⁸	Rafter/St	ud /Joist T	hickness			Max. Allowable	Masonry Installation	Code Ref.
No.	(in.)	(in.)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	UnCracked	Cracked	Strap Tension	Tension Load	
PA18	18½	4	(16) #10	(16) #10	(8) #10	2,430	2,260	NA	1,895	
PA23	23¾	4	(22) #10	(16) #10	(8) #10	3,220	2,260	NA	2,815	
PA28	29	4	(22) #10	(16) #10	(8) #10	3,230	2,260	NA	2,815	
PA35	35	4	(22) #10	(16) #10	(8) #10	3,230	2,260	NA	2,815	
HPA28	32½	6	(28) #10	(20) #10	(10) #10	5,145	4,675	NA	_	
HPA35	38½	81/4	(32) #10	(22) #10	(12) #10	5,145	5,145	NA	_	
				SDC C-F	— Allowat	ole Load (lb.)				IBC
PA18	18½	4	(16) #10	(16) #10	(8) #10	2,340	1,980	3,220	1,895	
PA23	23¾	4	(22) #10	(16) #10	(8) #10	2,830	1,980	3,220	2,815	
PA28	29	4	(22) #10	(16) #10	(8) #10	2,830	1,980	3,935	2,815	
PA35	35	4	(22) #10	(16) #10	(8) #10	2,830	1,980	3,935	2,815	
HPA28	32½	6	(28) #10	(20) #10	(10) #10	5,145	4,090	5,145	_	
HPA35	38½	81/4	(32) #10	(22) #10	(12) #10	5,145	5,145	5,145	_	


- 1. Loads may not be increased for short-term loading.
- 2. For concrete installs, the minimum compressive strength, $f'_{\text{C}} = 3,000$ psi.
- 3. Multiply Seismic and Wind ASD load values by 1.4 or 1.67, respectively, to obtain LRFD capacities.
- In accordance with 2012, 2015 and 2018 IBC Section 1613.1, detached one- and two-family dwellings in Seismic Design Category (SDC) C may use "Wind and SDC A&B" allowable loads.
- 5. Minimum center-to-center spacing is 3 times the required embedment ($S_{min} = 3 \times I_{e}$) for PA/HPAs acting in tension simultaneously, where $I_{e} =$ embedment depth. Standard installation is based on minimum 5" end distance.
- 6. Install fasteners symmetrically and with a minimum of 4 of the required fasteners between the embedment line and the first tooling hole. In some cases, not all of the fastener holes will need to be filled.
- 7. For wall anchorage systems in SDC C-F, the maximum strap allowable load shall not be less than 1.4 times the ASD anchor design load.
- 8. For PA straps, concrete embedment shown; embedment in masonry shall be 6".
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

PA/HPA Purlin Anchors



PA/HPA Purlin to Concrete Wall Back-to-Back Joist Installation

PA/HPA Purlin to Concrete Wall Single C-Shape Joist Installation

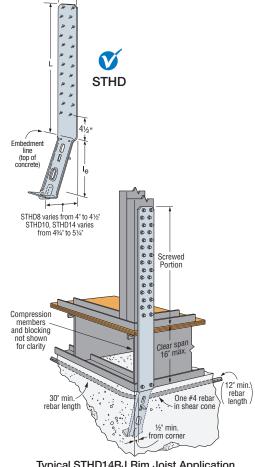
STHD/LSTHD Strap Tie Holdowns

This product is preferable to similar connectors because of a) easier installation. b) higher loads, c) lower installed cost, or a combination of these features.

The STHD is an embedded strap-tie holdown offering high-load capacity. The STHD incorporates many features that aid correct installation and improve performance. When installed on the forms with the StrapMate® strap holder, the unique design of the STHD delivers enhanced stability before and during the pour to help prevent both parallel and perpendicular movement (relative to the form). This results in accurate positioning of the strap and reduced possibility of spalling.

WEINEERED.

- The fastener pattern allows for fastening to the edges of back-to-back studs
- The slots below the embedment line enable increased front-to-back concrete bond and help to reduce spalling
- Rim joist models accommodate up to a 17" clear span without any loss of strap fastening


Material: LSTHD8, LSTHD8RJ - 14 gauge, all others - 12 gauge

Finish: Galvanized

Installation: • Use all specified fasteners; see General Notes.

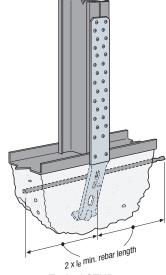
- Use table below for both standard concrete and post-tension slab installations.
- Install before concrete pour with a StrapMate or other holding device.
- Fasten strap from the bottom up. Install strap plumb.
- Strap may be bent one full cycle (bent horizontal 90° then bent vertical) to aid wall placement, but may cause spalling behind the strap. If the spall is 1" or less, measured from the embedment line to the bottom of the spall, full loads apply. 1" to 4" spalls for LSTHD8 achieve 0.9 times table loads. STHD10 and STHD14 achieve full load for spalls less than 4". Any portion of the strap left exposed should be protected against corrosion.
- Other than where noted in the two-pour detail, do not install where: (a) a horizontal cold joint exists within the embedment depth between the slab and foundation wall or footing beneath, unless provisions are made to transfer the load, or the slab is designed to resist the load imposed by the anchor; or (b) slabs are poured over concrete block foundation walls.
- Additional stude attached to the shearwall stude or post may be required by the designer for wall sheathing fastening.
- For installation in severe corrosion environments, refer to strongtie.com/cipcorrosion for additional considerations.

Codes: See p. 13 for Code Reference Key Chart

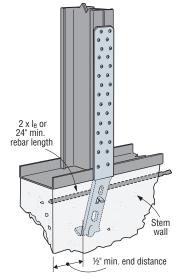
Typical STHD14RJ Rim Joist Application

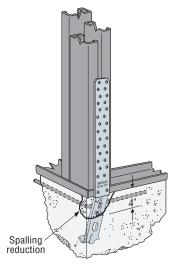
Allowable Stress Design (ASD) Loads for STHD Strap Style Holdowns on CFS — 2,500 psi Concrete

			Wind	and SDC	A & B —	· Allowable Tension	on Loads (II	o.) — 33 n	nil (20 ga.)	Studs				
Min.	Mode	el No.	Strap Len	gth (L)			Unavaale	- al			Code			
Stem Wall	04	Dian Iniat	Standard	Rim	le (in.)		Uncrack	eu			Cracked			Ref.
(in.)	Standard	Rim Joist	(in.)	Joist (in.)	(111.)	Req'd Screws	Midwall	Corner	Endwall	Req'd Screws	Midwall	Corner	Endwall	
	LSTHD8	LSTHD8RJ	18%	321/8	8	(20) #10	2,985	2,590	1,620	(16) #10	2,565	2,225	1,395	
6	STHD10	STHD10RJ	24%	381/8	10	(24) #10	3,535	3,535	1,960	(22) #10	2,910	2,910	1,635	1
	STHD14	STHD14RJ	261/8	39%	14	(30) #10	4,935	4,935	3,065	(30) #10	4,935	4,935	3,065	
	LSTHD8	LSTHD8RJ	18%	321/8	8	(20) #10	2,985	2,590	2,135	(16) #10	2,565	2,225	1,835	1
8	STHD10	STHD10RJ	24%	381/8	10	(28) #10	4,755	4,075	3,015	(22) #10	4,020	3,350	2,480	
	STHD14	STHD14RJ	261/8	39%	14	(30) #10	5,285	5,285	4,410	(30) #10	5,285	5,285	4,410	
				SDC C-F	— Allov	vable Tension Loa	ıds (lb.) —	33 mil (20	ga.) Studs					
Min.	Model No. Strap Length (L)			igth (L)			Unanali				0			IBC,
Stem Wall	04	Dian Iniat	Standard	Rim	le (in.)		Uncrack	eu			Cracke	u		LA, FL
(in.)	Standard	Rim Joist	(in.)	Joist (in.)	(111.)	Req'd Screws	Midwall	Corner	Endwall	Req'd Screws	Midwall	Corner	Endwall	
	LSTHD8	LSTHD8RJ	18%	321/8	8	(16) #10	2,270	2,090	1,220	(14) #10	2,250	1,950	1,220	
6	STHD10	STHD10RJ	24%	381/8	10	(18) #10	2,750	2,750	1,615	(18) #10	2,550	2,550	1,435	
	STHD14	STHD14RJ	261/8	39%	14	(22) #10	3,695	3,695	2,685	(22) #10	3,695	3,695	2,685	
	LSTHD8	LSTHD8RJ	18%	321/8	8	(16) #10	2,615	2,125	1,635	(14) #10	2,250	1,950	1,610	1
8	STHD10	STHD10RJ	24%	381/8	10	(20) #10	3,400	2,940	2,295	(20) #10	3,400	2,940	2,175	
	STHD14	STHD14RJ	261/8	39%	14	(24) #10	3,815	3,815	3,500	(24) #10	3,815	3,815	3,500	

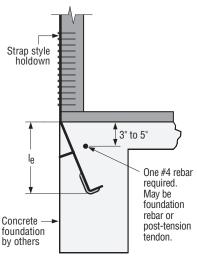

- 1. Deflection at highest allowable loads for install over CFS double studs are as follows: LSTHD8 = 0.065", STHD10 = 0.096" and STHD14 = 0.115".
- 2. Multiply Seismic and Wind ASD load values by 1.4 or 1.67, respectively, to obtain LRFD capacities.
- 3. Per 2012, 2015, 2018 and 2021 IBC Section 1613, detached one- and two-family dwellings assigned to Seismic Design Category (SDC) A, B or C are exempt from the seismic design provisions of IBC Section 1613. For this case, the allowable wind loads apply.
- 4. Minimum center-to-center spacing is 3 times the required embedment (Smin = 3 x Ie) for STHD's acting in tension simultaneously. Midwall install is based on 1.5 x le end distance.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

STHD/LSTHD Strap Tie Holdowns

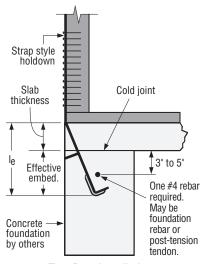



Typical STHD14 Corner Installation on Three Studs (end of wall similar)

Typical STHD14 Mid-Wall Installation



Typical STHD End Installation



Spalling Load Reduction
If strap is bent horizontal 90°
during installation and then bent
vertical for fastening to the stud,
concrete spalling could result.
Load reductions may apply,
see installation note.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Single-Pour Rebar Installation Maintain minimum rebar cover, per ACI-318 concrete code requirements.

Two-Pour Installation for Downturn Footings

Spall Reduction System for STHD Holdown

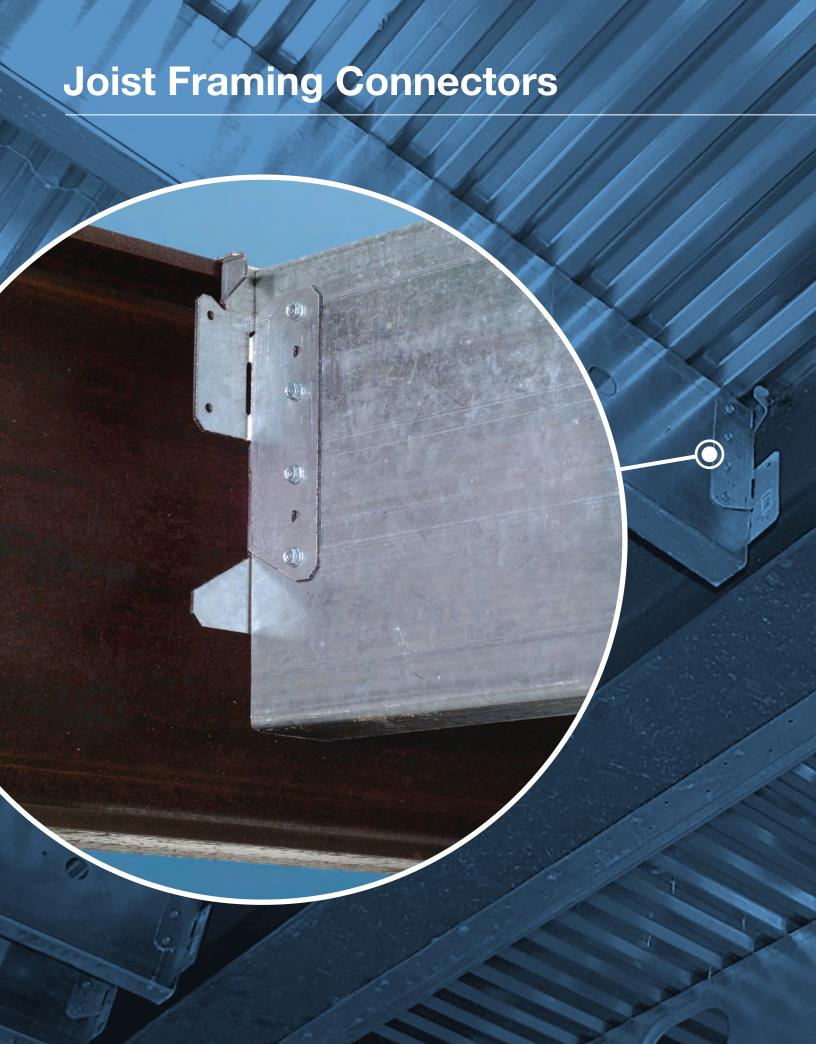
Features

- Built-in tab
- StrapMate® locator line
- Additional diamond hole in RJ versions

Benefits

Built-in Tab:

- Reduces spalling and costly retrofits.
- No additional labor to install.
- Holds STHD away from form board.


StrapMate Locator Line:

- Easy inspection to ensure proper location.
- Allows adjustment without removing STHD.

Additional Diamond Hole:

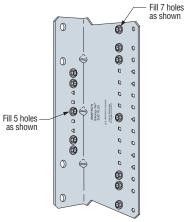
 One more fastener to help prevent the STHD RJ models from bowing out at the rim joist section.

SJC Steel-Joist Connectors

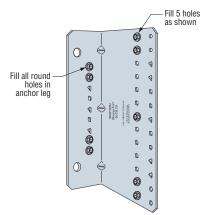
SJC Connectors — CFS to CFS Allowable Loads (lb.)

					Fasteners ⁶		Allo	wable Load F ₄ (lb.) ³								
Model No.	Connector Material Thickness	L (in.)	Framing Member Depth ⁵	Pattern ²	Carried	Carrying		mum Thickness	Maximum Connector	Code Ref.							
	mil (ga.)	(,	(in.)	rattern	Member	Member	54 mil (16 ga.)	68 mil (14 ga.)	Load ⁴								
				Min.	(4) #10	(4) #10	980	980									
SJC8.25	68 (14)	81/4	10	Max.	(9) #10	(7) #10	1,005	1,490	2,930								
				Inner	(5) #10	(4) #10	1,345	2,005									
				Min.	(4) #10	(4) #10	1,005	1,710									
MSJC8.25	97 (12)	81/4	10	Max.	(9) #10	(7) #10	1,135	1,765	2,930								
				Inner	(5) #10	(4) #10	1,535	2,220		IBC							
				Min.	(6) #10	(4) #10	1,170	1,625		IDC							
SJC10.25	68 (14)	101/4	12	Max.	(11) #10	(7) #10	1,265	1,625	3,935								
				Inner	(7) #10	(5) #10	1,620	2,170									
	97 (12)										Min.	(6) #10	(4) #10	1,200	2,045		
MSJC10.25		97 (12) 101/4	01/4 12	Max.	(11) #10	(7) #10	1,265	2,045	3,935								
				Inner	(7) #10	(5) #10	1,730	2,635									

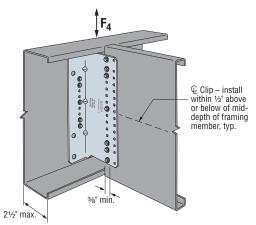
1. See p. 95 for product information.

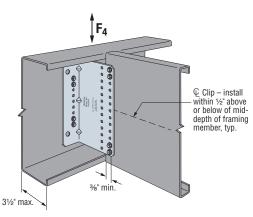

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Min. fastener quantity and load values fill all round holes; Max. fastener quantity and load values fill all round and triangular holes; Inner fastener quantity and load values — see illustrations for fastener placement.
- 3. Allowable loads are based on bracing of the members located within 12" of the connection.
- 4. Maximum allowable load for connector that may not be exceeded when designing custom installations. Designer is responsible for member and fastener design.
- 5. For 6" and 8" joists, SSC connectors are recommended.
- 6. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.


For smaller framing depth members (3%" to 8"), see SSC Connector on pp. 86-94.

For full dimensioned


SJC clips, see p. 99.


