ALLJOIST® COMMERCIAL GUIDE

for ALLJOIST® products manufactured in St. Jacques, New Brunswick Canada \& VERSA-LAM ${ }^{\circledR}$ products manufactured in Alexandria [Lena], Louisiana

Boise Cascade Engineered Wood Products for Light Commercial Applications

Boise Cascade Engineered Wood Products are readily available through experienced distributors and retailers who provide valuable assistance in selecting and specifying the most economical joist and beam system. By specifying the products shown in the guide, time delays associated with so-called custom products from other manufacturers are minimized. While those products may be structurally adequate, they are only available on a "build to order" basis. That means your clients have automatically just added a minimum of 2-3 weeks to their production cycle: an eternity in today's tight construction schedules. Add that same amount of time for a single mis-cut joist and you can certainly see how quickly a well-intended specification can turn into a logistical nightmare.

This design guide is intended to provide information for the preliminary sizing of Boise Cascade Engineered Wood Products. While the products and applications shown in this guide are similar to our residential applications guide, the building code provisions and design requirements of the light commercial projects are significantly different. Concentrated floor load provisions, partition loads, wind and seismic provisions, and fire protection systems are all examples of these differences. This guide helps identify these issues and provides corresponding product application details. Professional guidelines in most areas require the project's design professional of record to be responsible for the overall design
of light commercial structures. This guide is intended to assist the design professional in specifying engineered wood products in dryuse condition of such structures.

ALLJOIST® ${ }^{\circledR}$ and $B C I{ }^{\circledR}$ joists and VERSALAM ${ }^{\circledR}$ beams are manufactured per corresponding International Code Council building code evaluation reports. Testing and quality control is certified by an independent inspection agency. Boise Cascade Engineered Wood Products are warranted for the life of the structure (see back cover of this guide). For the location of the nearest Boise Cascade representative or supplier of Boise Cascade Engineered Wood Products, please call 800-232-0788.

For complete information on fire resistance detailing and design with the entire Boise Cascade EWP product line, please refer to the US Fire Design \& Installation Guide, located at www.bcewp.com.

ALLJOIST® Product Architectural Specifications

EVALUATION SUBJECT: AJS® Series Prefabricated Wood I-Joists
1.0 Evaluation Scope:

Compliance with the following codes:

- International Building Code ${ }^{\circledR}$ (IBC)
- International Residential Code ${ }^{\circledR}$ (IRC) Properties Evaluated: Structural. 2.0 Uses: The AJS® Joists are prefabricated wood I-joists used as floor joists, roof rafters and blocking panels, to support code-required loads. Prefabricated wood I-joists described in this report comply with Section 2303.1.2 of the IBC and Section R502.1.4 of the IRC, for allowable stress design.
3.0 Description:
3.1 General: The AJS® Series prefabricated wood I-joists have solid-sawn lumber or composite lumber flanges and oriented strand board (OSB) webs. The top and bottom flanges are parallel, creating constantdepth joists. The web-to-web joints of the I-joists are square butt joints and conform to the specifications in the approved quality control manuals. The web-toflange connection is a proprietary grooved connection, also conforming to the approved quality control manuals. The I-joists are available in various lengths and depths. See ESR-1144 Table 1 for full description of the AJS® 1 -Joists.
3.2 Material Specifications:
3.2.1 Flanges: The flanges of the I-joists are sawn lumber or composite lumber conforming to the specifications in the approved quality control manuals. The lumber flanges are $11 / 2$ inch x either $21 / 2$ inch or $31 / 2$ inch $(38 \mathrm{~mm} x$ either 64 mm or

89 mm) spruce-pine-fir (SPF) and are used interchangeably with any of the sawn lumber flanges of the same dimensions. The sawn lumber flange material, grade, width and depth are noted in ESR-1144, Table 1.
3.2.2 Web: Web material for the I-Joists is $3 / 8$-inchthick (10 mm) or $7 / 16$-inch-thick (11 mm) OSB conforming to Exposure 1 requirements of DOC PS-2, with further requirements set forth in the approved quality control manuals and manufacturing standards.
3.2.3 Adhesive: Adhesives used in the fabrication of the I-joists are exterior-type, heat durable adhesives complying with ASTM D 2559 and ASTM D 5055, and are specified in the quality control manuals and the manufacturing standards.
4.0 Design and Installation: Design of the prefabricated wood I-joists described in this report shall be in accordance with the applicable code. Additionally, the design and installation of the prefabricated wood I-joists shall comply with Sections 4.1 through 4.12 listed in ESR-1144 which include 4.1 Allowable Structural Capacity, 4.2 Fasteners, 4.3 Web Stiffeners, 4.4 Lateral Support, 4.5 Holes in I-Joist Web, 4.6 Duration of Load, 4.7 In -Service Moisture Conditions, 4.8 RepetetiveMember Use, 4.9 Member Spans, 4.10 Deflection, 4.11 Blocking Panels, \& 4.12 Cantilevered Joists, and the manufacturer's installation instructions.
5.0 Conditions of Use: The AJS® Series I-joists described in this report comply with, or are suitable alternatives to what is specified in, those codes listed under ESR-1144, Section 1.0 Evaluation Scope of these specifications, subject to the following conditions:
5.1 AJS® joists must be installed in accordance with this report and the manufacturer's installation instructions.
5.2 Drawings and design details verifying compliance with this report must be submitted to the code official when requested. The drawings and calculations must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
5.3 Flanges of the I-joist may not be cut or notched, unless an engineered design prepared by a registered design professional is submitted to the code official for approval.
5.4 The AJS® joists are manufactured by Boise Cascade Wood Products, L.L.C. at their plant in St. Jacques, New Brunswick, Canada under an approved quality control program with inspections by APA - The Engineered Wood Association (AA-649).
6.0 Evidence Submitted:

Data in accordance with the ICC-ES Acceptance Criteria for Prefabricated Wood I-joists (AC14), dated February 2013.
7.0 Identification:

AJS® I-joists are identified by a stamp indicating the joist model; company name (Boise Cascade Wood Products, L.L.C.); manufacturing location; evaluation report number (ESR-1144); and the name and logo of the inspection agency (APA).
AJS® Joists in Commercial Projects: The 18" and deeper depth AJS® joists are intended for commercial projects with heavier design loads and longer spans. All commercial projects utilizing AJS® joists shall have an engineer or architect of record.