SJC10.25 — Inner Fastener Pattern (MSJC10.25 similar)

SJC8.25 — Inner Fastener Pattern (MSJC8.25 similar)

SJC Installation with Carried Member Fasteners in Inner Row

SJC8.25 Installation with Min. Screw Pattern (screw in round holes)
For max. screw pattern, fill all round and triangle holes.
Min./Max. patterns have screws only in outer row.

The S/JCT and S/HJCT are unique, skewable steel-joist framing connectors that combine strength, versatility and low installed cost. The connectors can be used with CFS headers, wood headers, steel I-beams (with welds or PAF fasteners) and masonry walls. Installed cost is minimized since these products are shear rather than bearing connectors, eliminating the need for web stiffeners. The connectors also feature horizontal tabs that facilitate top flange alignment and joist support during screw installation.

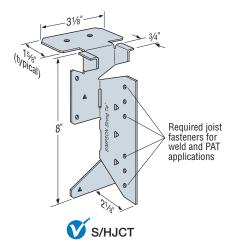
Material: S/JCT - 68 mil (14 ga.); S/HJCT - 97 mil (12 ga.)

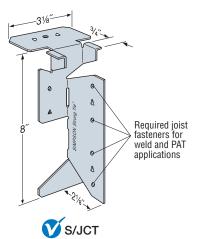
Finish: Galvanized

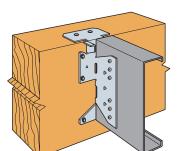
Features:

- · Uni-directional: Joist can be attached from left or right
- One size fits joists 8" through 14" deep
- · Optional holes for additional load capacity
- · Simplicity of design
- Quick and easy installation
- Field skewable up to 45° left or right

Installation:

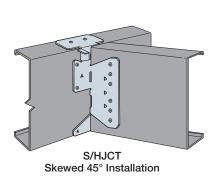

- Attach hanger with specified fasteners. Use round holes for minimum load, use round and triangle holes for maximum load.
- May be used for weld-on applications. The minimum required weld to the top flange is ½" x 2½" fillet weld to each side of top flange. Consult the code for special considerations when welding galvanized steel.
- May be installed using PDPAT-62KP (0.157" x 5%") powder-actuated fasteners.
 Steel headers with thicknesses between ¼" and ¾" having a minimum F_y = 36 ksi.
 A Red (level 5) or Purple (level 6) powder load may be required to achieve specified penetration (p). See illustration on p. 203.

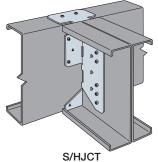

Codes: See p. 13 for Code Reference Key Chart

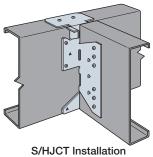

Ordering Information: The S/JCT is sold in cartons of 50. The S/HJCT is sold in kits as the S/HJCT-KT and contains five (5) connectors and (95) #14 screws.

Model No.	I	Fasteners ⁷	Allowable	Load1 (lb.)	Code				
Model No.	Тор	Face	Joist	Uplift	Down	Ref.			
Atta	ached to CFS Heade	er: 54 mil (16 ga.) ³ –	– Straight	Hanger					
S/JCT (min.)	(1) #10	(2) #10	(4) #10	940	1,195				
S/JCT (max.)	(1) #10	(4) #10	(6) #10	1,435	2,105				
S/HJCT (min.)	(2) #10	(4) #14	(6) #14	1,510	2,920				
S/HJCT (max.)	(2) #10	(8) #14	(9) #14	1,670	3,855				
Atta	ached to CFS Heade	er: 54 mil (16 ga.) ³ –	– Skewed	Hanger		IBC,			
S/JCT (min.)	(1) #10	(2) #10	(4) #10	940	1,135	FL,			
S/JCT (max.)	(1) #10	(4) #10	(6) #10	940	1,185	LA			
S/HJCT (min.)	(2) #10	(4) #14	(6) #14	1,510	2,305				
Att	ached to Steel Hea	der ⁴ — Straight and	d Skewed	Hanger					
S/JCT (min.)	1/11 01/11	CH 1 11	(4) #10	145	940				
S/HJCT (min.)		fillet weld of top flange	(4) #14	195	1,450				
S/HJCT (min.) Skew	to odon sido	or top narigo	(4) #14	195	1,235				
S/JCT (min.)	(2) 0.15	7" x %"	(4) #10	145	750				
S/HJCT (min.)	powder-actua	ated fastener ⁸	(4) #14	195	1,185				
Attached to Masonry — Straight and Skewed Hanger									
S/HJCT (min.)	(2) 1/4" x 21/4"	(4) 1/4" x 21/4"	(6) #14	710	1,785				
S/HJCT (min.) Skew	Titen Turbo™	Titen Turbo	(0) #14	710	1,410				

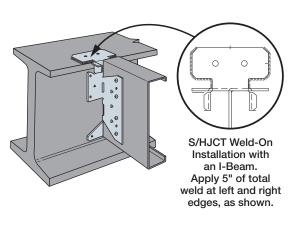
Model No.	ı	Fasteners ⁷		Allowable	Load ^{1,2} (lb.)	Code				
Widdel No.	Тор	Face	Joist	Uplift (160)	Down (100)	Ref.				
Attached to 4x DF/SP Wood Header — Straight Hanger										
S/JCT (min.)	(1) 10d	(2) 10d	(4) #10	555	945					
S/JCT (max.)	(1) 10d	(4) 10d	(6) #10	945	1,465					
S/HJCT (min.)	(2) 10d	(4) 1/4"x3" SDS	(6) #14	1,210	2,625	IBC,				
S/HJCT (max.)	(2) 10d	(8) 1/4"x3" SDS	(9) #14	1,475	2,980	FL,				
-	Attached to 4x DF/SI	P Wood Header — S	Skewed Ha	anger		LA				
S/JCT (min.)	(1) 10d	(2) 10d	(4) #10	390	845					
S/JCT (max.)	(1) 10d	(4) 10d	(6) #10	775	1,300					
S/HJCT (min.)	(2) 10d	(4) 1/4" x 3" SDS	(6) #14	1,210	1,935					

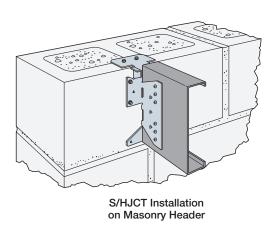

S/HJCT Installation with a 4x10 Wood Header

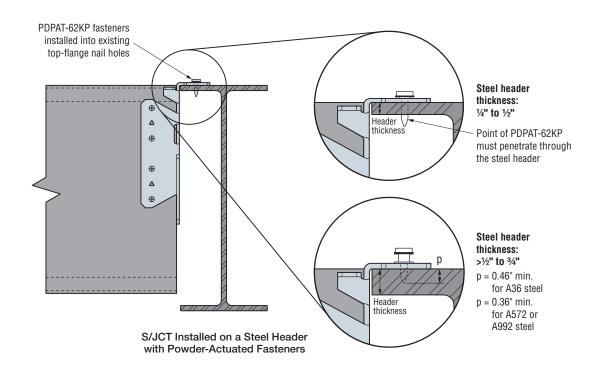

- Allowable loads are based on a minimum of single 54 mil (16 ga.) CFS joist member. CFS joist shall be laterally braced per designer specification.
- Allowable loads for wood header are based on 4x DF/SP minimum, for SPF/HF wood species use an adjustment factor of 0.72.
- 3. CFS header must be braced to prevent web buckling per designer specification and header must have full bearing of 1%" flange-depth.
- 4. Backing in the steel beam cavity is not required behind the hanger for load listed.
- 5. Screws shall be installed using joist hanger holes screwing through the hanger into the joist.
- 6. CFS joists with up to a 0.50" gap (short cut), use an adjustment factor of 0.87 and joists with a 0.50" to 0.90" gap (short cut), use an adjustment factor of 0.75.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.
- 8. See p. 203 for more information.


Joist Framing Connectors

S/JCT and S/HJCT Steel-Joist Connectors






S/HJCT S/HJCT Installation

Double-Joist Installation with a CFS Steel Header

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

S/LBV and S/B Hangers

SIMPSON
Strong-Tie

S/LBV and S/B top-flange hangers are manufactured with precision forming and quality control, providing dimensional accuracy and helping to ensure proper bearing area and connection. These hangers are designed for attaching to cold-formed steel members with screws or to structural steel with powder-actuated fasteners or welds.

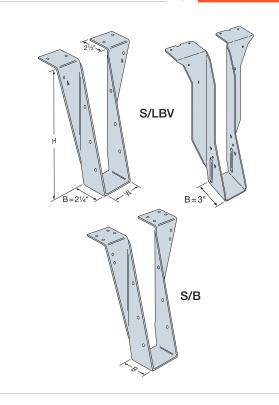
Material: S/LBV — 68 mil (14 ga.); S/B — 97 mil (12 ga.)

Finish: Galvanized (G90)

Installation:

Cold-Formed Steel:

 S/LBV and S/B may be attached to cold-formed steel supporting members with screws to the face and top flanges and provide capacities for downward and uplift.

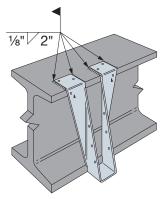

Structural Steel:

• S/LBV and S/B may be attached to structural steel support members with powder-actuated fasteners or welds. For powder-actuated fasteners use PDPAT-62KP (0.157" x %") and provide full penetration as required. For welds use a minimum of 1/8" x 2" fillet weld on each top flange as required. Distribute the weld equally on both flanges. Capacities are provided for downward loads.

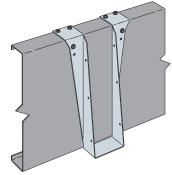
Skew Options:

 S/LBV and S/B may be skewed up to a maximum of 45°. Widths for skewable sections are limited to a maximum of 5.25" (specify right or left skew).

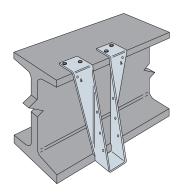
Codes: See p. 13 for Code Reference Key Chart



S/LBV and S/B Hanger Allowable Loads (lb.)


Model	Base Header	Hanger Type	Fas	teners	Allowable (li	Code Ref.			
	Material	Турс	Тор	Face	Joist	Uplift	Down	1101.	
	CFS -	CES	Straight	(4) #10	(2) #10	(3) #10	1,010	3,150	
0/1/01/	UFS	Skewed	(4) #10	(2) #10	(3) #10	1,010	2,220		
S/LBV	A36 steel	Ctroight	(4) 1/8" x 2" weld	_	(3) #10	_	2,920		
	3/16" min.	Straight	(4) 0.157" x %" PAF	_	(3) #10	_	2,685	IBC,	
	CFS	Straight	(8) #10	(4) #14	(3) #14	1,855	5,970	LA, FL	
S/B	UFS	Skewed	(8) #10	(4) #14	(3) #14	1,855	4,195		
5/8	A36 steel	Ctraight	(4) 1/8" x 2" weld	_	(3) #14	_	5,755		
	¾6" min.	Straight	(8) 0.157" x %" PAF	_	(3) #14	_	3,695		

- Designer shall ensure that the joist member adequately transfers load to hanger. Header must be braced to prevent buckling per designer specification.
- 2. Load is based on the Simpson Strong-Tie® PDPAT-62KP (0.157" x 5%") powder-actuated fasteners. Steel headers with thicknesses between ¼" and ¾" having minimum Fy = 36 ksi. A Red (level 5) or Purple (level 6) powder load may be required to achieve specified penetration.
- 3. Tabulated loads are based on testing with full bearing of 2½" flange-depth minimum with 68 mil (14 ga.) CFS for S/LBV and 97 mil (12 ga.) CFS for S/B hanger.
- 4. S/LBV2.12 and S/LBV4.18 bearing depth dimension, B, is 3", other S/LBV hanger sizes are 21/4".
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

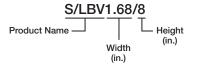

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

S/LBV Weld-On Applications (S/B similar)

S/LBV Installed to a CFS Header with Screws (S/B similar)

S/LBV Installed to a Steel Beam with PAF(s) (S/B similar except 8 PAF(s))

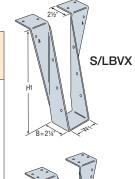
The Standard Hanger Sizes table below are hangers with common widths and heights.

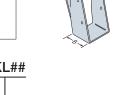

Standard Hanger Sizes

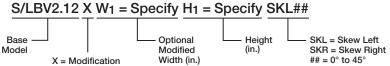
Joist width (in.)	S/LBV	S/B	W (in.)	H (in.)
	S/LBV1.68/6	S/B1.68/6		6
	S/LBV1.68/8	S/B1.68/8		8
15/8	S/LBV1.68/10	S/B1.68/10	1 11/16	10
	S/LBV1.68/12	S/B1.68/12		12
	S/LBV1.68/14	S/B1.68/14		14
	S/LBV2.12/6	S/B2.12/6		6
	S/LBV2.12/8	S/B2.12/8		8
2	S/LBV2.12/10	S/B2.12/10	21/8	10
	S/LBV2.12/12	S/B2.12/12		12
	S/LBV2.12/14	S/B2.12/14		14
	S/LBV2.56/8	S/B2.56/8		8
2½	S/LBV2.56/10	S/B2.56/10	2%16	10
	S/LBV2.56/12	S/B2.56/12		12
	S/LBV3.12/8	S/B3.12/8		8
3	S/LBV3.12/10	S/B3.12/10	31/8	10
	S/LBV3.12/12	S/B3.12/12		12
	S/LBV3.38/6	S/B3.38/6		6
	S/LBV3.38/8	S/B3.38/8		8
(2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S/LBV3.38/10	S/B3.38/10	3%	10
	S/LBV3.38/12	S/B3.38/12		12
	S/LBV3.38/14	S/B3.38/14		14
	S/LBV4.18/6	S/B4.18/6		6
(2) 2	S/LBV4.18/8	S/B4.18/8		8
	S/LBV4.18/10	S/B4.18/10	43/16	10
	S/LBV4.18/12	S/B4.18/12		12
	S/LBV4.18/14	S/B4.18/14		14

Standard size ordering:

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


Joist 800S162-54 using an S/LBV hanger.


The S/ hangers can be ordered special to fit different width, height or skew from the standard hangers. Below is a table with base model and the modified options.


Hanger Modification Options: Custom Width, Height and Skew

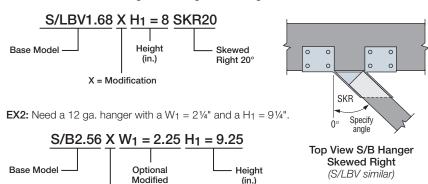
S/LBV	S/B	W (in.)	Modified W range, W ₁ (in.)	H ₁ (in.)	Skew
S/LBV1.56X	_	1 %16	1.56		
S/LBV1.68X	S/B1.68X	1 11/16	1.57 to 1.68		
S/LBV2.12X	S/B2.12X	21/8	1.69 to 2.12		
S/LBV2.56X	S/B2.56X	2%16	2.13 to 2.56	S/LBV	
S/LBV3.12X	S/B3.12X	31/8	2.57 to 3.12	6 to 20 S/B	Left or right 0 °to 45°
S/LBV3.38X	S/B3.38X	3%	3.13 to 3.38	6 to 30	
S/LBV4.18X	S/B4.18X	41/8	3.38 to 4.18		
S/LBV5.25X	S/B5.25X	51/4	4.19 to 5.25		
_	S/B7.5X	71/4	5.26 to 7.25		

S/BX

Customizable Options for Hangers

Optional Modified Width (W₁) is defined in the W₁ range from the table and measured in 1/16" increments less than the base model width. For example, if a 2.50" wide S/LBV hanger is needed, start with the wider S/LBV2.56X base model and add "W₁ = 2.25" after X. If W₁ is left blank, then the width of the base model will be used.

Height 1 (H₁) is the modified hanger height defined in the H₁ range from the table and measured in 1/16" increments. For example, if a 9.25" long hanger height is needed, add "H1 = 9.25" after X or the W1 value if also modifying the width.


Skew is the modified skew slope where SKL is for left skew or SKR for right skew followed by a value for the skew angle ranging from 0 to 45°. For example, add "SKL20" after the H1 value for a 20° left skewed hanger.

For more examples of modified hangers, see EX1 and EX2 below:

EX1: Joist 800S162-54 using S/LBV hanger skewed right 20°.

Width

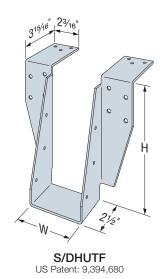
X = Modification

(in.)

205

S/DHUTF Drywall Hangers

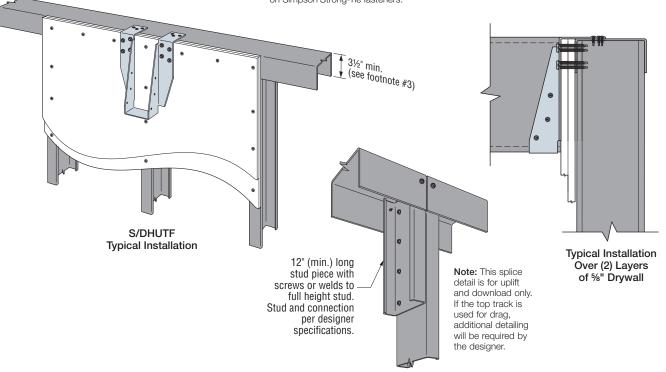
The S/DHUTF top-mount hanger is designed to carry joist loads to a CFS stud wall through two layers of %" gypsum board (drywall). This hanger installs after the drywall is in place and comes in sizes that accommodate most typical joists used in multi-family and commercial construction.


Material: 97 mil (12 ga.) Finish: Galvanized (G90)

Installation:

- Use all specified fasteners; see General Notes
- Hanger to be framed in-line with vertical wall stud
- · Drywall is installed first
- · Wall top track must be restrained to counteract load eccentricity from hanger

Codes: See p. 13 for Code Reference Key Chart


Model	Dimensi	ons (in.)
No.	W	Н
S/DHU1.68/8TF		8
S/DHU1.68/10TF	1 11/16	10
S/DHU1.68/12TF		12
S/DHU2.1/8TF		8
S/DHU2.1/10TF	21/8	10
S/DHU2.1/12TF		12
S/DHU2.56/8TF		8
S/DHU2.56/10TF	2%6	10
S/DHU2.56/12TF		12

S/DHUTF Allowable Loads (lb.)

Model		Fasteners ⁶	Allowable	Code		
Model	Тор	Face	Joist	Uplift	Down	Ref.
S/DHUTF	(6) #10	(8) #14 x 2"	(3) #10	1,230	1,700	_

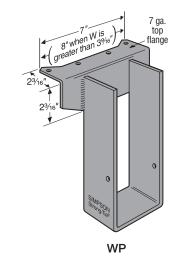
- 1. Designer shall ensure that the joist member adequately transfers load to the hanger.
- 2. Tabulated loads assume (2x) %" Type X drywall attached per IBC.
- 3. Wall studs designed per designer specifications. At a minimum, the assembly must consist of 600T350-68, Gr. 50 ksi top track and 600S162-43, Gr. 33 ksi wall studs spaced at a maximum of 24" o.c.
- 4. Tabulated loads are based on testing with full bearing of 3¹⁵/₁₆" hanger top flange. The minimum joist gauge is 54 mil (16 ga.).
- 5. S/DHUTF hanger can be installed ¾" max. from the center of the vertical stud per the in-line framing specifications of the AISI General Provisions without load adjustment.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

WP Hanger

This series of purlin hangers offer the greatest design flexibility and versatility.

Material: Stirrup — 97 mil (12 ga.)

Finish: Simpson Strong-Tie® gray paint. Some models available hot-dip galvanized; specify HDG; see Corrosion Information on pp. 19–23.


Installation: WP hanger may be welded to steel header with $\%_6$ " x 1 ½"-fillet welds located at each end of top flange

Options: W and H dimensions are modifiable

Sloped and/or Skewed Seat:

- WP series may be skewed to a maximum of 84° and/or sloped to a maximum of 45°.
- For slope only, skew only, or slope and skew combinations, the allowable load is 100% of the table load.
- Specify the slope up or down in degrees from the horizontal plane and/or the skew right or left in degrees from the perpendicular vertical plane. Specify whether low side, high side or center of joist will be flush with the top of the header.

Codes: See p. 13 for Code Reference Key Chart

Some model configurations may differ from those shown. Call Simpson Strong-Tie for details.

Model		Dimensions (in.)		Faste	eners ⁴	Allowable Down Load	Code Ref.
No.	w	н	В	Header	Joist	(lb.)	Ref.
WP	1% - 7½	4 – 30	2½-5	Weld	(1) #10	3,650	_

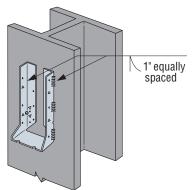
- 1. For hanger heights exceeding the joist height, the allowable load is 0.50 of the table value.
- 2. The designer shall ensure that the joist member adequately transfers load to the hanger.
- 3. Not all combinations of W, H, and B dimensions are available. Contact Simpson Strong-Tie.
- 4. See the current Fastening Systems catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

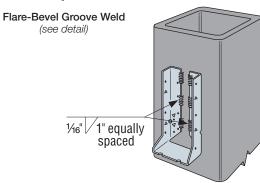
HU/HUC Hangers

Strong-Tie

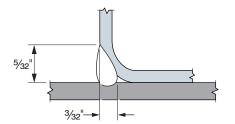
Material: 68 mil (14 ga.) Finish: Galvanized (G90)

Installation:

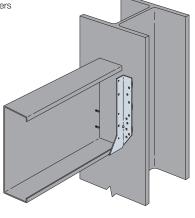

- Single Joist Fill all round holes on one leg of HU/HUC with #10 screws to web of joist.
- Boxed Joist Fill all round holes on both legs of HU/HUC with #10 screws to web of both joists.
- Screw attach to Steel Fill all round holes on both flanges to structural steel support.
- Weld attach to Steel Use 1" weld segments equally spaced top and bottom with half the segments on each side of hanger. Welds may be either lap joint (on outside edge of flanges) or flare-bevel groove (on flange bend line).

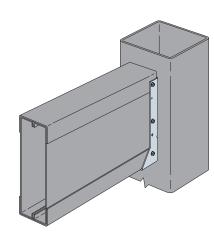

Codes: See p. 13 for Code Reference Key Chart

HU/HUC Allowable Loads (lb.)


Model	Faste	eners	Joist	Joist	AS	D	Code
No.	Face	Joist	Depth (in.)	Thickness mil (ga.)	Download (lb.)	Uplift (lb.)	Ref.
				33 (20)	990	355	
				43 (18)	1,480	525	
HU36/ HUC36	(8) #12	(2) #10	6	54 (16)	1,480	915	
				68 (14)	1,400	1,080	
				97 (12)	1,400	1,080	
				33 (20)	825	355	
		(2) #10	8	43 (18)	1,220	525	
HU38/ HUC38	(10) #12			54 (16)	1,220	915	
				68 (14)	1,500	1,080	_
				97 (12)	1,500	1,080	
				43 (18)	1,435	790	
HU310/	(1.4) #10	(2) #10	10	54 (16)	1,585	1,495	
HUC310	(14) #12	(3) #10	10	68 (14)	1,995	1,620	
				97 (12)	1,995	1,620	
				54 (16)	1,355	1,495	
HU312/ HUC312	(16) #12	(3) #10	12	68 (14)	1,985	1,620	
				97 (12)	1,985	1,620	

- 1. Loads assume E-70S-6 (60 ksi) filler rod.
- 2. Welds must conform to the current AWS D1.3 structural welding code for sheet steel and must be performed by a certified welder.
- 3. Designer shall ensure that the joist member adequately transfers load to hanger.
- 4. Design loads must not exceed the weld capacities onto steel members of 3,280 lb. for four 1" segment weld, and 4,855 lb. for six 1" segment weld.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.


Lap-Joint Fillet Weld



Flare-Bevel Groove Weld Detail

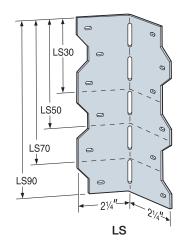
Installation for CFS Built-Up Beam

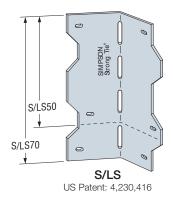
The designer is responsible for design of beam member.

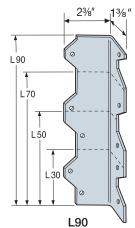
Joist Framing Connectors

SIMPSON Strong-Tie

L, LS, and S/LS angles are load rated, providing the correct thickness and number of fasteners for the specifier compared with field fabricated clip angles. These angles also have well-defined fastener locations, and testing ensures that the tabulated load values account for connection eccentricities. The connectors are general utility reinforcing angles with multiple uses. S/LS and LS connectors are skewable and can be used to attach members intersecting at angles.


Material: L - 54 mil (16 ga.); S/LS and LS - 43 mil (18 ga.)

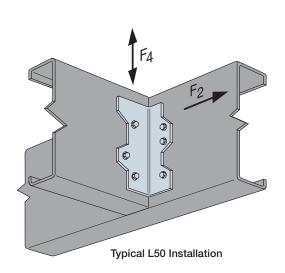

Finish: Galvanized (G90)

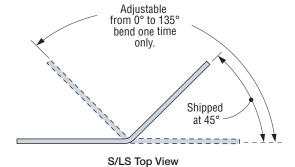

Installation:

- Use all specified fasteners
- S/LS and LS Field-skewable; bend one time only
- CFS framing must be constrained against rotation when using a single S/LS or LS per connection

Codes: See p. 13 for Code Reference Key Chart

See pp. 103–106 for more utility clips options with the RCA (Rigid Connector Angle).


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.


				Allowable Load (lb.)						
Model No.	Length (in.)	Fasteners ²	33 mil	(20 ga.)	43 mil (18 ga.)		54 mil (16 ga.)		Code Ref.	
	(,		F ₄	F ₂	F ₄	F ₂	F ₄	F ₂		
L30	3	(4) #10	200	60	315	85	610	_		
L50	5	(6) #10	475	_	675	90	750	110		
L70	7	(8) #10	705	_	760	110	1,100	110		
L90	9	(10) #10	795	_	945	110	1,740	110		
LS30	3%	(6) #10	200	_	370	_	500	_		
S/LS50	47/8	(4) #10	200	_	370	_	500	_		
S/LS70	6%	(6) #10	465	_	575	_	715	_		
LS90	77/8	(12) #10	465	_	895	_	915	_		

1. Loads are for one part only.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

2. See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

Typical S/LS70 Installation

ICFVL Ledger Connector System

The ICFVL ledger connector system is engineered to solve the challenges of mounting CFS ledgers to insulated concrete form (ICF) walls. The ICFVL is designed to provide both vertical and lateral, in-plane performance. There are many benefits over traditional anchor bolting, including better on-center spacing in most cases, faster installation and no protrusions. The embedded legs of the ICFVL are embossed for additional stiffness and the hole allows for concrete to flow through and around the connector. The exposed flange on the face of the ICF provides a structural surface for mounting a CFS ledger.

Material: ICFVL — 68 mil (14 ga.)

Finish: Galvanized (G90)

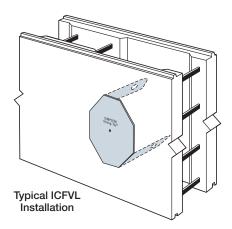
Installation: ICFVL in ICF

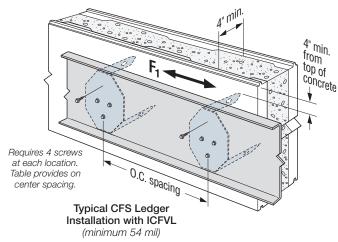
- · Snap a chalk line for the bottom of the ledger
- · Mark required on-center spacing
- Use ICFVL to mark kerfs locations
- · Cut kerfs as marked
- Insert ICFVL flush to the face of the ICF
- Pour concrete

CFS Ledger Attachment

- · Position the ledger level to the chalk line and against the ICFVL
- Attach with four #14 x ¾", #3 drill point screws (not provided)
- All screws should be located at least ½" from the edge of the ICFVL
- Space screws evenly

Codes: See p. 13 for Code Reference Key Chart

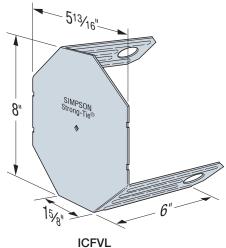

Model Fasteners		Allowable A 54 mil 68 mil	Code Ref.	
		Download	Lateral F ₁	
ICFVL	(4) #143	1,660	1,525	_


- 1. Fasteners for CFS ledger are not provided.
- 2. Loads apply to ICF foam thicknesses of 23/4" or less. Contact Simpson Strong-Tie for allowable loads on thicker walls.
- 3. Alternatively, 1/4" fastener may be used. Recommended maximum fastener length is 1" to avoid interfering with the concrete.
- 4. Concrete f'_C = 2,500 psi minimum.
- 5. When combining download and lateral loads, the designer shall use the following interaction equation: Design Download/Allowable Download + Design Lateral Load/ Allowable Lateral Load < 1.

These tables address vertical load applications only

Ledger Material Thickness mil (ga.)	Connector Type	ICFVL Spacing to Replace Anchor Bolts on a CFS Ledger (in.) ^{1,2}								
		½"-Diameter Anchors at				%"-Diameter Anchors at				
		12" o.c.	24" o.c.	36" o.c.	48" o.c.	12" o.c.	24" o.c.	36" o.c.	48" o.c.	
68 (14)	ICFVL	11	22	33	44	9	18	27	36	
54 (16)	ICFVL	15	30	45	48	12	24	36	48	

- 1. The designer may specify different spacing based on the load requirements.
- 2. See flier F-ICFVL at strongtie.com for additional connection details.



Warning:

Industry studies show that hardened fasteners can experience performance problems in wet environments. Accordingly, use this product in dry environments only.

New ICFVL models are coming Spring 2023. See strongtie.com for more information.

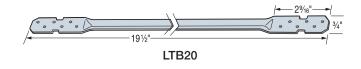
Patent pending

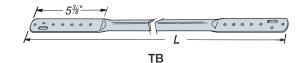
Reduce the chance of misinstallations using the wrong size screws; specify Simpson Strong-Tie® #14 Self-Drilling E Metal screw (Model No. E1B1414) with the ICFVL Ledger Connector System. Visit strongtie.com for details.

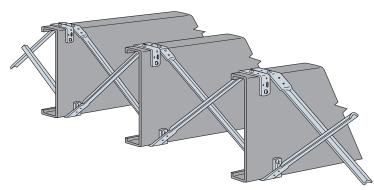
Available in 100 ct. and 2.500 ct. cartons.

Joist Framing Connectors

TB and LTB Bridging


TB and LTB bridging connectors are a cost-effective solution for bracing between floor joists when compared with field fabricated blocking and clip angles.


Material: LTB — 27 mil (22 ga.); TB — 33 mil (20 ga.)


Finish: Galvanized (G90)

Installation: Use (2) #10 screws at each end Codes: See p. 13 for Code Reference Key Chart

Web Height	Spacing	T	В	LTB	Code	
(in.)	(in.)	Model No.	L (in.)	Model No.	Ref.	
6		TB20	20	LTB20		
8	12	TB20	20	LTB20		
10		TB20	20	_		
12		TB27	27	_		
14		TB27	27	_		
6	16	TB27	27	_		
8		TB27	27	_	_	
10		TB27	27	_		
12		TB27	27	_		
14		TB27	27	_		
10		TB36	36	_		
12	24	TB36	36	_		
14		TB36	36	_		

Typical TB Installation

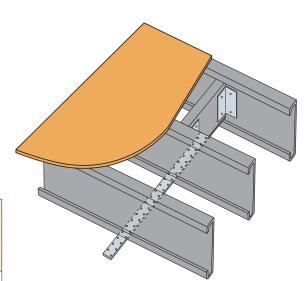
CS Coiled Strap

CS coiled utility straps are an ideal solution when it is desired to brace floor joist flanges with flat strap. These products are packaged in lightweight cartons (about 40 lb.) and can be cut to length on the jobsite.

Material: See table
Finish: Galvanized (G90)

Installation:

- Use all specified fasteners
- Refer to the applicable code for minimum edge and end distance


Codes: See p. 13 for Code Reference Key Chart

Model Le	Length Material	Connector	nnector Fasteners ⁴ (At Blocking)					
		Material Thickness	Width (in.)	Framing	g Thickness I	Tension Load	Code Ref.	
(ft.) mil (mil (ga.)		33 (20 ga.)	43 (18 ga.)	54 (16 ga.)		(lb.)
CS20	250	33 (20)	11/4	(6) #10	(4) #10	(3) #10	945	IDO
CS16	150	54 (16)	11/4	(9) #10	(6) #10	(4) #10	1,550	IBC, FL, LA
CS14	100	68 (14)	11/4	(28) #10	(18) #10	(12) #10	2,305	LA


- 1. In order to achieve the tabulated loads in the strap, attach each strap to the blocking with the tabulated number of screws.
- 2. Strap length at blocking to achieve tabulated load = number of tabulated screws + 1".
- Calculate the strap value for a reduced number of screws to the blocking as follows:

 Allowable Load = No. of Screws Used No. of Screws in Table x Table Load

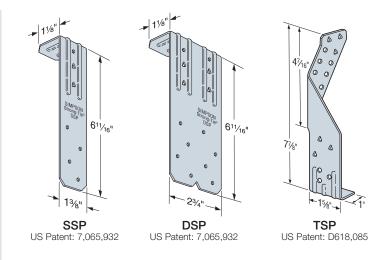
 A See the strain of Screws in Table x Table Load
- 4. See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

Typical CS Installation for Block and Strap Joist Bridging

SIMPSON Strong-Tie

The SSP, DSP and TSP are pre-bent strap designed to connect double studs in either top or bottom track applications. These versatile single- and double-stud-plate connector helps to create a continuous load path in uplift resistance.