Boise Cascade Engineered Wood Products

40 PSF Live Load Span Tables

Multi-Family Dwellings and Hotels: Private Rooms No Web Stiffeners Required for Joist Depths of 16" and Less. Web Stiffeners Required at All Bearing Locations for 18" and Deeper Joists

40 PSF Live Load + 25 PSF Dead Load

Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		12" о.c.	16" o.c.	19.2" o.c.	24" о.c.	12" о.c.	16" o.c.	19.2" o.c.	24" o.c.
91⁄2"	AJS® 20	19'-1"	17'-5"	16'-0"	14'-4"	19'-1"	17'-5"	16'-0"	14'-4"
	AJS® 190	19'-4"	17'-8"	16'-8"	14'-4"	19'-4"	17'-8"	16'-8"	14'-4"
	AJS® 25	21'-0"	19'-1"	18'-0"	15'-9"	21'-0"	19'-1"	18'-0"	15'-9"
117/8"	AJS ${ }^{\text {® }} 20$	22'-8"	20'-0"	$18^{\prime}-3 "$	14'-7"	22'-8"	20'-0"	18'-3"	14'-7"
	AJS® 190	23'-0"	21'-0"	18'-3"	14'-7"	23'-0"	21'-0"	18'-3"	14'-7"
	AJS® 25	24'-11"	22'-9"	20'-1"	16'-1"	24'-11"	22'-9"	20'-1"	16'-1"
14"	AJS ${ }^{\text {® }} 20$	25'-5"	22'-0"	18'-7"	14'-10"	25'-5"	22'-0"	18'-7"	14'-10"
	AJS® 190	$26^{\prime}-1{ }^{\prime \prime}$	22'-4"	18'-7"	14'-10"	26'-1"	22'-4"	18'-7"	14'-10"
	AJS® 25	28'-4"	24'-6"	20'-5"	16'-4"	28'-4"	24'-6"	20'-5"	16'-4"
16"	AJS ${ }^{\text {® }} 20$	27'-4"	22'-8"	18'-10"	15'-1"	27'-4"	22'-8"	18'-10"	15'-1"
	AJS® 190	28'-11"	22'-8"	18'-10"	15'-1"	28'-11"	22'-8"	18'-10"	15'-1"
	AJS® 25	31'-4"	25'-0"	20'-10"	16'-7"	31'-4"	25'-0"	20'-10"	16'-7"
18"	AJS® 25	34'-6"	$31^{\prime}-5 "$	28'-11"	25'-10"	34'-6"	$31^{\prime}-5 "$	28'-11"	25'-10"
	AJS ${ }^{\circledR} 30$	35'-6"	32'-4"	30'-5"	28'-4"	35'-6"	32'-4"	30'-5"	28'-4"
$20 "$	AJS® 25	37'-4"	$33^{\prime}-6 "$	30'-7"	27'-4"	37'-4"	33'-6"	30'-7"	27'-4"
	AJS® 30	38'-5"	35'-0"	33'-0"	30'-8"	38'-5"	35'-0"	33'-0"	30'-8'
22	AJS ${ }^{\circledR} 25$	40'-1"	35'-1"	32'-1"	28'-8"	40'-1"	35'-1"	32'-1"	28'-8"
	AJS® 30	41'-3"	37'-7"	35'-5"	32'-1"	41'-3'	37'-7"	$35^{\prime}-5{ }^{\prime \prime}$	32'-3"
24 "	AJS® 25	42'-4"	36'-7"	33'-5"	29'-11"	42'-4"	36'-7"	$33^{\prime \prime}-5$	29'-11"
	AJS® 30	44'-1"	40'-2"	37'-7"	32'-9"	44'-1"	40'-2"	$37^{\prime}-7{ }^{\prime \prime}$	$33 '-8{ }^{\prime \prime}$

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/480.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table assumes minimum $21 / 4^{\prime \prime}$ end bearing, no web stiffeners required for joist depths of 16 "and less, web stiffeners required at all bearing locations for 18 " and deeper joists.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® sizing software.

Medical/Dental: Private Rooms

Web Stiffeners Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® sizing software.

[Worst Case 40 PSF or 1000 LB Concentrated Live Load] + 25 PSF Dead Load					
Joist Depth	Joist Series	3½" Interior Bearing / 5¼" Interior Bearing			
		12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
9½"	AJS® 20	17'-7"	16'-1"	15'-0"	12'-9"
	AJS® 190	17'-10"	16'-4"	15'-4"	14'-1"
	AJS® 25	19'-4"	17'-8"	16'-7"	15'-5"
117/8"	AJS® 20	20'-11"	19'-1"	18'-0"	15'-4"
	AJS® 190	21'-3"	19'-5"	18'-4"	17'-0"
	AJS® 25	23'-1"	21'-0"	19'-9"	18'-5"
14"	AJS® 20	23'-9"	21'-8"	20'-1"	17'-7"
	AJS® 190	24'-2"	22'-0"	20'-9"	19'-2"
	AJS® 25	26'-2"	23'-10"	22'-5"	20'-10"
16"	AJS® 20	26'-4"	23'-8"	21'-7"	19'-4"
	AJS® 190	26'-9"	24'-5"	23'-0"	20'-8"
	AJS® 25	29'-0"	26'-4"	24'-10"	23'-1"
18"	AJS® 25	31'-11"	29'-1"	27'-5"	25'-6"
	AJS® 30	32'-10"	29'-10"	28'-2"	26'-2"
$20 "$	AJS® 25	34'-6"	31'-6"	29'-8"	27'-4"
	AJS® 30	35'-6"	32'-4"	30'-6"	28'-4"
$22 "$	AJS® 25	37'-1"	33'-10"	31'-11"	28'-8"
	AJS® 30	38'-2"	34'-9"	32'-9"	30'-5"
24"	AJS® 25	39'-7"	36'-1"	33'-5"	29'-11"
	AJS® 30	40'-10"	37'-2"	35'-0"	32'-7"

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of $\mathrm{L} / 240$. Live load deflection limited to L/480 with 40 psf .
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4^{\prime \prime}$ end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\text {® }}$ sizing software.

Concentrated Live Loads ("Safe" Loads)

The International Building Code requires certain types of commercial floors to be designed with a concentrated live load, in addition to the prescribed uniform loads. This concentrated live load is applied to the floor without the uniform live load but with all dead load, creating a separate live load analysis. The concentrated load is either 2000 lb or 1000 lb , depending upon the floor type, and is applied to a $21 / 2$ foot $\times 21 / 2$ foot square area. This $21 / 2$-foot square is applied on the floor such that would result in the highest shear and bending stress, and deflections. Since this load is intended to create maximum stress and deflection conditions, it is centered over a specific floor joist. Floor joists at 24 " oncenter will receive more load from the concentrated live load than joists spaced at smaller increments. For example, a joist at 24"
on-center will receive $2 / 2.5$ or 80% of the concentrated load over a distance of 2 ' -6 " along the joist length.

There have been some misconceptions in the design community on how the concentrated live load should be applied to floors. Boise Cascade EWP Engineering has consulted directly with ICC on this matter. The loads prescribed in section 1607.4 of the 2009/2012 IBC have been properly considered in the development of the relative floor joist tables in this guide.

6
 50 PSF Live, 15 PSF Partition \& 2000 lb Conc. Load Span Tables

[Worst Case 50 PSF or 1000 LB Concentrated Live Load]

+ 15 PSF Partition Load + 25 PSF Dead Load
Office Buildings: Office Area

Web Stiffeners Required at All Bearing Locations for Table Below

Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® sizing software.