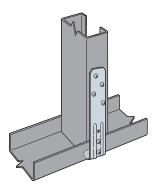
Material: SSP/DSP - 43 mil (18 ga.); TSP - 54 mil (16 ga.)

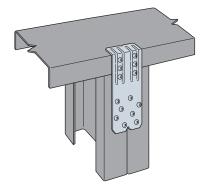

Finish: Galvanized (G90). Some products available in ZMAX®; see Corrosion Information, pp. 19–23.

Installation:

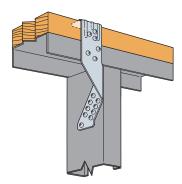
C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- Use all specified fasteners; see General Notes
- DSP/SSP top track installation; fill all round and triangle holes


Codes: See p. 13 for Code Reference Key Chart


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

	Model		Fas	teners ⁴	Allowable (II	Code		
	No.	Studs Top T		rack -	Bottom Track	33 mil	43 mil	Ref.
		CFS	Wood	CFS	CFS	(20 ga.)	(18 ga.)	
			_	_	(2) #10	355	625	
	SSP	(4) #10	_	(2) #10	_	340	600	
	337	(4) #10	(2) #10 ³	(1) #10		405¹	715¹	
			(2) 10d	(1) #10	_	480¹	8401	
		(8) #10	_		(4) #10	430	695	
	DSP		_	(4) #10	_	475	775	IBC,
	DOF		(4) #10 ³	(2) #10	_	585¹	955¹	FL, LA
			(4) 10d	(2) #10		730¹	1,200¹	
		(6) #10	_	_	(3) #10	345	645	
	TSP	(6) #10	_	(3) #10	_	370	700	
	135	(9) #10	(3) #10 ³	(3) #10	_	360¹	685¹	
		(9) #10	(3) 10d	(3) #10	_	480¹	9051	


- For wood plates, noted values only apply to DF/SP members where wood top plates are used. For SPF values, multiply by 0.86.
- 2. For wood plates, when cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 3. Screws installed into wood plates with a minimum #10 x ¾" self-drilling screw.
- 4. See the current Fastening Systems catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

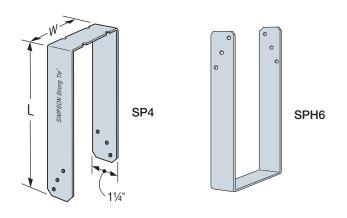
Typical SSP Installed to Bottom Track (DSP similar for double stud)

Typical DSP Installed to Top Track (SSP similar for single stud)

Typical TSP Installed to Top Track with Top Plate

SP Stud Plate Ties

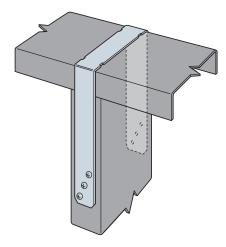
SIMPSON
Strong-Tie


The SP stud plate tie is a plate-to-stud connection providing uplift resistance.

Material: See table.

Finish: Galvanized. Available with ZMAX® coating;

see Corrosion Information, pp. 19–23. **Installation:** Use all specified fasteners


Codes: See p. 13 for Code Reference Key Chart


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

Model	Connector Material	Dimensions (in.)		Stud	Allowable Uplift Load	Code	
No.	Thickness mil (ga.)	W	L	Fasteners ¹	33 mil (20 ga.) (lb.)	Ref.	
SP4	33 (20)	3%6	71/4	(6) #10	825	IBC,	
SP6	33 (20)	5%6	7¾	(6) #10	825	FL, LA	
SP8	43 (18)	75/16	85/16	(6) #10	930		
SPH4	43 (18)	3%6	8¾	(12) #10	1,490		
SPH4R	43 (18)	41/16	81⁄4	(12) #10	1,490	_	
SPH6	43 (18)	5%6	91/4	(12) #10	1,490		
SPH6R	43 (18)	61/16	8¾	(12) #10	1,490		
SPH8	43 (18)	75⁄16	83/8	(12) #10	1,490		

^{1.} See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

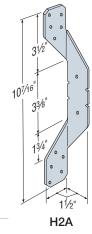
Typical SP Installation (Wall-to-Top Track)

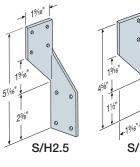
Typical SP Installation (Wall-to-Bottom Track) (SPH similar)

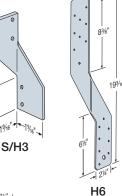
SIMPSON Strong-Tie

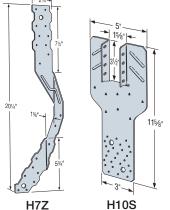
Designed to provide seismic and wind ties for trusses or joists, this versatile line may be used for general tie purposes, strongback attachments, and as all-purpose ties where one member crosses another.

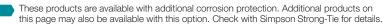
Material: See table

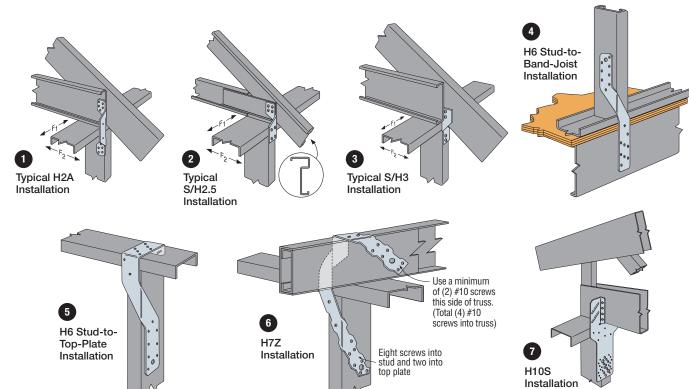

Finish: Galvanized (G90). Available with ZMAX® coating; see Corrosion Information, pp. 19–23.


Installation:


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


- Use all specified fasteners
- Hurricane ties do not replace solid blocking
- S/H2.5, S/H3 and H6 ties are only shipped in equal quantities of rights and lefts


Codes: See p. 13 for Code Reference Key Chart



Model	Connector Material		Fasteners ⁵		Allowable Load (lb.) 33 mil (20 ga.)		Code	
No.	Thickness	То	То	То	Uplift	Lateral		Ref.
	mil (ga.)	Rafters/Truss	Top Track	Stud	Opint	F ₁	F ₂	
H2A	43 (18)	(5) #10	(1) #10	(5) #10	450	90	100	
S/H2.5	43 (18)	(4) #10	_	(4) #10	390	90	125	
S/H3	43 (18)	(2) #10	(2) #10	_	375	90	125	
H6	54 (16)	_	(8) #10	(8) #10	950	_	_	
H7Z	54 (16)	(4) #10	(2) #10	(8) #10	985			
H10S ⁴	43 (18)	(8) #10	_	(8) #10	930³	_	_	

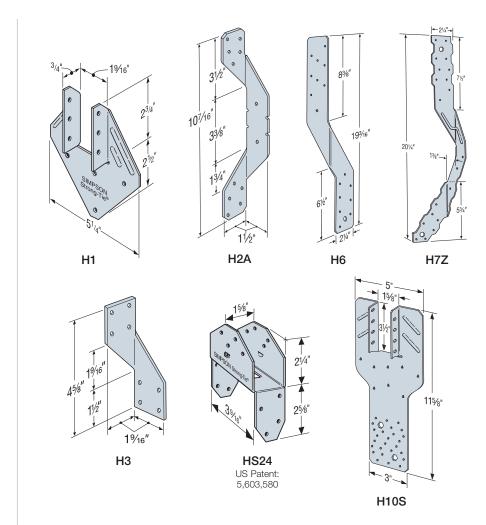
- 1. Loads are based on attachment of cold-formed steel members having a minimum thickness of 33 mil (20 ga.).
- 2. Hurricane ties are shown installed on the outside of wall for clarity. Installation inside of wall is acceptable. For Continuous Load Path, connections in the same area must be on same side of wall.
- 3. For H10S connectors with CFS members having a minimum thickness of 43 mil (18 ga.), the allowable load is 1,260 lb.
- 4. H10S connectors can be installed ¾" (max.) from the center of the vertical stud per the in-line framing specifications of the AISI General Provisions for reduced uplift of 890 lb., provided that the screw edges are met.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

H Hybrid Connectors Seismic and Hurricane Ties for Wood Truss or Joist-to-CFS Wall

Designed to provide seismic and wind ties for wood trusses or joists-to-CFS walls, this versatile line may be used for general purposes, strongback attachments, and as all-purpose ties where one member crosses another.

HS24 attaches the bottom chord of a truss or rafter at pitches from 0:12 to 4:12 to steel top plates.

Material: See table


Finish: Galvanized (G90).

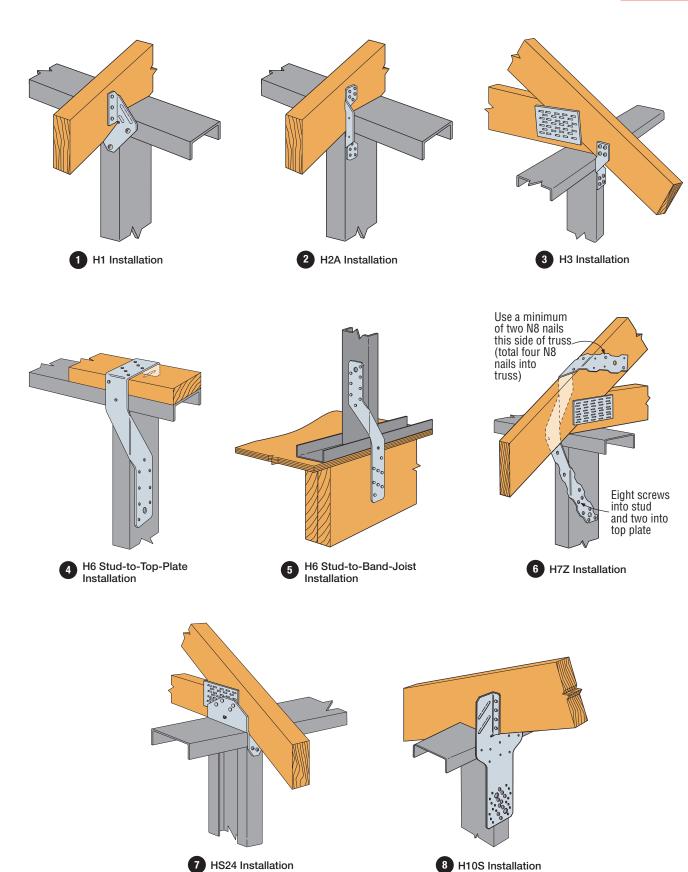
Selected products available in stainless steel or ZMAX® coating. See Corrosion Information, pp. 19-23.

Installation:

- Use all specified fasteners; see General Notes
- H1 can be installed with flanges facing inward (reverse of illustration 1)
- Hurricane ties do not replace solid blocking
- H3 and H6 ties are only shipped in equal quantities of rights and lefts

Codes: See p. 13 for Code Reference Key Chart

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

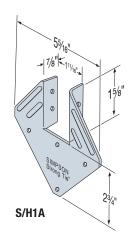

		Connector		Fasteners ⁵	Allowable 33 mil				
	Model No.	Material Thickness	To	То	То		60) b.)	Code Ref.	
		mil (ga.)	Rafters/ Truss	Top Track	Stud	DF/SP	SPF/HF		
	H1	43 (18)	(6) 8d x 1½"	(3) #10	(1) #10	600	500		
	H2A	43 (18)	(5) 8d x 1½"	(1) #10	(5) #10	550	460		
	НЗ	43 (18)	(4) 8d x 1½"	(4) #10	_	365	305		
	H6	54 (16)	_	(8) 8d	(8) #10	950	820	_	
	H7Z	54 (16)	(4) 8d x 1½"	(2) #10	(8) #10	985	845		
	HS24	43 (18)	(8) 8d x 1½"	(4) #10	(4) #10	625	520		
	H10S⁵	43 (18)	(8) 8d x 1½"	_	(8) #10	930	780		

- 1. Allowable loads on wood have been increased 60% for wind or earthquake loading with no further increase allowed; reduce where other load duration factors govern.
- 2. Hurricane Ties are shown installed on the outside of wall for clarity. Installation inside of wall is acceptable. For Continuous Load Path, connections must be on same side of wall.
- 3. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such force should be considered.
- 4. H10S connectors can be installed ¾" (max.) from the center of the vertical stud per the in-line framing specifications of the AISI General Provisions for reduced uplift of 890 lb., provided that the screw edges are met.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

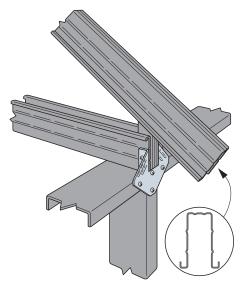
H Hybrid Connectors Seismic and Hurricane Ties for Wood Truss or Joist-to-CFS Wall

S/H1A Seismic and Hurricane Ties

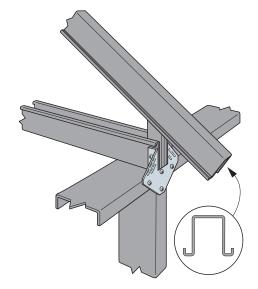

S/H1A is designed to fit within several proprietary truss chords to provide uplift resistance.

Material: 43 mil (18 ga.) Finish: Galvanized (G90)

Installation:


- Use all specified fasteners.
- S/H1A can be installed with flanges facing outwards, reverse of illustration, when installed inside a wall for truss applications.
- S/H1A does not replace solid blocking.
- S/H1A may be used with proprietary truss sections. Contact material supplier for specific installation details.

Codes: See p. 13 for Code Reference Key Chart



		Fasteners ²				I		
Model No.			Stud	Truss Thickness mil (ga.)	Pla	Code Ref.		
		Track Stud			33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	
	(4) #10	(3) #10	(1) #10	27 (22)	470	470	470	
S/H1A	(4) #10	(3) #10	(1) #10	33 (20)	510	550	690	IBC,
3/HIA	(4) #10	(3) #10	(1) #10	43 (18)	510	550	690	FL, LA
	(4) #10	(3) #10	(1) #10	54 (16)	520	675	850	

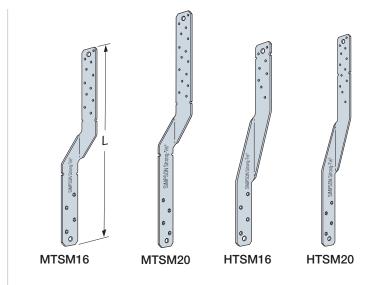
- 1. Tabulated loads based on truss members with yield strength, Fy, of 50 ksi and tensile strength, Fu, of 65 ksi. Reduce tabulated load proportionally for lower truss member steel strength. For example: 43 mil (18 ga.) truss member with a yield strength, F_{ν} , of 33 ksi and a tensile strength, F_{u} , of 45 ksi is connected to 43 mil top track and wall stud. The adjusted allowable load is then 550 lb. x minimum [33/50 or 45/60] = 363 lb.
- 2. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Typical S/H1A Installation

Typical S/H1A Installation

Roof, Truss and Rafter Connectors, Ties and Straps

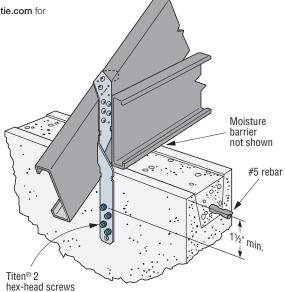
The MTSM and HTSM offer high-strength truss-to-masonry connections.


Material: See table.

Finish: Galvanized (G90). Some products available in stainless steel and ZMAX®; see Corrosion Information, pp. 19–23.

Installation:

- Use all specified fasteners; see General Notes.
- May be attached to either side of a grouted block wall. A minimum of one #5 horizontal rebar shall be installed in the top course of this wall.


Codes: See p. 13 for Code Reference Key Chart

	0					Fasteners ⁶			
Model	Connector Material	L	Rafter/	Stud/Joist Th	ickness			Allowable Load 33 mil (20 ga.)	Code Ref.
No.	Thickness mil (ga.)	(in.)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	CMU⁵	Concrete ^{3,5}	(lb.)	Kei.
MTSM16	E4 (16)	16	(5) #10	(4) #10	(3) #10	(4) ¼" x 2¼" Titen Turbo™	(4) 1/4" x 13/4" Titen Turbo	830	
MTSM20	54 (16)	20	(5) #10	(4) #10	(3) #10	(4) 1/4" x 21/4" Titen Turbo	(4) 1/4" x 13/4" Titen Turbo	830	
HTSM16	60 (14)	16	(7) #10	(5) #10	(3) #10	(4) 1/4" x 21/4" Titen Turbo	(4) 1/4" x 13/4" Titen Turbo	1,110	_
HTSM20	68 (14)	20	(7) #10	(5) #10	(3) #10	(4) 1/4" x 21/4" Titen Turbo	(4) 1/4" x 13/4" Titen Turbo	1,110	

1. All straps have additional fastener holes.

- 2. Twist straps do not have to be wrapped over the truss to achieve the load.
- 3. Minimum edge distance in concrete block for Titen Turbo screws is 1 $\mbox{\ensuremath{\upsigmu}}".$
- 4. Straps can be installed on the inside face of the wall.
- 5. Min. f'_m = 1,500 psi and f'_C = 2,500 psi.
 6. See the current *Fastening Systems* catalog at **strongtie.com** for more information on Simpson Strong-Tie fasteners.

Typical MTSM20 Installation

META/HETA/HHETA Embedded Truss Anchors

The embedded truss anchor series provides an engineered method to properly attach roof trusses to concrete and masonry walls. Information regarding the use of two anchors on single- and multi-ply trusses is included below.

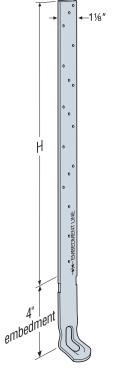
Material: HHETA — 14 gauge; HETA — 16 gauge; META — 18 gauge

Finish: Galvanized (G90). Some products available in ZMAX® coating; see Corrosion Information on pp. 19–23.

Installation:

- Use all specified fasteners: see General Notes.
- The META, HETA and HHETA are embedded 4" into a 6" minimum concrete beam or 8" nominal grouted block wall.
- For mislocated truss anchors which are greater than 1½" but less than 1½" from the face of the truss, a shim must be provided. Shim design by truss engineer. When gap is greater than 1½", install retrofit anchors.
- In double embedded anchor installations, do not install fasteners where the straps overlap when wrapped over the truss heel.

Codes: See p. 13 for Code Reference Key Chart


These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

Single Embedded Anchor Installation

		Fastener ⁹	Allov	wable Uplift I (lb.)	Load	Latera	l Load ⁸	
Model No.	H (in.)	Rafter/Stud/Truss Thickness	Ra	fter/Stud/Tru Thickness	ISS	F ₁	F ₂	Code Ref.
		33 mil, 43 mil and 54 mil (20 ga., 18 ga. and 16 ga.)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)		mil ga.)	
META12	8	(7) #10	1,240	1,450	1,450			
META16	12	(9) #10	1,450	1,450	1,450			
META18	14	(9) #10	1,450	1,450	1,450			
META20	16	(9) #10	1,450	1,450	1,450	340	725	
META22	18	(9) #10	1,450	1,450	1,450			
META24	20	(9) #10	1,450	1,450	1,450			
META40	36	(9) #10	1,450	1,450	1,450			
HETA12	8	(7) #10	1,240	1,780	1,780			
HETA16	12	(9) #10	1,595	1,810	1,810			_
HETA20	16	(9) #10	1,595	1,810	1,810	340	725	
HETA24	20	(9) #10	1,595	1,810	1,810			
HETA40	36	(9) #10	1,595	1,810	1,810			
HHETA12	8	(7) #10	1,240	1,820	1,820			
HHETA16	12	(10) #10	1,770	2,235	2,235			
HHETA20	16	(10) #10	1,770	2,235	2,235	3405	815	
HHETA24	20	(10) #10	1,770	2,235	2,235			
HHETA40	36	(10) #10	1,770	2,235	2,235			

^{2.} Minimum $f'_{C} = 2,500$ psi. Minimum $f'_{m} = 1,500$ psi.

HETA20 (META/HHETA similar)

^{3.} For simultaneous loads in more than one direction, the connector must be evaluated as described in Note d, p. 16 under General Instructions to the Designer.

^{4.} It is acceptable to use a reduced number of fasteners provided that there is a reduction in uplift load capacity. Lateral loads do not apply when fewer fasteners are used.

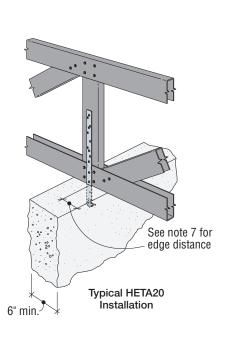
^{5.} The HHETA allowable F_1 load can be increased to 435 lb. if the strap is wrapped over the truss and a minimum of 12 fasteners are installed.

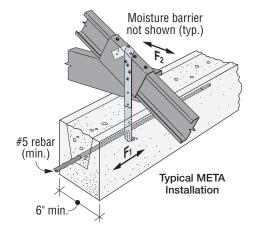
Minimum spacing for multiple anchor installation is two times the embedment depth for full load.See Double Embedded Anchor Installation table on p. 221 for loads on closer spaced anchors.

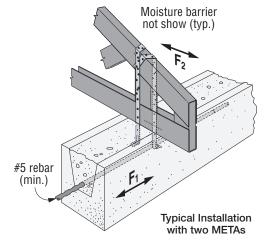
^{7.} Minimum edge distance is 11/2" for concrete and 2" masonry.

^{8.} Lateral loads are limited to 54 mil (16 ga.) CFS members.

See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.


META/HETA/HHETA Embedded Truss Anchors

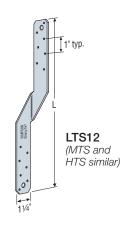



Double Embedded Anchor Installation

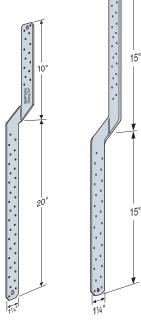
			Fasteners ⁸	Allov	vable Uplift	Load	Latera	I Load ⁷
Model	Qty.	Application	Rafter/Stud/Truss Thickness		(lb.)		F ₁	F ₂
No.	4.9.	прричины	33 mil, 43 mil and 54 mil (20 ga., 18 ga. and 16 ga.)	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	54 (16	
			1½" Width Minimum of R	after/Stud/	Truss			
META	2	СМИ	(10) #10	1,770	1,985	1,985	340	725
IVIETA		Concrete	(10) #10	1,770	1,985	1,985	340	720
HETA	2	CMU	(10) #10	1,770	2,035	2,035	340	725
ПЕТА	2 Concrete		(10) #10	1,770	2,035	2,035	340	120
HHETA	2	СМИ	(10) #10	1,770	2,035	2,035	340	815
ППЕТА	2	Concrete	(10) #10	1,770	2,235	2,235	340	010
			3" Width Minimum of Ra	after/Stud/1	Truss			
META	2	CMU	(14) #10	1,900	1,900	1,900	1,210	1.160
IVIETA	~	Concrete	(14) #10	2,480	2,565	2,565	1,210	1,160
HETA	2	CMU	(12) #10	2,480	2,500	2,500	1,225	1,520
HEIA	~	Concrete	(12) #10	2,480	2,700	2,700	1,220	1,520
		СМИ	(12) #10	2,480	2,500	2,500		
HHETA		Concrete	(12) #10	2,480	3,050	3,050	1,225	1,520
		Concrete	(14) #10	2,480	3,350	3,350		

- 1. Allowable loads may not be increased for wind or seismic load.
- 2. Minimum $f'_{c} = 2,500 \text{ psi}$. Minimum $f'_{m} = 1,500 \text{ psi}$.
- 3. For simultaneous loads in more than one direction, the connector must be evaluated as described in Note d, p. 16 under General Instructions to the Designer.
- Minimum spacing for multiple anchor installation is two times the embedment depth for full load. See Double Embedded Anchor Installation table for loads on closer spaced anchors.
- 5. Install with spoons facing outward and straps spaced no more than 1/6" wider than the truss width.
- 6. F₁ lateral loads listed may cause an additional ½^{*} deflection beyond the standard ½^{*} limit there the straps are installed not wrapped over the heel as shown.
- 7. Lateral loads are limited to 54 mil (16 ga.) CFS members.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Twist straps provide a tension connection between two members. They resist uplift at the heel of a truss economically. LTS/ MTS have a 2"-bend section and HTS has a 3¾"-bend section that eliminates interference at the transition points between the two members.

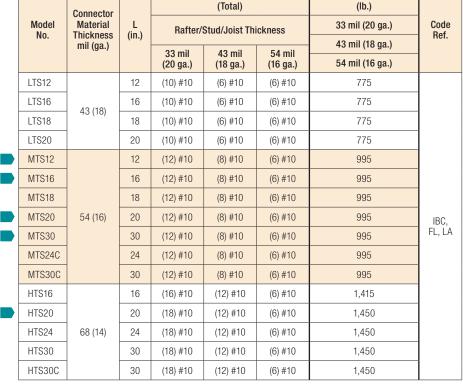

Material: See table

Finish: Galvanized (G90). Some products available in stainless steel and ZMAX®; see Corrosion Information, pp. 19–23.

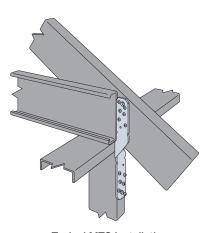

Installation:

- Use all specified fasteners; see General Notes.
- LTS, MTS and HTS are available with the bend reversed.
 Specify "-REV" after the model number, such as MTS16-REV.

Codes: See p. 13 for Code Reference Key Chart



Allowable Tension Load


MTS30 (HTS30 similar)

MTS30C (HTS30C similar)

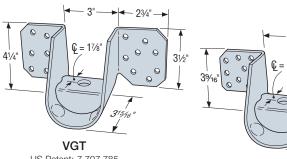
These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

Fasteners⁶

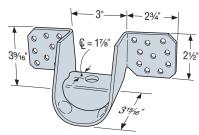
Typical MTS Installation Truss-to-Steel Studs

- Not all fastener holes need to be filled, as additional fastener holes are provided. Install fasteners symmetrically.
- 2. Install half of the fasteners on each end of strap to achieve full loads.
- 3. All straps except the MTS30 and HTS30 have the twist in the center of the strap.
- 4. Twist straps do not have to be wrapped over the truss to achieve the load.
- 5. May be installed on the inside face of the stud.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

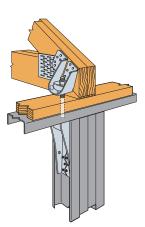
VGT and S/VGT2.5 Variable-Pitch Girder Tiedown


The variable-pitch girder tiedown, S/VGT2.5, is a high-capacity tiedown for single- or multi-ply CFS girder trusses. It attaches with self-drilling screws from the side of the truss. The VGT uses Simpson Strong-Tie® Strong-Drive® SDS Heavy-Duty Connector screws for wood truss applications. They both feature a predeflected crescent washer that allows them to accommodate top-chord pitches up to 8/12.

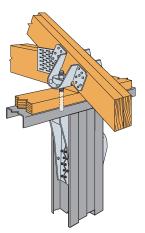
Material: 171 mil (7 ga.) Finish: Galvanized (G90)


Installation:

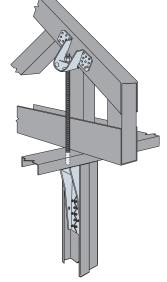
- Use all specified fasteners
- · Screw holes are configured to allow for double installation on multi-member girders
- · Install washer component (provided) so that top of washer is horizontal and parallel with top of wall


Codes: See p. 13 for Code Reference Key Chart

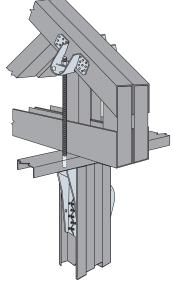
US Patent: 7,707,785



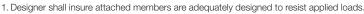
S/VGT2.5 US Patent: 7,707,785



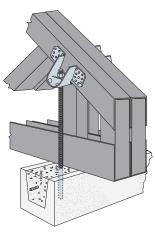
Typical Hybrid VGTR Single Installation with S/HDU4


C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Typical Hybrid VGT **Double Installation** with S/HDU6



Typical S/VGT2.5 Single Installation with HDU6


Typical S/VGT2.5 Double Installation with S/HDU6

Model No.	Quantity	No. of Truss	Fas	steners ⁵		Jplift Load ² o.)	Code
NO.		Plies	Anchor Dia.	Girder Truss	3/12	8/12	Ref.
	Cold-Forn	ned Steel C	onnection		54 mil	(16 ga.)	
S/VGT2.5 (min.) ⁴	1	1	(1) %	(16) #14	3,050	2,620	
3/ 1412.3 (11111.)	2	2	(2) 5/8	(32) #14	6,100	5,240	
S/VGT2.5 (max.)	1	1	(1) %	(20) #14	3,860	3,130	_
5/ VGT 2.5 (IIIax.)	2	2	(2) 5/8	(40) #14	7,720	6,260	
Hybrid Co							
	Hyb	rid Connec	tion		Allowable up to 8	Jplift Load³ /12 (lb.)	Code
	Hyb	rid Connec	tion				Code Ref.
	Hyb 1	rid Connec	(1) 5/8	(16) ¼" x 3" SDS	up to 8	/12 (lb.)	
VGT	,		I	(16) ¼" x 3" SDS (32) ¼" x 3" SDS	up to 8 DF/SP (160)	/12 (lb.) SPF/HF (160)	
VGT	1	2	(1) %	` '	up to 8 DF/SP (160) 4,940	712 (lb.) SPF/HF (160) 3,555	
VGT VGTR/L	1 2	2 2	(1) 5/8 (2) 5/8	(32) 1/4" x 3" SDS	up to 8 DF/SP (160) 4,940 7,185	SPF/HF (160) 3,555 5,175	Ref.

2. Straight-line interpolation can be used to determine allowable loads for pitches between 3/12 and 8/12.

4. For (min.) tabulated values, not all screw holes need to be filled. Install screws symmetrically.

Typical S/VGT2.5 Installation in CMU

^{3.} Allowable loads on wood have been increased 60% for wind or earthquake loading with no further increase allowed; reduce where other load duration factors govern.

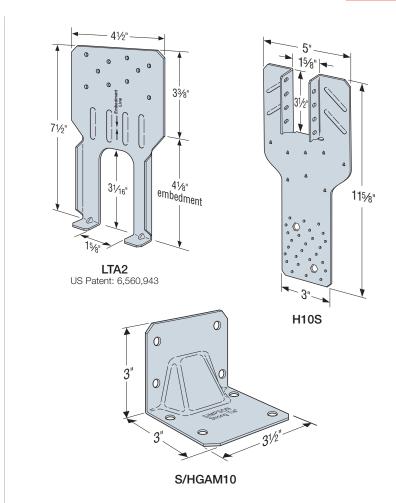
^{5.} See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

LTA2, S/HGAM10 and H10S Seismic and Hurricane Ties

The LTA2 develops high uplift at a minimum heel height. Great in areas where a strap over the heel is not required. The side tab acts as a locator in the masonry block and the four embedded hooks provide for a positive bond in the concrete grout.

The H10S and the S/HGAM10 attaches to truss joist and provides good uplift resistance.

Material: See table Finish: Galvanized (G90)

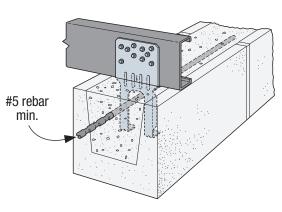

Installation:

- Use all specified fasteners; see General Notes.
- S/HGAM10 can be installed into grouted concrete block.
- Titen Turbo[™] screws are provided.
- Hurricane ties do not replace solid blocking.
- · Attach to grouted concrete block with a minimum one #5 rebar horizontal in the top lintel block.

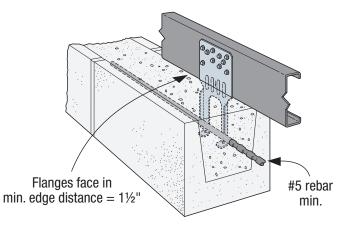
Codes: See p. 13 for Code Reference Key Chart

Ordering Information:

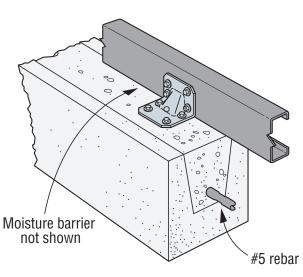
• The HGAM10KT is a kit of (10) connectors with (40) 1/4" x 23/4" Titen Turbo screws.