[Worst Case 50 PSF or 1000 LB Concentrated Live Load] + 15 PSF Partition Load + 25 PSF Dead Load									
Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		12 " o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
91⁄2"	AJS® 20	14'-7"	11'-7"	10'-0"	4'-11"	14'-7"	11'-7"	10'-0"	4'-11"
	AJS® 190	16'-3'	12'-11"	10'-2"	4'-11"	16'-3'	12'-11"	10'-2"	4'-11"
	AJS® 25	17'-11"	16'-3"	10'-2"	4'-11"	17'-11"	16'-3"	10'-2"	4'-11"
117/8"	AJS® 20	17'-10"	14'-3"	12'-4"	6'-1"	17'-10"	14'-3"	12'-4"	6'-1"
	AJS® 190	19'-8"	15'-10"	13'-5"	6'-1"	19'-8"	15'-10"	13'-5"	6'-1"
	AJS® 25	21'-4"	19'-4"	$13^{\prime}-5^{\prime \prime}$	6'-1"	21-4"	19'-4"	$13^{\prime}-5^{\prime \prime}$	6'-1"
$14 "$	AJS® 20	20'-8"	16'-6"	14'-3"	7'-5"	20'-8"	16'-6"	14'-3"	7'-5"
	AJS® 190	22'-4"	18'-4"	15'-11"	7'-5"	22'-4"	18'-4"	15'-11"	7'-5"
	AJS® 25	24'-2"	22'-0"	16'-10"	7'-5"	24'-2"	22'-0"	16'-10"	7'-5"
$16 "$	AJS® 20	23'-2"	18'-6"	16'-0"	9'-1"	23'-2"	18'-6"	16'-0"	9'-1"
	AJS® 190	24'-9"	20'-7"	17'-10"	9'-1"	24'-9"	20'-7"	17'-10"	9'-1"
	AJS® 25	26'-9"	24'-4"	20'-5"	9'-1"	26'-9"	24'-4"	20'-5"	9'-1"
18"	AJS® 25	29'-6"	26'-10"	24'-7"	20'-10"	29'-6"	26'-10"	24'-7"	20'-10"
	AJS ${ }^{\text {® }} 30$	$30^{\prime}-4{ }^{\prime \prime}$	27'-7"	26'-0"	20'-10"	30'-4"	27'-7"	26'-0"	20'-10"
$20 "$	AJS® 25	$31^{\prime}-11^{\prime \prime}$	28'-6"	26'-0"	22'-7"	31'-11"	28'-6"	26'-0"	22'-7"
	AJS® 30	32'-10"	29'-11"	28'-2"	22'-7"	32'-10"	29'-11"	28'-2"	22'-7"
22 "	AJS® 25	$34{ }^{\prime}-4{ }^{\prime \prime}$	29'-10"	27'-3'	23'-1"	$34{ }^{\prime}-4{ }^{\prime \prime}$	29'-10"	27'-3"	24'-4"
	AJS® 30	$35^{\prime}-4 "$	32'-1"	28'-11"	23'-1"	$35^{\prime}-4 "$	32'-1"	30'-3"	24'-4"
$24 "$	AJS® 25	35'-11"	31'-1"	28'-5"	23'-8"	35'-11"	31'-1"	28'-5"	25'-4"
	AJS® 30	37'-9"	$34{ }^{\prime}-4{ }^{\prime \prime}$	29'-7"	23'-8"	37'-9"	$34{ }^{\prime}-4{ }^{\prime \prime}$	31'-11"	26'-1"

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf , L/360 with $50+15 \mathrm{psf}$.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4$ " end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® sizing software.

Deflection Criteria for Commercial Floors

The minimum deflection criterion for commercial floors is the same as for residential floors, L/360 for live load deflection and L/240 for total load deflection. Since deflection controls a significant amount of I-joist designs, an additional deflection limit has been considered in the development of the AJS® joist span tables shown in this guide. In addition to the minimum limits at full uniform and concentrated ("safe") live loads, deflection is limited to L/600 with a uniform live load of 50 psf in those tables where the code specified uniform live load is 50 psf or greater. As is the case with all joist designs, floor performance should always be considered by the design professional of record in each specific condition.

60 / 75 PSF Live \& 1000 lb Conc. Load Span Tables

Medical/Dental: Operating Rooms \& Laboratory Library: Reading Rooms

[Worst Case 60 PSF or 1000 LB Concentrated Live Load] + 25 PSF Dead Load									
Joist Depth	Joist Series	$31122^{\prime \prime}$ Interior Bearing				51⁄4" Interior Bearing			
		12 "	16"	19.2"	$24 "$	12"	16"	19.2"	24"
		o.c.							
91⁄2"	AJS ${ }^{\text {® }} 20$	16'-3"	14'-10"	14'-0"	11'-5"	16'-3"	14'-10"	14'-0"	11'-5"
	AJS® 190	16'-6"	15'-0"	14'-2"	11'-5"	16'-6"	15'-0"	14'-2"	11-5"
	AJS® 25	17'-11"	16'-3"	15'-4"	13'-3"	17'-11"	16'-3"	15'-4"	13'-3"
117/8"	AJS® 20	19'-4"	17'-6"	16'-0"	13'-1"	19'-4"	17'-6"	$16^{\prime}-0{ }^{\prime \prime}$	13'-1"
	AJS® 190	19'-8"	17'-11"	16'-4"	13'-1"	19'-8"	17'-11"	16'-4"	13'-1"
	AJS® 25	21'-4"	19'-4"	18'-3"	14'-11"	21-4"	19'-4"	18'-3"	14'-11"
$14 "$	AJS® 20	22'-0"	19'-2"	17'-6"	14'-7"	22'-0"	19-2"	17'-6"	14'-7"
	AJS® 190	22'-4"	20'-4"	18'-3"	14'-7"	22-4"	20'-4"	18'-3"	14'-7"
	AJS® 25	24'-2"	22'-0"	20'-6"	16'-4"	24'-2"	22'-0"	20'-6"	16'-4"
16"	AJS® 20	23'-11"	20'-8"	18'-11"	16'-0"	23'-11"	20'-8"	18'-11"	16'-0"
	AJS® 190	24'-9"	22'-2"	20'-1"	16'-0"	24'-9"	22'-2"	20'-1"	16'-0"
	AJS® 25	26'-9"	24'-4"	22'-3"	17'-9"	26'-9"	24'-4"	22'-3"	17'-9"
18"	AJS® 25	29'-6"	26'-10"	25'-3"	22'-1"	29'6"	26'-10"	25'-3"	22'1"
	AJS® 30	30'-4"	27'-7"	26'-0"	22'-1"	30'-4"	27'-7"	26'-0"	22'-1"
20	AJS® 25	31'-11"	29'-1"	26'-9"	23'-11"	31'-11"	29'-1"	26'-9"	23'-11"
	AJS® 30	32'-10"	29'-11"	28'-2"	23'-11"	32'-10"	29'-11"	28'-2"	23'-11"
22"	AJS® 25	34'-4"	30'-8"	28'-0"	24'-6"	34'-4"	30'-8"	28'-0"	25'-0"
	AJS® 30	35'-4"	32'-1"	30'-3"	24'-6"	35'-4"	32'-1"	30'-3"	25'-9"
$24 "$	AJS® 25	36'-8"	32'-0"	29'-2"	25'-0"	36'-8"	32'-0"	29'-2"	26'-1"
	AJS® 30	37'-9"	34'-4"	31'-4"	25'-0"	37'-9"	$34^{\prime}-4{ }^{\prime \prime}$	32'-4"	27'-8"