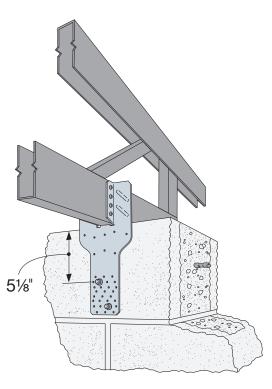


Model	Connector Material		Fasteners ⁵			Uplift Load b.)	Code
No.	Thickness mil (ga.) To Rafter/ Truss ⁵		To CMU	To Concrete	33 mil (20 ga.)	43 mil (18 ga.)	Ref.
LTA2 perpendicular-to-wall installation	43 (18)	(10) #10	Embed	Embed	1,295	1,425	
LTA2 parallel-to-wall installation	43 (18)	(10) #10	Embed	Embed	1,295	1,390	_
S/HGAM10KT	68 (14)	(4) #14	(4) 1/4" x 23/4" Titen Turbo	(4) 1/4" x 1 3/4" Titen Turbo	810	850	IBC,
H10S	43 (18)	(8) #10	(2) %" x 4" Titen HD®	(2) %" x 4" Titen HD	915	1,245	FL, LA


- 1. Min. $f'_{m} = 1,500$ psi and $f'_{C} = 2,500$ psi.
- 2. Minimum edge distance is 11/2" for Titen Turbo screws.
- 3. The products shall be installed such that the Titen Turbo screws and Titen HD anchors are not exposed to the weather.
- 4. Visit **strongtie.com** for Titen Turbo screw and Titen HD information.
- 5. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

LTA2, S/HGAM10 and H10S Seismic and Hurricane Ties



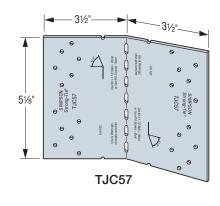

Typical LTA2 Installation (perpendicular to wall)

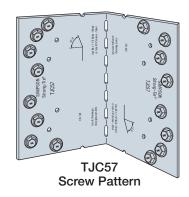
Typical LTA2 Installation (parallel to wall)

Typical S/HGAM10 Installation

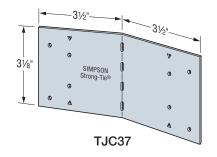
H10S Installation

TJC Jack Truss and Rafter Connector

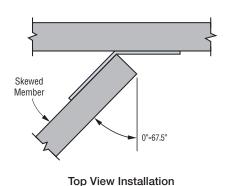

TJC is a versatile connector for skewed members. Adjustable from 0° to 67.5° (shipped with 67.5° bend). Screw hole locations allow for easy installation.

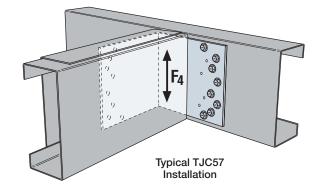

Material: 54 mil (16 ga.) Finish: Galvanized (G90)

Installation:


- Use all specified fasteners; see General Notes
- Position the skewed member on the inside of the bend line with the end of the member flush with the bend line
- Bend the TJC to the desired position (one bend cycle only)

Codes: See p. 13 for Code Reference Key Chart





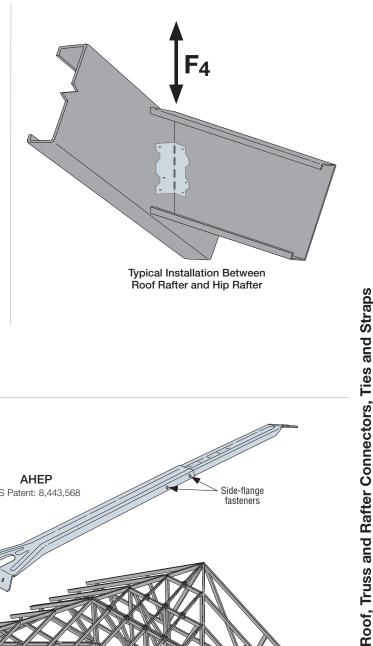
Model	Fasteners ²		Member	All	d F4	Code	
No.	Carrying Member	Carried Member	Thickness mil (ga.)	0°	1°-60°	61°-67.5°	Ref.
TJC37 (min.)	(4) #10	(4) #10	43 (18)	660	565	475	IBC,
TJC37 (max.)	(6) #10	(6) #10	43 (18)	680	630	530	FL, LA
TJC57 (min.)	(8) #10	(8) #10	43 (18)	1,295	1,215	1,235	
TJC57 (max.)	(8) #10	(8) #10	54 (16)	1,790	1,790	1,790	_

- 1. Reference the illustration for the required screw pattern of the TJC57.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

SIMPSON Strong-Tie

LS and S/LS skewable angles are a cost-effective method for connecting roof rafters to hip rafters.

Material: 43 mil (18 ga.) Finish: Galvanized (G90)


Installation:

- Use all specified fasteners
- Field-skewable; bend one time only

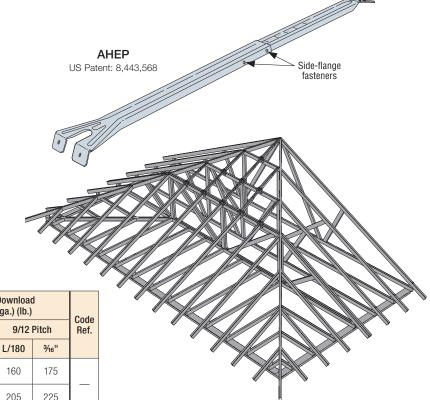
Codes: See p. 13 for Code Reference Key Chart

			Allo	wable Load	(lb.)	
Model No.	Length (in.)	Fasteners ²	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	Code Ref.
			F ₄	F ₄	F ₄	
LS30	3%	(6) #10	200	370	500	
S/LS50	47/8	(4) #10	200	370	500	
S/LS70	6%	(6) #10	465	575	715	_
LS90	77/8	(12) #10	465	895	915	

- 1. Loads are for one part only.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

AHEP Adjustable Hip-End Purlin

The Simpson Strong-Tie AHEP is a structural purlin that also serves as an installation aid during the truss-erection process. The AHEP attaches to the step-down hip trusses at the leading edge, eliminating the need for drop top chords and C-stud fillers. The AHEP installs linearly, aligned with the end jacks, to maintain sheathing spacing from eave to hip or peak. Roof sheathing/decking attaches directly to the purlin. Adjustable in length, the AHEP is designed to accommodate a pitch range of 3/12 to 9/12.


Material: 33 mil (20 ga.)
Finish: Galvanized

Installation:

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

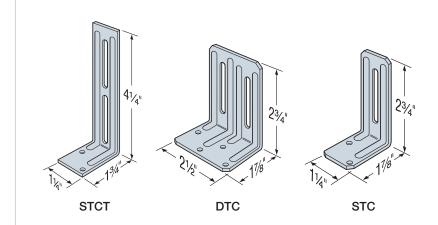
• Use all specified fasteners; see General Notes

Codes: See p. 13 for Code Reference Key Chart

Model	Faste	eners³	Sheathing		d	Code		
No.	Side	Truss	Option	3/12	Pitch	9/12	Pitch	Ref.
	Flanges	Ends		L/180	3/16"	L/180	3/16"	
AHEP	(4) #10	(4) #10	None	285	360	160	175	
ALIEF	(4) #10	(4) #10	½" wood sheathing	285	360	205	225	

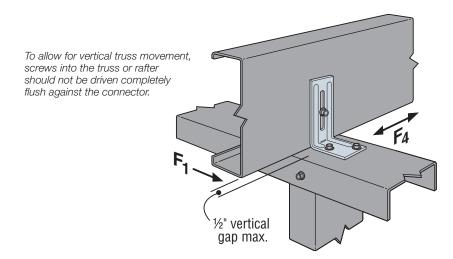
- Designer shall ensure attached members are adequately designed to resist applied loads.
- 2. Straight-line interpolation can be used to determine allowable loads for pitches between 3/12 and 9/12.
- See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


For alignment control between a roof truss and nonbearing walls; the 11/2" slot permits vertical truss chord movement when loads are applied.

Material: 43 mil (18 ga.) Finish: Galvanized (G90)

Installation:


- Use all specified fasteners; see General Notes
- Use STC or DTC depending on required loads
- STC/STCT/DTC may be used with proprietary material sections. Contact material supplier for specific installation details
- Use STCT where truss or rafter is separated from the top plate of the nonbearing wall
- Install slot screws in the middle of the slot

Codes: See p. 13 for Code Reference Key Chart

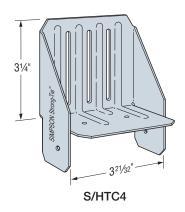
Model	Faste	eners ³		Allowable Load 33 mil (20 ga.) (lb.)						
No.	Dana	Base Slot		Without Gap		1⁄4" Max. Gap		ap ≤ 1/2"	Code Ref.	
	Base	SIOT	F ₁	F ₄	F ₁	F ₄	F ₁	F ₄		
STC	(2) #8	(1) #8	185	35	135	35	75	35	IBC, FL, LA	
STCT	(2) #8	(1) #8	_	_	_	_	_	_	_	
DTC	(4) #8	(2) #8	200	160	200	160	145	160	IBC, FL, LA	

- 1. Truss or rafter must be bearing on top plate to achieve the allowable loads under "Without Gap."
- 2. Clips are required on both sides of the truss to achieve F_1 loads in both directions (stagger parts to avoid screw interferences).
- 3. See the current Fastening Systems catalog at strongtie.com for more information on Simpson Strong-Tie fasteners.

Typical STC Installation

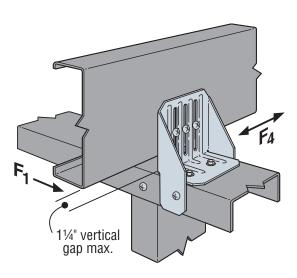
S/HTC Heavy Truss Clips

S/HTC provides a slotted connection from the truss or joist to the top track when isolation of two members is required.

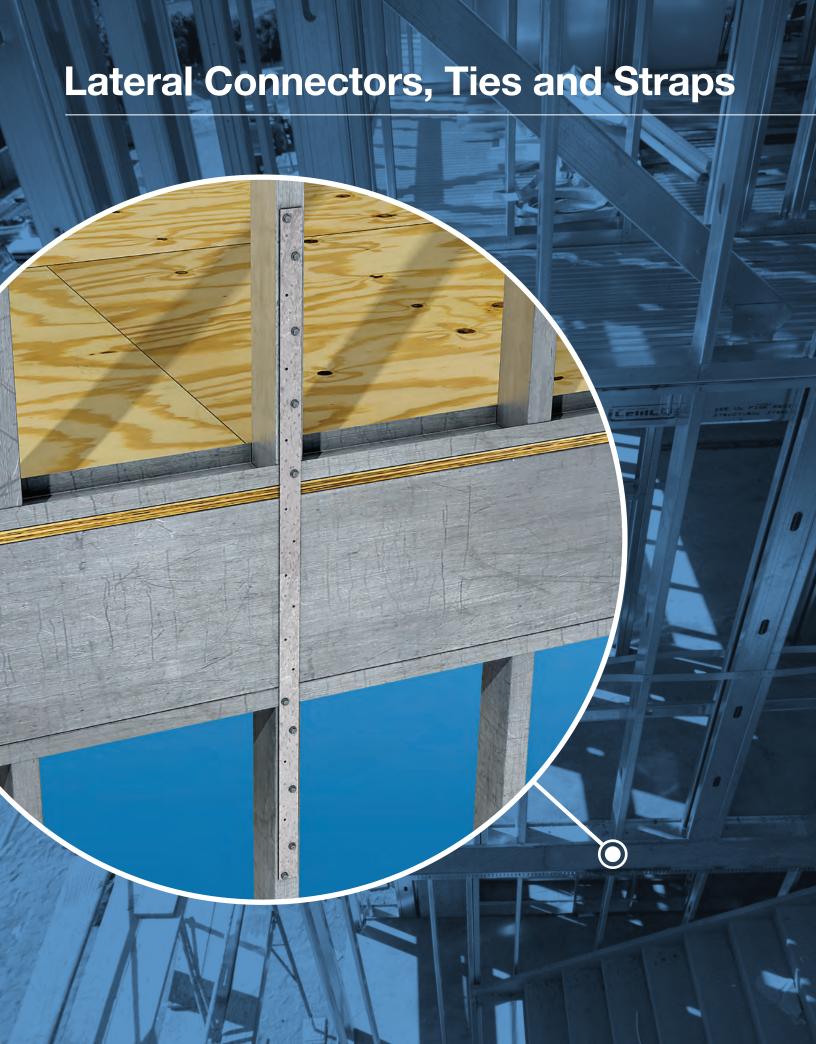

Material: 43 mil (18 ga.) Finish: Galvanized (G90)

Installation:

C-CF-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


- Use all specified fasteners
- Screws in vertical slots shall not be driven completely flush against the connector when vertical movement is desired

Codes: See p. 13 for Code Reference Key Chart



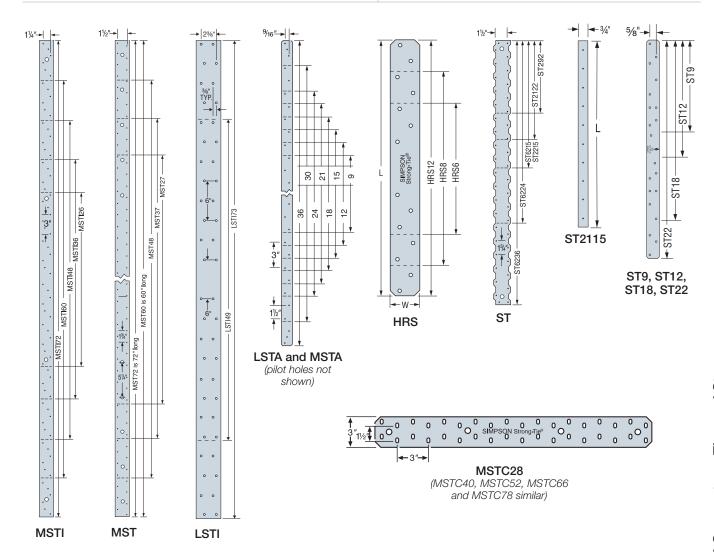
Model	Faste	ners ³		Code			
No.	Тор	Truss	Withou	ut Gap¹	With 13	⁄4" Gap²	Code Ref.
	Track		F ₁	F ₄	F ₁	F ₄	
S/HTC4	(4) #8	(3) #8	320	460	85	175	_

- 1. Truss or rafter must be bearing on top plate to achieve the allowable loads under "Without Gap."
- 2. Installed with maximum 1¼" space between rafter or truss and top plate under "With 1¼" Gap." Where loads are not required, space is not limited to 1¼".
- $3. \, See \, the \, current \, \textit{Fastening Systems} \, \, catalog \, at \, \textbf{strongtie.com} \, for \, more \, information \, on \, Simpson \, Strong-Tie \, fasteners.$

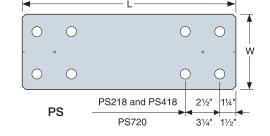
Typical S/HTC4 Installation

HRS/ST/FHA/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

Straps are load rated and provide the correct thickness and number of fasteners the specifier is looking for compared with field fabricated straps.


Install strap ties where top or bottom plates are cut, at wall intersections, and as ridge ties. Reduce the allowable load based on the size and quantity of fasteners used.

Refer to applicable code for minimum edge and end distances.


Finish: PS — hot-dip galvanized (HDG); all others — galvanized. Some products are available in stainless steel or ZMAX[®]; see Corrosion Information, pp. 19–23.

Installation: Use all specified fasteners; see General Notes

Codes: See p. 13 for Code Reference Key Chart

Model	Connector Material	Dimensions (in.)		Во	ilts	Code
No.	Thickness mil (ga.)	W	L	Quantity	Diameter (in.)	Ref.
PS218		2	18	4	3/4	
PS418	171 (7)	4	18	4	3/4	_
PS720		6¾	20	8	1/2	

PS strap design loads must be determined by the designer for each illustration.
 Hole diameter in the part may be oversized to accommodate the HDG.
 Designer must determine if the oversize creates an unacceptable installation.

HRS/ST/FHA/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

Codes: See p. 13 for Code Reference Key Chart

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

	Connector		nsions		Fasteners ⁴ (Total)		Allowa	able ASD Tension (lb.)	n Load	
Model No.	Material Thick.			Rafter/Stud/Joist Thickness			33 mil	43 mil	54 mil	Code Ref.
	mil (ga.)	w	L	33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	(20 ga.)	(18 ga.)	(16 ga.)	
LSTA9		11/4	9	(8) #10	(8) #10	(8) #10	705	1,120	1,190	
LSTA12		11/4	12	(10) #10	(10) #10	(8) #10	885	1,190	1,190	
LSTA15		11/4	15	(12) #10	(12) #10	(10) #10	1,060	1,190	1,190	
LSTA18		11/4	18	(14) #10	(12) #10	(10) #10	1,190	1,190	1,190	
LSTA21		11/4	21	(14) #10	(12) #10	(10) #10	1,190	1,190	1,190	
LSTA24	33 (20)	11/4	24	(14) #10	(12) #10	(10) #10	1,190	1,190	1,190	
ST292		21/16	95/16	(12) #10	(10) #10	(10) #10	1,060	1,240	1,240	
ST2122		21/16	12 ¹³ ⁄16	(16) #10	(12) #10	(10) #10	1,415	1,502	1,502	
ST2115		3/4	165/16	(8) #10	(6) #10	(4) #10	630	630	630	
ST2215		21/16	165/16	(20) #10	(14) #10	(10) #10	1,765	1,825	1,825	IBC,
LSTA30		11/4	30	(18) #10	(12) #10	(10) #10	1,555	1,555	1,555	FL, LA
LSTA36		11/4	36	(18) #10	(16) #10	(14) #10	1,555	1,555	1,555	
LSTI49		3¾	49	(32) #10	(32) #10	(20) #10	2,830	4,050	4,050	
LSTI73		3¾	73	(46) #10	(32) #10	(20) #10	4,050	4,050	4,050	
MSTA9	40 (40)	11/4	9	(8) #10	(8) #10	(8) #10	705	1,050	1,555	
MSTA12	43 (18)	11/4	12	(10) #10	(10) #10	(8) #10	885	1,315	1,555	
MSTA15		11/4	15	(12) #10	(12) #10	(10) #10	1,060	1,555	1,555	
MSTA18		11/4	18	(14) #10	(12) #10	(10) #10	1,235	1,555	1,555	
MSTA21		11/4	21	(16) #10	(12) #10	(10) #10	1,415	1,555	1,555	
MSTA24		11/4	24	(18) #10	(12) #10	(10) #10	1,555	1,555	1,555	

Table continued on the next page.

HRS/ST/FHA/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

Codes: See p. 13 for Code Reference Key Chart

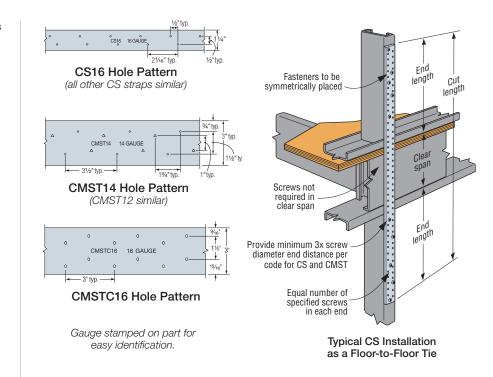
These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

	Connector	erial (in.) ck.			Fasteners ⁴ (Total)	Allowable ASD Tension Load (lb.)				
Model No.	Material Thick.			Rafte	er/Stud/Joist Thick	iness	33 mil	43 mil	54 mil (16 ga.)	Code Ref.
	mil (ga.)	w	L	33 mil (20 ga.) 43 mil (18 ga.) 54 r		54 mil (16 ga.)	(20 ga.)	(18 ga.)		
MSTA30		11/4	30	(22) #10	(16) #10	(12) #10	1,945	1,950	1,950	
MSTA36		11/4	36	(24) #10	(18) #10	(16) #10	1,950	1,950	1,950	
ST6215		21/16	165/16	(20) #10	(16) #10	(10) #10	1,765	2,025	2,025	
ST6224		21/16	235/16	(28) #10	(20) #10	(12) #10	2,455	2,455	2,455	
ST9		11/4	9	(8) #10	(8) #10	(8) #10	705	1,050	1,350	
ST12	54 (16)	11/4	11%	(10) #10	(10) #10	(8) #10	885	1,315	1,350	
ST18		11/4	17¾	(14) #10	(12) #10	(12) #10	1,235	1,350	1,350	
ST22		11/4	21%	(20) #10	(20) #10	(20) #10	1,350	1,350	1,350	
MSTC28		3	281/4	(36) #10	(36) #10	(30) #10	3,180	4,600	4,600	
MSTC40		3	401/4	(52) #10	(46) #10	(46) #10	4,595	4,600	4,600	
MSTC52		3	521/4	(54) #10	(42) #10	(42) #10	4,600	4,600	4,600	IBC, FL, L
MSTC66		3	65¾	(66) #10	(46) #10	(30) #10	5,795	5,795	5,795	
MSTC78	68 (14)	3	773/4	(66) #10	(46) #10	(30) #10	5,795	5,795	5,795	
ST6236		21/16	3313/16	(40) #10	(30) #10	(18) #10	3,535	3,760	3,760	
HRS6		1%	6	(6) #10	(6) #10	(6) #10	530	790	1,600	
HRS8		1%	8	(10) #10	(10) #10	(10) #10	885	1,315	2,670	
HRS12		1%	12	(14) #10	(14) #10	(12) #10	1,235	1,840	2,710	
MSTI26		21/16	26	(26) #10	(26) #10	(22) #10	2,300	3,420	5,025	
MSTI36	07 (10)	21/16	36	(36) #10	(36) #10	(22) #10	3,180	4,735	5,025	
MSTI48	97 (12)	21/16	48	(48) #10	(40) #10	(22) #10	4,240	5,025	5,025	
MSTI60		21/16	60	(58) #10	(40) #10	(22) #10	5,025	5,025	5,025	
MST27		21/16	27	(30) #10	(30) #10	(22) #10	2,650	3,945	5,025	
MST37		21/16	37	(42) #10	(40) #10	(34) #10	3,710	5,025	5,025	
MST48		21/16	48	(54) #10	(54) #10	(46) #10	4,770	5,155	5,155	-
MST60	110 (10)	21/16	60	(68) #10	(68) #10	(62) #10	5,820	6,420	6,650	
MST72	118 (10)	21/16	72	(80) #10	(72) #10	(64) #10	6,650	6,650	6,650	[

- 1. Use half of the fasteners in each member being connected to achieve the listed loads.
- 2. Loads are based on lesser of steel capacity or fastener calculation.

- 3. Not all fastener holes need to be filled, as additional fastener holes are provided. Install fasteners symmetrically.

CS/CMST Coiled Straps


CMSTC provides countersunk fastener slots that provide a lower screw head profile. CS, CMST and CMSTC are continuous utility straps which can be cut to length on the jobsite. Packaged in lightweight cartons (about 40 lb.).

Finish: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, pp. 19–23.

Installation:

- Use all specified fasteners; see General Notes.
- Refer to the applicable code for minimum edge and end distances.
- The table shows the maximum allowable loads and the screws required to obtain them. See footnote #1. Fewer screws may be used; reduce the allowable load by the code lateral load for each fastener subtracted from each end.

Codes: See p. 13 for Code Reference Key Chart

These products are available with additional corrosion protection. Additional products on this page may also be available with this option. Check with Simpson Strong-Tie for details.

	Total Length	Connector	Material Width	F	asteners ⁸ (Total)	Allowable Tension Load (lb.)	Code Ref.	
Model No.		Thickness		Raf	ter/Stud Thicknes	33 mil (20 ga.)		
		IIII (ga.)		33 mil (20 ga.)	43 mil (18 ga.)	54 mil (16 ga.)	43 mil (18 ga.) 54 mil (16 ga.)	
CMST12 ²	40'-3"	97 (12)	3	(104) #10	(70) #10	(40) #10	9,080	
CMST14 ²	52'-6"	68 (14)	3	(72) #10	(50) #10	(28) #10	6,365	
CMSTC16 ³	54'	54 (16)	3	(54) #10	(36) #10	(30) #10	4,600	IBC,
CS14	100'	68 (14)	11/4	(28) #10	(18) #10	(12) #10	2,305	FL, LA
CS16	150'	54 (16)	11/4	(18) #10	(12) #10	(8) #10	1,550	
CS20	250'	33 (20)	11/4	(12) #10	(8) #10	(6) #10	945	

- 1. Use half of the fasteners in each member being connected to achieve the listed loads.
- 2. For CMST straps: End Length (inches) = 1/2 total fasteners x 1/8" + 1" when all holes filled. Double length if only round holes filled.
- 3. For CMSTC16 straps: End Length (inches) = ½ total fasteners x ¾" + 1" when all holes filled. Double length if only round holes filled.
- 4. For CS straps: End Length (inches) = ½ total fasteners + 1".
- 5. Total Cut Length = End Length + Clear Span + End Length.
- 6. Calculate the connector value for a reduced number of screws as follows: Allowable Load = No. of Screws Used No. of Screws in Table

Example: CMSTC16 on 54 mil with 24 screws: $\frac{24 \text{ Screws (Used)}}{30 \text{ Screws (Table)}} \times 4,600 \text{ lb.} = 3,680 \text{ lb.}$

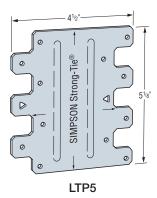
- 7. Loads are based on lesser of steel strap capacity and AISI S100 fastener calculation.
- 8. See the currrent Fastening Systems catalog on strongtie.com for more information on Simpson Strong-Tie fasteners.

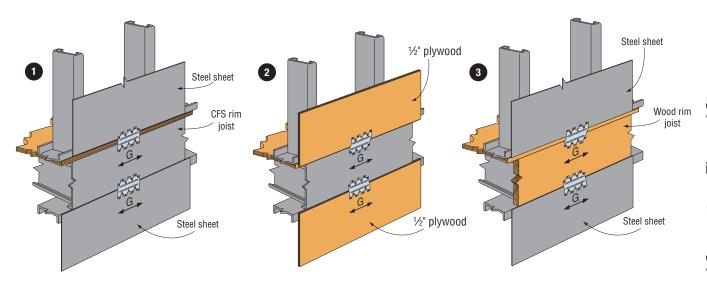
LTP5 Framing Anchor

SIMPSON Strong-Tie


The LTP5 framing anchor spans subfloor at the top of the blocking or rim joist. The embossments enhance performance and allow for design flexibility.

Material: 33 mil (20 ga.) Finish: Galvanized Installation:


• Use all specified fasteners; see General Notes


Codes: See p. 13 for Code Reference Key Chart

Model	Type of	Direction	Faste	eners ⁴	Allowable Load	Code	
No.	Connection	of Load	To Rim Joist	To Sheathing and Track	43 mil (18 ga.) (lb.)	Ref.	
LTP5	1		(7) #10	(7) #10	1,045		
	2	G	(7) #10	(7) #10	1,110	IBC, FL, LA	
	3		(7) 8d x 1½"	(7) #10	730		

- 2. Allowable loads are based on steel (stud and sheet) of 43 mil (18 ga.) minimum.
- 3. Allowable load for Type 3 connection assumes $C_D = 1.60$.
- 4. See the currrent *Fastening Systems* catalog on **strongtie.com** for more information on Simpson Strong-Tie fasteners.

Note: When attaching an LTP5 framing anchor over sheathing, the screws must penetrate and engage the steel framing. A minimum of three threads shall penetrate past the steel.

Lateral Systems

Steel Strong-Wall® Shearwalls

Features and Benefits:

Code Listed

New ICC-ES ESR-1679 code report evaluated to the 2021 IRC/IBC

Less Labor = Increased Production

Fewer anchor bolts and fasteners coupled with easy access to the top and bottom of the wall result in more efficient installation

Easier for All Trades

An easy-to-use anchor-bolt template for concrete contractors; available pre-attached CFS studs and predrilled holes where electricians need them for wiring

Support and Service

Simpson Strong-Tie provides the best engineering technical support and experienced field representation available

Codes: ICC-ES ESR-1679; City of L.A. RR25625; State of Florida FL5113

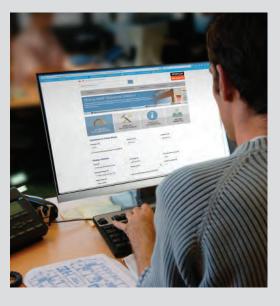
Please visit **strongtie.com/products/lateral-systems** for load tables, structural details and anchorage information.

Also refer to the General Notes on pp. 7–9 in the Strong-Wall® Shearwalls catalog (C-L-SW21) at strongtie.com for Important Information and General Notes.

Strong-Wall Shearwall Selector Application

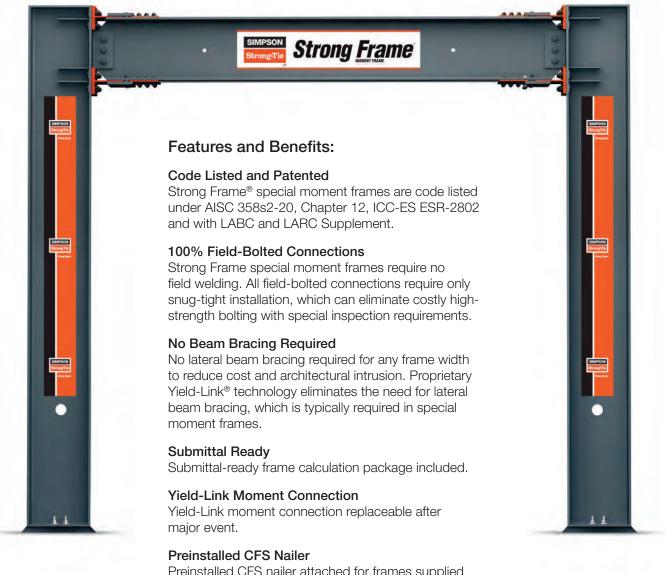
This application helps design professionals select an appropriate Simpson Strong-Tie Steel Strong-Wall, Strong-Wall wood shearwall or original wood Strong-Wall system.

Optimized Solution


Provides the most cost-effective Strong-Wall solution based on the input shear load.

Manual Solution

Allows designers to choose which type and number of walls meet their requirements.


- Finds lowest cost solution
- Provides actual drift and uplift values
- Provides solutions for different model Codes
- Includes new anchorage solutions
- Saves, exports and prints solutions

You can find the Strong-Wall Shearwall Selector application at strongtie.com/webapps/strongwallshearwallselector.

Strong-Frame® Special Moment Frames

Preinstalled CFS nailer attached for frames supplied by Simpson Strong-Tie.

Support and Service

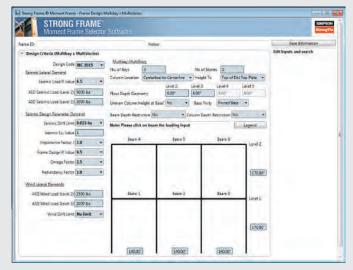
Frame design service included. Field support for Strong Frame installations and questions.