Retail: Upper Floors

[Worst Case 75 PSF or 1000 LB Concentrated Live Load] + 25 PSF Dead Load

Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		$\begin{aligned} & 12 \text { " } \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 12 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$
91⁄2"	AJS® 20	16'-3'	14'-2"	12'-2"	9'-8"	16'-3"	14'-2"	12'-2"	9'-8"
	AJS® 190	16'-6"	14'-7"	12'-2"	9'-8'	16'-6"	14'-7"	12'-2"	9'-8"
	AJS® 25	17'-11"	16'-3"	14'-2"	11'-3"	17'-11"	16'-3"	14'-2"	11'-3"
117/8"	AJS® 20	18'-8"	16'-1"	13'-11"	11'-1"	18'-8"	16'-1"	13'-11"	11'-1"
	AJS® 190	19'-8"	16'-8"	13'-11"	11'-1"	19'-8"	16'-8"	13'-11"	11'-1"
	AJS® 25	21'-4"	19'-0"	15'-10"	12'-8"	21'-4"	19'-0"	15'-10"	12'-8"
14"	AJS® 20	20'-5"	17'-8"	15'-6"	12'-5"	20'-5"	17'-8"	15'-6"	12'-5"
	AJS® 190	21'-11"	18'-8"	15'-6"	12'-5"	21'-11"	18'-8"	15'-6"	12'-5"
	AJS® 25	24'-2"	20'-11"	17'-5"	13'-11"	24'-2"	20'-11"	17'-5"	13'-11"
16"	AJS® 20	22'-0"	19'-1"	17'-1"	13'-7"	22'-0"	19'-1"	17'-1"	13'-7"
	AJS® 190	23'-7"	20'-5"	17'-1"	13'-7"	23'-7"	20'-5"	17'-1"	13'-7"
	AJS® 25	26'-9"	22'-8"	18'-11"	15'-1"	26'-9"	22'-8"	18'-11"	15'-1"
18"	AJS® 25	29'-6"	25'-6"	23'-4"	18'-9"	29'-6"	25'-6"	23'-4"	18'-9"
	AJS® 30	30'-4"	27'-7"	23'-6"	18'-9"	30'-4"	27'-7"	23'-6"	18'-9"
20	AJS® 25	31'-2"	27'-0"	24'-8"	20'-4"	31'-2"	27'-0"	24'-8"	20'-4"
	AJS® 30	32'-10"	29'-11"	25'-5"	20'-4"	32'-10"	29'-11"	25'-5"	20'-4"
22	AJS® 25	32'-8"	28'-3"	25'-10"	20'-10"	32'-8"	28'-3"	25'-10"	21'-11"
	AJS® 30	35'-4"	31'-3"	26'-0"	20'-10"	35'-4"	31'-10"	27'-5"	21'-11"
24"	AJS® 25	34'-1"	29'-6"	26'-7"	21'-3"	34'-1"	29'-6"	26'-11"	23'-6"
	AJS® 30	37'-9"	31'-11"	26'-7"	21'-3"	37'-9"	$33^{\prime}-3 "$	29'-5"	23'-6"

Web Stiffeners Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® sizing software.

NOTES FOR BOTH TABLES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and L/360 with listed uniform live load.
- Table values assume that 23/32" min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4$ " end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® sizing software.

Medical, Schools, Libraries: Upper Floor Corridors									
[Worst Case 80 PSF or 1000 LB Concentrated Live Load] + 25 PSF Dead Load									
Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		$\begin{aligned} & 12 \text { " } \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 12 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$
91⁄2"	AJS® 20	15'-11"	13'-10"	11'-6"	9'-3"	15'-11"	13'-10"	11'-6"	9'-3'
	AJS® 190	16'-6"	13'-11"	11'-6"	9'-3'	16'-6"	13'-11"	11'-6"	9'-3'
	AJS ${ }^{\text {® }} 25$	17'-11"	16'-2"	13'-5"	10'-9"	17'-11"	16'-2"	13'-5"	10'-9"
117/8"	AJS ${ }^{\text {® }} 20$	18'-2"	15'-9"	13'-3"	10'-6"	18'-2"	15'-9"	13'-3"	10'-6"
	AJS® 190	19'-6"	15'-11"	13'-3"	10'-6"	19'-6"	15'-11"	13'-3"	10'-6"
	AJS® 25	21'-4"	18'-1"	15'-1"	12'-0"	21'-4"	18'-1"	15'-1"	12'-0"
14"	AJS® 20	20'-0"	17'-3"	14'-9"	11'-10"	20'-0"	17'-3"	14'-9"	11'-10"
	AJS® 190	21'-5"	17'-9"	14'-9"	11'-10"	21'-5"	17'-9"	14'-9"	11'-10"
	AJS® 25	24'-2"	19'-11"	16'-7"	13'-3"	24'-2"	19'-11"	16'-7"	13'-3"
16"	AJS ${ }^{\text {® }} 20$	21'-6"	18'-7"	16'-3"	13'-0"	21'-6"	18'-7"	16'-3"	13'-0"
	AJS® 190	23'-0"	19'-6"	16'-3"	13'-0"	23'-0"	19'-6"	16'-3"	13'-0"
	AJS® 25	26'-9"	21'-7"	18'-0"	14'-4"	26'-9"	21'-7"	18'-0"	14'-4"
18"	AJS® 25	28'-10"	24'-11"	22'-4"	17'-10"	28'-10"	24'-11"	22'-4"	17'-10"
	AJS® 30	30'-4"	26'-10"	22'-4"	17'-10"	30'-4"	26'-10"	22'-4"	17'-10"
20	AJS® 25	30'-5"	26'-4"	24'-1"	19'-4"	30'-5"	26'-4"	24'-1"	19'-4"
	AJS® 30	32'-10"	29'-1"	24'-2"	19'-4"	32'-10"	29'-1"	24'-2"	19'-4"
22	AJS® 25	31'-11"	27'-7"	24'-9"	19'-10"	31'-11"	27'-7"	25'-2"	20'-10"
	AJS® 30	35'-4"	29'-9"	24'-9"	19'-10"	35'-4"	31'-1"	26'-1"	20'-10"
24"	AJS ${ }^{\text {® }} 25$	$33^{\prime}-3 "$	28'-9"	25'-4"	20'-3"	33'-3"	28'-9"	26'-3"	22'-4"
	AJS ${ }^{\circledR} 30$	37'-5"	30'-5"	25'-4"	20'-3"	37'-5"	32'-5"	28'-0"	22'-4"

Retail - 1st Floor / Schools - 1st Floor Corridors									
[Worst Case 100 PSF or 1000 LB Concentrated Live Load] + 25 PSF Dead Load									
Joist Depth	Joist Series	31/2" Interior Bearing				51/4" Interior Bearing			
		12 " o.c.	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 12 " \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & 16 " \\ & \text { o.c. } \end{aligned}$	$\begin{gathered} \text { 19.2" } \\ \text { o.c. } \end{gathered}$	$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$
91⁄2"	AJS® 20	14'-7"	11'-8"	9'-8"	7'-9"	14'-7"	11'-8"	9'-8"	7'-9"
	AJS® 190	15'-5"	11'-8"	9'-8"	7'-9"	15'-5"	11'-8"	9'-8"	7'-9"
	AJS® 25	16'-9"	13'-7"	11'-3"	9'-0"	16'-9"	13'-7"	11'-3"	9'-0"
117/8"	AJS® 20	16'-8"	13'-4"	11'-1"	8'-10"	16'-8"	13'-4"	11'-1"	8'-10"
	AJS® 190	17'-10"	13'-4"	11'-1"	8'-10"	17'-10"	13'-4"	11'-1"	8'-10"
	AJS ${ }^{\text {® }} 25$	19'-11"	15'-2"	12'-8"	10'-1"	19'-11"	15'-2"	12'-8"	10'-1"
14"	AJS ${ }^{\text {® }} 20$	18'-3"	14'-11"	12'-5"	9'-11"	18'-3"	14'-11"	12'-5"	9'-11"
	AJS® 190	19'-7"	14'-11"	12'-5"	9'-11"	19'-7"	14'-11"	12'-5"	9'-11"
	AJS® 25	22'-3"	16'-8"	13'-11"	11'-1"	22'-3"	16'-8"	13'-11"	11'-1"
16"	AJS ${ }^{\text {2 }} 20$	19'-8"	16'-4"	13'-7"	10'-10"	19'-8"	16'-4"	13'-7"	10'-10"
	AJS® 190	21'-1"	16'-4"	13'-7"	10'-10"	21'-1"	16'-4"	13'-7"	10'-10"
	AJS® 25	24'-2"	18'-1"	15'-1"	12'-0"	24'-2"	18'-1"	15'-1"	12'-0"
18"	AJS® 25	26'-5"	22'-6"	18'-9"	15'-0"	26'-5'	22'-6"	18'-9"	15'-0"
	AJS® 30	28'-5"	22'-6"	18'-9"	15'-0"	28'-5"	22'-6"	18'-9"	15'-0"
20"	AJS® 25	27'-11"	24'-2"	20'-4"	16'-3"	27'-11"	24'-2"	20'-4"	16'-3"
	AJS® 30	30'-10"	24'-5"	20'-4"	16'-3'	30'-10"	24'-5"	20'-4"	16'-3"
22"	AJS® 25	29'-3"	25'-0"	20'-10"	16'-7"	29'-3"	25'-3"	21'-11"	17'-6"
	AJS® 30	32'-11"	25'-0"	20'-10"	16'-7"	32'-11"	26'-4"	21'-11"	17'-6"
24"	AJS® 25	30'-6"	25'-6"	21'-3"	17'-0"	30'-6"	26'-4"	23'-6"	18'-9"
	AJS ${ }^{\text {® }} 30$	$34{ }^{\prime}-1{ }^{\prime \prime}$	25'-6"	21'-3"	17'-0"	$34^{\prime}-4{ }^{\prime \prime}$	28'-2"	23'-6"	18'-9"

Web Stiffeners

Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® sizing software.

NOTES FOR BOTH TABLES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and L/360 with listed uniform live load.
- Table values assume that 23/32" min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum 2¼" end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ sizing software.

80 PSF Live \& 2000 lb Conc. Load Span Tables

Office: Upper Floor Corridors

Web Stiffeners Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC ${ }^{\circledR}$ sizing software.
[Worst Case 80 PSF or 2000 LB Concentrated Live Load] + 25 PSF Dead Load

Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		12 " o.c.	16" o.c.	19.2" o.c.	24" о.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
91⁄2"	AJS® 20	14'-7"	11'-7"	10'-0"	4'-11"	14'-7"	11'-7"	10'-0"	4'-11"
	AJS® 190	16'-3"	12'-11"	10'-2"	4'-11"	16'-3"	12'-11"	10'-2"	4'-11"
	AJS ${ }^{\circledR} 25$	17'-11"	16'-2"	10'-2"	4'-11"	17'-11"	16'-2"	10'-2"	4'-11"
117/8"	AJS® 20	17'-10"	14'-3"	12'-4"	6'-1"	17'-10"	14'-3"	12'-4"	6'-1"
	AJS® 190	19'-6"	15'-10"	$13^{\prime}-3^{\prime \prime}$	6'-1'	19'-6"	15'-10"	$13^{\prime}-3^{\prime \prime}$	6'-1'
	AJS® 25	$21^{\prime}-4 "$	18'-1"	$13^{\prime}-5{ }^{\prime \prime}$	6'-1"	$21^{\prime}-4{ }^{\prime \prime}$	18'-1"	$13^{\prime}-5^{\prime \prime}$	6'-1"
14"	AJS® 20	20'-0"	16'-6"	14'-3"	7'-5"	20'-0"	16'-6"	14'-3"	7'-5"
	AJS® 190	$21^{\prime}-5^{\prime \prime}$	17'-9"	14'-9"	7'-5'	$21^{\prime}-5^{\prime \prime}$	17'-9"	14'-9"	7'-5'
	AJS® 25	24'-2"	19'-11"	16'-7"	7'-5'	24'-2"	19'-11"	16'-7"	7'-5'
16"	AJS® 20	21'-6"	18'-6"	16'-0"	9'-1"	21'-6"	18'-6"	16'-0"	9'-1"
	AJS® 190	23'-0"	19'-6"	$16^{\prime}-3 "$	9'-1"	23'-0"	19'-6"	16'-3"	9'-1"
	AJS® 25	26'-9"	21'-7"	18'-0"	9'-1"	26'-9"	21'-7"	18'-0"	9'-1"
18"	AJS® 25	28'-10"	24'-11"	22'-4"	17'-10"	28'-10"	24'-11"	22'-4"	17'-10"
	AJS® 30	30'-4"	26'-10"	22'-4"	17'-10"	30'-4"	26'-10"	22'-4"	17'-10"
$20 "$	AJS® 25	$30^{\prime}-5{ }^{\prime \prime}$	26'-4"	24'-1"	19'-4"	$30^{\prime}-5^{\prime \prime}$	26'-4"	24'-1"	19'-4"
	AJS® 30	32'-10"	29'-1"	24'-2"	19'-4"	32'-10"	29'-1"	24'-2"	19'-4"
22"	AJS® 25	31'-11"	27'-7"	24'-9"	19'-10"	31'-11"	27'-7"	25'-2"	20'-10"
	AJS® 30	$35^{\prime}-4 "$	29'-9"	24'-9"	19'-10"	$35^{\prime}-4 "$	31'-1"	26'-1"	20'-10"
24"	AJS® 25	$33^{\prime}-3^{\prime \prime}$	28'-9"	$25^{\prime}-4 "$	20'-3'	$33^{\prime}-3^{\prime \prime}$	28'-9"	26'-3'	22'-4"
	AJS ${ }^{\text {® }} 30$	$37{ }^{\prime}-5$	$30^{\prime}-5{ }^{\prime \prime}$	25'-4"	20'-3'	$37^{\prime}-5{ }^{\prime \prime}$	$32 '-5 "$	28'-0"	22'-4"

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and L/360 with 80 psf.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4^{\prime \prime}$ end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\circledR}$ sizing software.

Hotels: Public Rooms \& Corridors
Retail - All Corridors; Medical - 1st Floor Corridors
Restaurants \& Dining Rooms
Assembly Areas \& Theatres: Lobbies, Movable Seat Areas
Web Stiffeners Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® ${ }^{\circledR}$ sizing software.