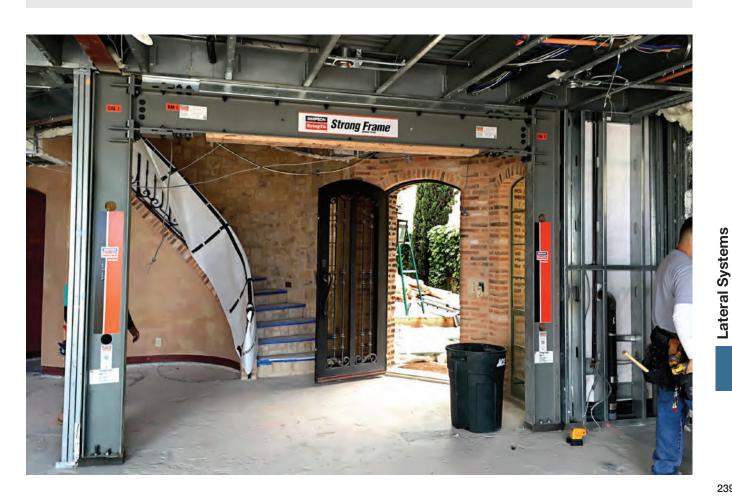
Codes: ICC-ES ESR-2802, AISC 358s2-20 Chapter 12

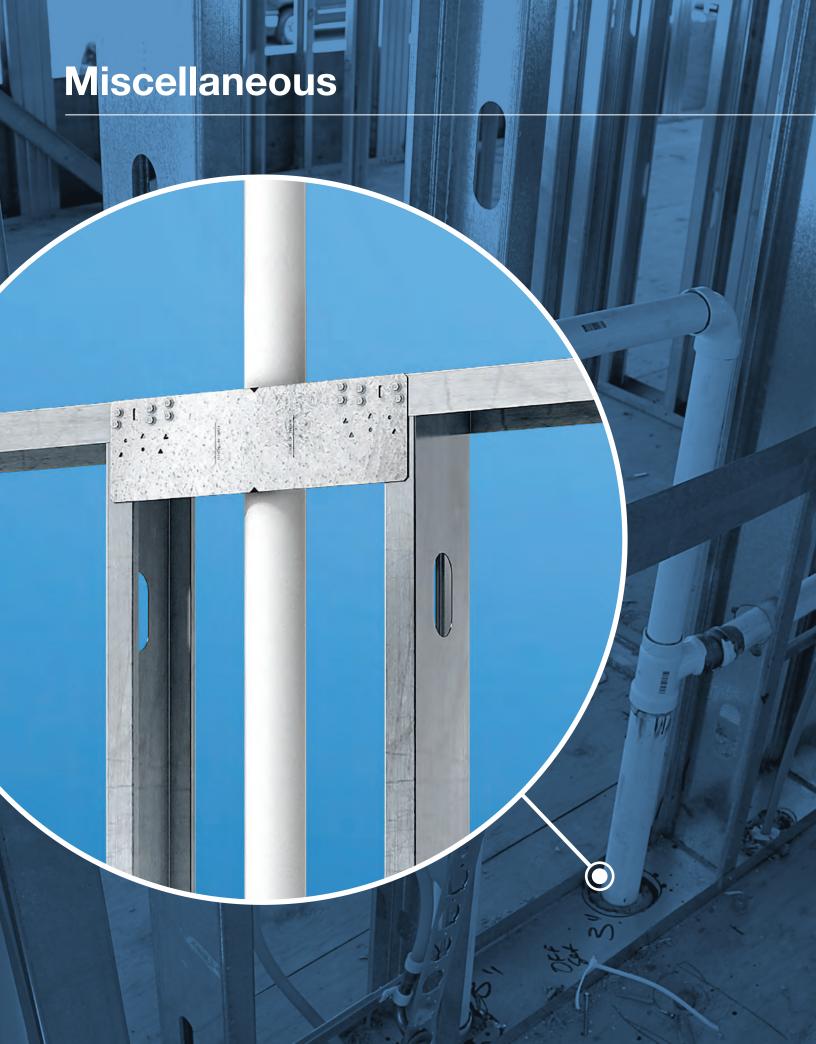
Please visit **strongtie.com/products/lateral-systems** for structural details and anchorage information.

Refer to flier F-L-SF at **strongtie.com** for additional information.

Strong-Frame® Special Moment Frames




Strong Frame Moment Frame Selector Software


The Simpson Strong-Tie® Strong Frame moment frame selector software is designed to help designers select a moment frame for their project's given geometry and loading. Only minimal geometry inputs are required for the software to select an appropriate frame for the available space. Based on input geometry, the selector software will design and narrow down the available standard frames to a handful of possible solutions. If opening dimensions are outside our range of standard frame sizes, designers can enter the specific opening dimensions, and the software will provide a list of customized solutions.

Designers can also input load and geometries for multi-bay and multi-story frames and email to Simpson Strong-Tie for design assistance.

Visit **strongtie.com/software** for more information.

PSPN58Z and PSPN516Z protecting shield plate fastener stoppers meet IRC, IBC and the International Plumbing Code. PSPN516Z meets the code plumbing protection requirements as well as having additional fasteners if the designer chooses to use it as a track splice strap.

Material: 54 mil (16 ga.) Finish: ZMAX® coating

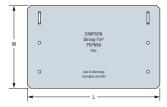
Installation:

- Flatten prongs with hammer as needed
- Use #10 screws

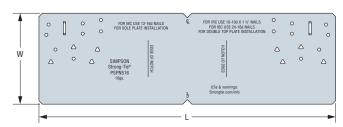
Codes: See p. 13 for Code Reference Key Chart

PSPN516Z at top plates

- International Residential Code® 2015/2018 P2603.2.1
- International Plumbing Code 2015/2018 305.6


PSPN516Z at bottom plate.

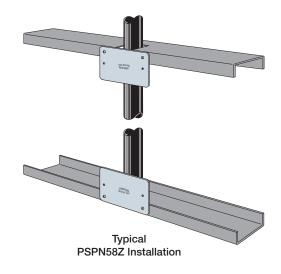
• International Plumbing Code — 2015/2018 305.6

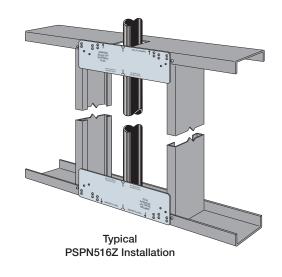

PSPN58Z at top plates and bottom plate.

• International Plumbing Code — 2015/2018 305.6

Note that the IBC section 2308.5.8 (2018 IBC) and 2308.5.7 (2015 IBC) and the IRC section R602.6.1 require a 54 mil (16 ga.) strap with (6)16d nails and (8)16d nails respectively each side at a hole or notch in a wood top, sill or sole plate. The designer or local building jurisdiction may permit an equivalent fastener strength (e.g., screws in lieu of nails) to be used for the same condition in a CFS top or bottom track.

PSPN58Z




PSPN516Z

For more information, see pp. 19-23.

Model No.	W (in.)	L (in.)	Code Ref.
PSPN58Z	5	8	
PSPN516Z	5	165⁄16	

- 1. #10 self-tapping screws may be used to attach PSPNZ to CFS framing with quantity determined by designer.
- 2. PSPN516Z with (6) #10 self-tapping screws each side achieves an allowable shear capacity of 1,060 lb. and 1,580 lb. to 33 mil (20 ga.) track and to 43 mil (18 ga.) track, respectively.

Simpson Strong-Tie Limited Warranty

Effective Date: March 18, 2021

This Limited Warranty applies to all Simpson Strong-Tie products ("Products") purchased after the Effective Date while this Limited Warranty remains in effect, other than those Simpson Strong-Tie products that have a separate Limited Warranty applicable to such products. For purchases after the Effective Date, please consult strongtie.com/limited-warranties, as this Limited Warranty may be updated by Simpson from time to time. All future purchases of Products are subject to the terms of the Limited Warranty in effect as of the purchase date.

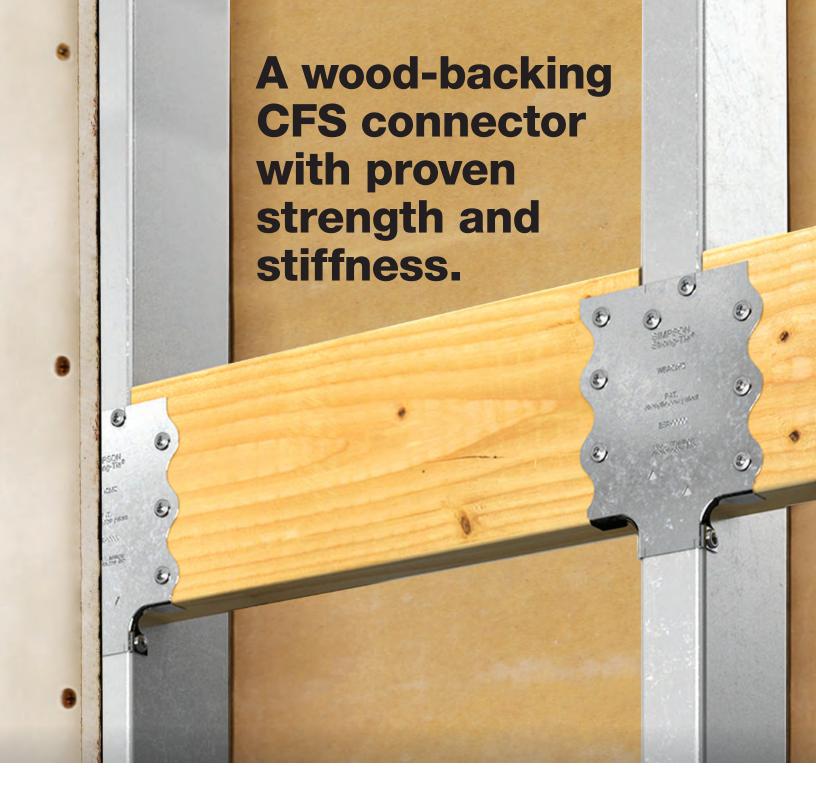
This Limited Warranty must be read in conjunction with all applicable General Notes, General Instructions for the Installer, General Instructions for the Designer, Building Codes, Corrosion Information, and Terms & Conditions of Sale, along with any other information or specifications published by Simpson Strong-Tie Company Inc. ("Simpson") or available on the strongtie.com website ("Website") or on the product package, label or product manual. All of this information is referred to collectively as the "Simpson Strong-Tie Documentation." All applicable Simpson Documentation must be carefully reviewed each time any Product is used.

Simpson Strong-Tie warrants, to the original purchaser only, that each Product will be free from substantial defects in materials, manufacturing and design if properly specified, installed, and maintained, and when used in accordance with the design limits and the structural, technical, and environmental specifications in the Simpson Strong-Tie Documentation. This Limited Warranty is void and does not apply to any (a) Product purchased from an unauthorized dealer, retailer or distributor, (b) Product deterioration or damage due to environmental conditions or inadequate or improper handling, transportation, storage or maintenance, (c) cosmetic defects, including discoloration, (d) failure or damage caused by improper installation, application, mixing or preparation, (e) use of a Product in temperatures or environmental conditions outside the ranges specified for such Product in the Simpson Strong-Tie Documentation, (f) use of a Product outside of its shelf-life specifications, (g) normal wear and tear, (h) failure or damage caused by the use of a Product with any fasteners, pins, screwstrips, products or accessories other than authentic Simpson Strong-Tie products, (i) Product that was subjected to negligence or excessive or improper use, including any use not in accordance with the Simpson Strong-Tie Documentation, (j) failure or damage caused by the building site, foundation, or any third-party products, building materials or components, (k) failure or damage caused by use of a Product in a structure that has a design or other defect or that does not comply with all applicable building codes, laws, rules and regulations, (I) modified Product, or any nonstandard use or application of a Product, (m) failure or damage caused by corrosion, termites or other wood destroying organisms, animal or insect activity, wood fungal decay, rot, mold, mildew, exposure to chemicals or other hazardous substances, a corrosive environment or materials, inadequate moisture protection, or premature deterioration of building materials, (n) failure or damage caused by an act of God, including any hurricane, earthquake, tornado, lightning, ice, snow, high wind, flood or other severe weather or natural phenomena, (o) installation services or workmanship, including any failure or damage caused by installation of any Product, whether or not in accordance with the Simpson Strong-Tie Documentation, or (p) failure or damage caused by the gross negligence, willful misconduct, or other acts or omissions of the builder, general contractor, installer or any third party, including the building owner. Notwithstanding the foregoing, Simpson Strong-Tie disclaims and does not provide any warranty related to the design of any custom-order or non-catalog Product.

Although Products are designed for a wide variety of uses, Simpson Strong-Tie assumes no liability for confirming that any Product is appropriate for an intended use, and each intended use of a Product must be reviewed and approved by qualified professionals. Each Product is designed for the load capacities and uses listed in the Simpson Strong-Tie Documentation, subject to the limitations and other information set forth in the Simpson Strong-Tie Documentation.

Due to the particular characteristics of potential impact events such as earthquakes and high velocity winds, the specific design and location of the structure, the building materials used, the quality of construction, or the condition of the soils or substrates involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie's specifications and the Products are properly installed in accordance with applicable building codes, laws, rules and regulations.

Product demonstrations, training, operator examinations, technical and customer support and other services provided by Simpson Strong-Tie are based on Simpson Strong-Tie's present knowledge and experience, are


conducted for illustrative or instructive purposes only, do not constitute a warranty of Product capabilities, specifications or installation and do not modify the applicable Limited Warranty for Products set forth herein. Any services provided by Simpson Strong-Tie are provided without any representation or warranty of any kind, and Simpson Strong-Tie assumes no liability for any representations or statements made as part of such Product demonstrations, training, operator examinations or other services. In the event of any inconsistency between any information provided during any such demonstration or service, and the information in any applicable Simpson Strong-Tie Documentation, the information in the Simpson Strong-Tie Documentation shall govern. In the event of any inconsistency between any information provided on the Website, and the information in any other Simpson Strong-Tie Documentation, the information on the Website shall govern.

ALL WARRANTY OBLIGATIONS OF SIMPSON STRONG-TIE SHALL BE LIMITED, AT SIMPSON STRONG-TIE'S ABSOLUTE DISCRETION, TO EITHER REPAIRING THE DEFECTIVE PRODUCT OR PROVIDING A REPLACEMENT FOR THE DEFECTIVE PRODUCT. THIS REMEDY CONSTITUTES SIMPSON STRONG-TIE'S SOLE OBLIGATION AND LIABILITY AND THE SOLE AND EXCLUSIVE REMEDY OF PURCHASER AND, WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, EXCLUDES ANY LABOR OR OTHER COSTS INCURRED IN CONNECTION WITH A WARRANTY CLAIM. PURCHASER ASSUMES ALL RISK AND LIABILITY ASSOCIATED WITH ANY USE OF THE PRODUCT, INCLUDING BUT NOT LIMITED TO SUITABILITY FOR ITS INTENDED USE.

THE LIMITED WARRANTY HEREIN IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, AND, WHERE LAWFUL, SIMPSON STRONG-TIE DISCLAIMS ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND WARRANTIES ARISING FROM COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE. IN NO EVENT WILL SIMPSON STRONG-TIE BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR SPECIAL DAMAGES OR DIRECT OR INDIRECT LOSS OF ANY KIND, INCLUDING BUT NOT LIMITED TO PROPERTY DAMAGE, DEATH AND PERSONAL INJURY. SIMPSON STRONG-TIE'S ENTIRE LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE DEFECTIVE PRODUCT. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, OR THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

To obtain warranty service, you must contact Simpson Strong-Tie promptly at (800) 999-5099 or at Simpson Strong-Tie Company Inc., 5956 West Las Positas Boulevard, Pleasanton, CA 94588, regarding any potential claim, no later than sixty (60) days after you discover the potential claim. Upon request by Simpson Strong-Tie, you must provide Simpson Strong-Tie with: (a) proof of purchase and written records evidencing, in reasonable detail, the date and manner of installation, application, mixing and preparation of the Products, as applicable, (b) a reasonable opportunity to inspect the site where the Product was installed, and (c) samples of the Products from the actual installation in sufficient quantities in order for Simpson Strong-Tie to perform testing to determine whether or not the Product failed as set forth herein. Simpson Strong-Tie may, in its absolute discretion, request that you return the allegedly defective Products to Simpson Strong-Tie, in which case Simpson Strong-Tie will issue a Return Materials Authorization (RMA), which must be completed and returned to Simpson Strong-Tie with the Product. Simpson Strong-Tie is not responsible for any costs or expenses incurred in connection with any inspection (other than by Simpson Strong-Tie employees) or in connection with the return of Products to Simpson Strong-Tie, but Simpson Strong-Tie shall bear all costs and expenses incurred in connection with the shipment of replacement Products in the event that Simpson Strong-Tie determines that the Product should be replaced in accordance with this Limited Warranty. If Simpson Strong-Tie elects to repair or replace the Product, Simpson Strong-Tie shall have a reasonable time to do so.

No one is authorized to change or add to this Limited Warranty. If at any time Simpson Strong-Tie does not enforce any of the terms, conditions or limitations stated in this Limited Warranty, Simpson Strong-Tie shall not have waived the benefit of said term, condition or limitation and can enforce it at any time. This Limited Warranty is extended only to the original purchaser and is not transferrable. It is not intended nor shall it be construed to create rights in any third party.

Introducing the WBAC wood-backing steel connector from Simpson Strong-Tie

— a stronger, easier solution for connecting wood backing to cold-formed steel studs. Ideal for heavy wall hangings like cabinets and shelves in commercial or midrise structures, the WBAC has unique rolled tabs that are assembly tested and proven to provide extra strength and stiffness. And with our nationwide distribution network and reliable product availability, you can be confident builders can always get the connector you specify.

For more information, visit go.strongtie.com/wbac or call us at (800) 999-5099.

A complete line of CFS solutions designed to optimize any CFS design.

We offer a comprehensive line of products and systems that are load rated for superior strength and performance. And they're proven with extensive assembly testing both in the lab and in the field. Not to mention value engineered for easy, efficient installation. Along with our unsurpassed product range, we also offer state-of-the-art software to streamline accurate member-connector analysis and design according to precise AISI specifications. Whether you need products or design, solving your structural problems is our passion.