100 PSF Live Load + 25 PSF Dead Load									
Joist Depth	Joist Series	3112" Interior Bearing				511/4" Interior Bearing			
		12 " o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
91/2"	AJS® 20	14'-7"	11'-8"	9'-8"	7'-9"	14'-7"	11'-8"	9'-8"	7'-9"
	AJS® 190	15'-5"	11'-8"	9'-8"	7'-9"	15'-5"	11'-8"	9'-8"	7'-9"
	AJS® 25	16'-9"	13'-7"	11'-3"	9'-0'	16'-9"	13'-7"	11'-3"	9'-0"
117/8"	AJS® 20	16'-8"	13'-4"	11'-1"	8'-10"	16'-8"	13'-4"	11'-1"	8'-10"
	AJS® 190	17'-10"	13'-4"	11'-1"	8'-10"	17'-10"	$13^{\prime}-4 "$	11'-1"	8'-10"
	AJS® 25	19'-11"	15'-2"	12'-8"	10'-1"	19'-11"	15'-2"	12'-8"	10'-1"
14"	AJS® 20	18'-3"	14'-11"	12'-5"	9'-11"	18'-3"	14'-11"	12'-5"	9'-11"
	AJS® 190	19'-7"	14'-11"	12'-5"	9'-11"	19'-7"	14'-11"	12'-5"	9'-11"
	AJS® 25	22'-3"	16'-8"	13'-11"	11'-1"	22 -3"	16'-8"	13'-11"	11'-1"
$16 "$	AJS® 20	19'-8"	$16^{\prime}-4 "$	$13^{\prime}-7{ }^{\prime \prime}$	10'-10"	19'-8"	$16^{\prime}-4 "$	13'-7"	10'-10"
	AJS® 190	21'-1"	16'-4"	13'-7"	10'-10"	21'-1"	16'-4"	13'-7"	10'-10"
	AJS® 25	24'-2"	18'-1"	15'-1"	12'-0"	24'-2"	18'-1"	15'-1"	12'-0"
18"	AJS® 25	26'-5"	22'-6"	18'-9"	15'-0"	26'-5"	22'-6"	18'-9"	15'-0"
	AJS® 30	$28^{\prime}-5^{\prime \prime}$	22'-6"	18'-9"	15'-0"	28'-5"	22'-6"	18'-9"	15'-0"
$20 "$	AJS® 25	27'-11"	24'-2"	20'-4"	16'-3"	27'-11"	24'-2"	20'-4"	16'-3"
	AJS® 30	30'-10"	24'-5"	20'-4"	$16^{\prime}-3 "$	30'-10"	24'-5"	20'-4"	16'-3"
22 "	AJS® 25	29'-3"	25'-0"	20'-10"	16'-7"	29'-3"	25'-3"	21'-11"	17'-6"
	AJS® 30	32'-11"	25'-0"	20'-10"	16'-7"	32'-11"	26'-4"	21'-11"	17'-6"
$24 "$	AJS® 25	30'-6"	25'-6"	$21^{\prime}-3{ }^{\prime \prime}$	17'-0"	30'-6"	26'-4"	23'-6"	18'-9"
	AJS® 30	$34^{\prime}-1{ }^{\prime \prime}$	25'-6"	$21^{\prime}-3 "$	17'-0"	$34^{\prime}-4 "$	28'-2"	23'-6"	18'-9"

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and L/360 with 100 psf.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4^{\prime \prime}$ end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ sizing software.

Office: Lobbies \& 1st Floor Corridors

Web Stiffeners Required at All Bearing Locations for Table Below

Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BCCALC® sizing software.

[Worst Case 100 PSF or 2000 LB Concentrated Live Load] + 25 PSF Dead Load									
		$31122^{\prime \prime}$ Interior Bearing				51⁄4" Interior Bearing			
Depth	Joist Series	12 " o.c.	16" о.c.	19.2" o.c.	24" о.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
$91 / 2{ }^{\prime \prime}$	AJS® 20	14'-7"	11'-7"	9'-8"	4'-11"	14'-7"	11'-7"	9'-8"	4'-11"
	AJS® 190	15'-5"	11'-8"	9'-8"	4'-11"	$15^{\prime}-5{ }^{\prime \prime}$	11'-8"	$99^{\prime \prime} \mathbf{8 ' ~}^{\prime}$	4'-11"
	AJS® 25	16'-9"	$13^{\prime}-7{ }^{\prime \prime}$	10'-2"	4'-11"	16'-9"	13 -7"	10'-2"	4'-11"
117/8"	AJS® 20	16'-8"	$13^{\prime}-4{ }^{\prime \prime}$	11'-1"	$6^{\prime}-1{ }^{\prime \prime}$	16'-8"	$13^{\prime}-4{ }^{\prime \prime}$	11'-1"	$6^{\prime}-1 "$
	AJS® 190	17'-10"	$13^{\prime}-4 "$	11'-1"	$6^{\prime}-1{ }^{\prime \prime}$	17'-10"	$13^{\prime}-4 "$	11'-1"	6'-1"
	AJS® 25	19'-11"	$15^{\prime}-2{ }^{\prime \prime}$	12'-8"	$6^{\prime}-1 "$	19'-11"	$15^{\prime}-2{ }^{\prime \prime}$	$12^{\prime}-8{ }^{\prime \prime}$	6'-1"
14 "	AJS® 20	18'-3"	14'-11"	$12^{\prime 2}$ "	7'-5"	18'-3"	14'-11"	$12^{\prime}-5{ }^{\prime \prime}$	7'-5"
	AJS® 190	19'-7"	14'-11"	12'-5"	7'-5"	19'-7"	14'-11"	$12^{\prime}-5{ }^{\prime \prime}$	7'-5"
	AJS® 25	$22^{\prime}-3$ "	16'-8"	13'-11"	7'-5"	$22^{\prime}-3$ "	16'-8"	13'-11"	7'-5"
16"	AJS® 20	19'-8"	16'-4"	$13^{\prime}-7{ }^{\prime \prime}$	$9 ' 1{ }^{\prime \prime}$	19'-8"	$16^{\prime}-4 "$	$13^{\prime}-7{ }^{\prime \prime}$	9'-1"
	AJS® 190	21'-1"	16'-4"	13'-7"	9'-1"	21'-1"	16'-4"	$13^{\prime \prime}$-7"	9'-1"
	AJS® 25	$24^{\prime}-2$ "	18'-1"	15'-1"	9'-1"	$24^{\prime}-2{ }^{\prime \prime}$	18'-1"	15'-1"	9'-1"
18"	AJS® 25	$26^{\prime}-5{ }^{\prime \prime}$	22'-6"	18'-9"	15'-0"	26'-5"	22'-6"	18'-9"	15'-0"
	AJS® 30	$28^{\prime}-5{ }^{\prime \prime}$	22'-6"	18'-9"	15'-0"	28'-5"	22'-6"	18'-9"	15'-0"
20"	AJS® 25	27'-11"	24'-2"	20'-4"	16'-3"	$27^{\prime}-11^{\prime \prime}$	24'-2"	20'-4"	16'-3"
	AJS® 30	30'-10"	24'-5"	20'-4"	16'-3"	30'-10"	$24^{\prime}-5{ }^{\prime \prime}$	20'-4"	16'-3"
22"	AJS® 25	29'-3"	25'-0"	20'-10"	16'-7"	$29^{\prime}-3 "$	$25^{\prime}-3 "$	21'-11"	17'-6"
	AJS® 30	$32^{\prime \prime} 11{ }^{\prime \prime}$	$25^{\prime \prime}$-0"	20'-10"	16'-7"	32'-11"	$26^{\prime \prime} \mathbf{4 "}^{\prime \prime}$	$21^{\prime \prime} 11^{\prime \prime}$	17'-6"
24"	AJS® 25	30'-6"	$25^{\prime \prime}$-6"	$21^{\prime \prime} 3^{\prime \prime}$	17'-0"	30'-6"	$26^{\prime \prime} \mathbf{4 "}^{\prime \prime}$	$23^{\prime \prime}$ 6"	18'-9"
	AJS® 30	$34^{\prime \prime}{ }^{\prime \prime}$	$25^{\prime \prime}$ " ${ }^{\prime \prime}$	$21^{\prime \prime} \mathbf{3 '}^{\prime \prime}$	$17^{\prime \prime}-0{ }^{\prime \prime}$	$34^{\prime \prime}-4^{\prime \prime}$	$28^{\prime \prime} 2^{\prime \prime}$	$23^{\prime \prime}-6 "$	18'-9"

NOTES

- Loading based upon Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and $\mathrm{L} / 360$ with 100 psf .
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4^{\prime \prime}$ end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ sizing software.

Web Stiffeners Required at All Bearing Locations for Table Below
Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC ${ }^{\circledR}$ sizing software.
125 PSF Live Load + 25 PSF Dead Load

Joist Depth	Joist Series	3½" Interior Bearing				5¼" Interior Bearing			
		12 " o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
91⁄2"	AJS® 20	12'-11"	9'-8"	8'-0"	6'-5"	12'-11"	9'-8"	8'-0"	6'-5"
	AJS® 190	12'-11"	9'-8"	8'-0"	6'-5"	12'-11"	9'-8"	8'-0"	6'-5"
	AJS® 25	15'-1"	11'-3"	9'-5"	7'-6"	15'-1"	11'-3"	9'-5"	7'-6"
117/8"	AJS® 20	14'-10"	11'-1"	9'-3'	7'-4"	14'-10"	11'-1"	9'-3'	7'-4"
	AJS® 190	14'-10"	11'-1"	9'-3'	7'-4"	14'-10"	11'-1"	9'-3'	7'-4'
	AJS® 25	16'-11"	12'-8"	10'-6"	8'-5"	16'-11"	12'-8"	10'-6"	8'-5"
$14 "$	AJS® 20	16'-7"	12'-5"	10'-4"	8'-3'	16'-7"	12'-5"	10'-4"	8'-3'
	AJS® 190	16'-7"	12'-5"	10'-4"	8'-3'	16'-7"	12'-5"	10'-4"	8'-3'
	AJS® 25	18'-7"	13'-11"	11'-6"	9'-3'	18'-7"	13'-11"	11'-6"	9'-3'
$16 "$	AJS® 20	18'-0"	13'-7"	11'-4"	9'-0'	18'-0"	13'-7"	11'-4"	9'-0'
	AJS® 190	18'-2"	13'-7"	11'-4"	9'-0'	18'-2"	13'-7"	11'-4"	9'-0"
	AJS® 25	20'-2"	15'-1"	12'-6"	10'-0"	20'-2"	15'-1"	12'-6"	10'-0"
18"	AJS® 25	24'-1"	18'-9"	15'-7"	12'-6"	24'-1"	18'-9"	15'-7"	12'-6"
	AJS® 30	25'-1"	18'-9"	15'-7"	12'-6"	25'-1"	18'-9"	15'-7"	12'-6"
$20 "$	AJS® 25	25'-5"	20'-4"	16'-11"	13'-6"	$25^{\prime}-5^{\prime \prime}$	20'-4"	16'-11"	13'-6"
	AJS® 30	27'-2"	20'-4"	16'-11"	13'-6"	27'-2"	20'-4"	16'-11"	13'-6"
22"	AJS® 25	26'-8"	20'-10"	17'-4"	13'-10"	26'-8'	21'-11"	18'-3"	14'-7"
	AJS® 30	27'-9"	20'-10"	17'-4"	13'-10"	29'-3'	21'-11"	18'-3"	14'-7"
$24 "$	AJS® 25	27'-10"	$21^{\prime \prime}-3$ '	17'-8"	14'-2"	27'-10"	23'-6"	19'-7"	15'-7"
	AJS® 30	28'-5"	$21^{\prime}-3{ }^{\prime \prime}$	17'-8"	14'-2"	$31^{\prime}-4{ }^{\prime \prime}$	23'-6"	19'-7"	15'-7"

NOTES

- Loading based upon Light Storage - Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf and L/360 with 125 psf.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4$ " end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ sizing software.

250 PSF Live Load (Heavy Storage) Span Tables

Web Stiffeners Required at All Bearing Locations for Table Below Spans without web stiffeners and/or shorter bearings are possible, analyze such conditions with BC CALC® sizing software. 250 PSF Live Load + 25 PSF Dead Load							
Joist Depth	Joist Series	3½" Interior Bearing			51⁄4" Interior Bearing		
		12" o.c.	16" o.c.	19.2" о.c.	12" о.c.	16" o.c.	19.2" o.c.
$91 / 2 "$	AJS® 20	7'-0'	5'-3"	4'-4"	7'-0'	5'-3"	4'-4"
	AJS® 190	7'-0"	5'-3'	4'-4"	7'-0"	5'-3'	4'-4"
	AJS® 25	8'-2"	6'-1'	5'-1"	8'-2"	6'-1'	5'-1"
117/8"	AJS® 20	8'-0"	6'-0'	5'-0"	8'-0"	6'-0'	5'-0"
	AJS® 190	8'-0"	6'-0'	5'-0"	8'-0"	6'-0"	5'-0"
	AJS® 25	9'-2"	6'-10"	5'-8"	9'-2"	6'-10"	5'-8"
14"	AJS® 20	9'-0'	6'-8"	5'-7"	9'-0"	6'-8"	5'-7"
	AJS® 190	9'-0'	6'-8"	5'-7"	9'-0'	6'-8"	5'-7"
	AJS® 25	10'-1"	7'-6"	6'-3'	10'-1"	7'-6"	6'-3'
16"	AJS® 20	9'-10"	7'-4"	6'-1"	9'-10"	7'-4"	6'-1"
	AJS® 190	9'-10"	7'-4"	6'-1'	9'-10"	7'-4"	6'-1'
	AJS® 25	10'-11"	8'-2'	6'-9"	10'-11"	8'-2"	6'-9"
18"	AJS® 25	13'-7"	10'-2"	8'-5"	13'-7"	10'-2'	8'-5"
	AJS® 30	13'-7"	10'-2"	8'-5"	13'-7"	10'-2"	8'-5"
$20 "$	AJS® 25	14'-9"	11'-0"	9'-2'	14'-9"	11'-0"	9'-2'
	AJS® 30	14'-9"	11'-0"	9'-2'	14'-9"	11'-0"	9'-2'
22"	AJS® 25	15'-1"	11'-3"	9'-5"	15'-11"	11'-11"	9'-11"
	AJS® 30	15'-1"	11'-3"	9'-5"	15'-11"	11'-11"	9'-11"
24"	AJS® 25	15'-5"	11'-6"	9'-7"	17'-0"	12'-9"	10'-7"
	AJS® 30	15'-5"	11'-6"	9'-7"	17'-0"	12'-9""	10'-7"

NOTES

- Loading based upon Heavy Storage - Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of $\mathrm{L} / 240$. Live load deflection limited to L/600 with 50 psf and L/360 with 250 psf.
- Table values assume that $23 / 32$ " min. plywood/OSB rated sheathing is glued and nailed to joists.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4^{\prime \prime}$ end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\text {® }}$ sizing software.

AJS® Joists

NOTE
The illustration below is showing several suggested applications for the Boise Cascade EWP products. It is not intended to show an actual house under construction.

See also Intermediate Bearing details, page 16

NO MIDSPAN BRIDGING IS REQUIRED FOR ALLJOIST ${ }^{\circledR}$ PRODUCT

FOR INSTALLATION STABILITY,
Temporary strut lines (1×4 min.) 8^{\prime} on center max. Fasten at each joist with 2-8d nails minimum.

Dimension lumber is not suitable for use as a rim board in ALLJOIST ${ }^{\circledR}$ floor systems.

BOISE CASCADE® Rimboard See pages 15 and 34.

When installing Boise Cascade EWP products with treated wood, use only connectors/fasteners that are approved for use with the corresponding wood treatment.

BCI® Joists, VERSA-LAM ${ }^{\circledR}$ and ALLJOIST® must be stored, installed and used in accordance with the Boise Cascade EWP Installation Guide, building codes, and to the extent not inconsistent with the Boise Cascade EWP Installation Guide, usual and customary building practices and standards. VERSA-LAM ${ }^{\circledR}$, ALLJOIST®, and $\mathrm{BCI®}$ Joists must be wrapped, covered, and stored off of the ground on stickers at all times prior to installation. VERSA-LAM ${ }^{\circledR}$, ALLJOIST® ${ }^{\circledR}$ and $\mathrm{BCI}{ }^{\circledR}$ Joists are intended only for applications
that assure no exposure to weather or the elements and an environment that is free from moisture from any source, or any pest, organism or substance which degrades or damages wood or glue bonds. Failure to correctly store, use or install VERSA-LAM ${ }^{\circledR}$, ALLJOIST®, and $\mathrm{BCI}{ }^{\circledR}$ Joist in accordance with the Boise Cascade EWP Installation Guide will void the limited warranty.

SAFETY WARNING

DO NOT ALLOW WORKERS ON AJS® JOISTS UNTIL ALL HANGERS, AJS® RIM JOISTS, RIM BOARDS, AJS® BLOCKING PANELS, X-BRACING AND TEMPORARY 1x4 STRUT LINES ARE INSTALLED AS SPECIFIED BELOW. SERIOUS ACCIDENTS CAN RESULT FROM INSUFFICIENT ATTENTION TO PROPER BRACING DURING CONSTRUCTION. ACCIDENTS CAN BE AVOIDED UNDER NORMAL CONDITIONS BY FOLLOWING THESE GUIDELINES:

- Build a braced end wall at the end of the bay, or permanently install the first eight feet of AJS® Joist and the first course of sheathing. As an alternate, temporary sheathing may be nailed to the first four feet of AJS® ${ }^{\circledR}$ Joist at the end of the bay.
- All hangers, AJS® rim joists, rim boards, AJS® blocking panels, and x-bracing must be completely installed and properly nailed as each AJS® Joist is set.
- Install temporary 1x4 strut lines at no more than eight feet on center as additional AJS ${ }^{\circledR}$ Joists are set. Nail the strut lines to the sheathed area, or braced end wall, and to each AJS® Joist with two 8d nails.
- The ends of cantilevers must be temporarily secured by strut lines on both the top and bottom flanges.
- Straighten the AJS ${ }^{\circledR}$ Joist to within $1 / 2$ inch of true alignment before attaching strut lines and sheathing.
- Remove the temporary strut lines only as required to install the permanent sheathing.
- Failure to install temporary bracing may result in sideways buckling or rollover under light construction loads.
- Do not stack construction materials (sheathing, drywall, etc) in the middle of AJS ${ }^{\circledR}$ Joist spans, contact Boise Cascade EWP Engineering for proper storage and shoring information.

PRODUCT HANDLING TO AND AT JOB SITES

There are some differences between engineered wood products and traditional lumber products in terms of product handling: AJS ${ }^{\circledR}$ joists are significantly weaker in the flat orientation. VERSA-LAM ${ }^{\circledR}$ is denser and due to the coating applied to the surface, can be more apt to sliding. Please consider these differences when transporting and handling engineered wood products.

END BEARING DETAILS		
F07	F07A Dimension lumber is not suitable for use as rimboard with AJS ${ }^{\circledR}$ Joists. Blocking may be required perpendicular to wall, consult design professional of record and/or local building official.	F02 Use of AJS ${ }^{\circledR}$ rimjoist requires 2×6 wall for minimum joist bearing.
F01	F18	F52
F08	F03 Note: AJS ${ }^{\circledR}$ floor joist must be designed to carry wall above when not stacked over wall below. Blocking required underneath braced wall panels and shear walls, consult design professional of record.	Flat 2×4 blocking with clips may substitute for AJS ${ }^{\circledR}$ blocking. Note: AJS ${ }^{\circledR}$ joist must be designed to support vertical loads from wall above.

LATERAL SUPPORT

- AJS ${ }^{\circledR}$ Joists must be laterally supported at end supports (including supports adjacent to overhangs) with hangers, rimboard, or blocking (VERSA-LAM ${ }^{\circledR}$, BOISE CASCADE ${ }^{\circledR}$ Rimboard or AJS ${ }^{\circledR}$ Joist). Metal cross bracing or other x-bracing provides adequate lateral support for AJS® Joists. Consult governing building code for floor diaphragm connection provisions.
- Blocking may be required at intermediate bearings for floor diaphragm per project's structural engineer of record.

MINIMUM BEARING LENGTH FOR AJS® JOISTS

- Minimum end bearing: $1 \frac{1}{2} 2^{\prime \prime}$ for $91 / 2$ " -16 " deep joists, $13 / 4$ " for 18 " and deeper joists. $31 / 2^{1 "}$ minimum bearing length at cantilever and intermediate supports.
- Longer bearing lengths allow higher reaction values. Refer to the building code evaluation report or the BC CALC ${ }^{\circledR}$ software.

NAILING REQUIREMENTS

- AJS ${ }^{\circledR}$ rim joist, rim board or closure panel to AJS ${ }^{\circledR}$ joist:
- Rims or closure panel $111 / 4$ inches thick and less:

2-8d nails, one each in the top and bottom flange.

- AJS® 20/190 rim joist: 2-16d box nails, one each in the top and bottom flange.
- AJS® 25/30 rim joist: Toe-nail top flange to rim joist with 2-10d box nails, one each side of flange.
Boise Cascade EWP • ALLJOIST® Commercial Specifier Guide 01/09/2015 r9/29/2017
- AJS ${ }^{\circledR}$ rim joist, rim board or AJS ${ }^{\circledR}$ blocking panel to support:
- Min. 8d nails @ 6" o.c. per IBC.
- Connection per design professional of record's specification for shear transfer.
- AJS ${ }^{\circledR}$ joist to support:
- 2-8d nails, one on each side of the web, placed $11 / 2$ inches minimum from the end of the AJS ${ }^{\circledR}$ Joist to limit splitting.
- Sheathing to AJS ${ }^{\circledR}$ joist:
- Minimum nailing schedule 8d common nails @ 6" o.c. on edges and 12" o.c. in the field, see IBC Table 2304.9.1 for other fastener options.
- See closest allowable nail spacing limits on page 24 for floor diaphragm nailing specified at closer spacing than IBC.
- Maximum bracing spacing for full lateral stability: 18" for AJS® 190 \& 20, 24" for larger AJS® joist series."
- 14 gauge staples may be substituted for 8 d nails if the staples penetrate at least 1 inch into the joist.
- Wood screws may be acceptable, contact local building official and/or Boise Cascade EWP Engineering for further information.

Additional floor framing details available with BC FRAMER ${ }^{\circledR}$ software

(s)

BACKER AND FILLER BLOCK DIMENSIONS

Series	Backer Block Thickness	Filler Block Thickness
190 20	$11 / 8^{\prime \prime}$ or two $1 / 2{ }^{\prime \prime}$ wood panels	$2 x_{_}+5 / 8{ }^{\prime \prime}$ wood panel
25	$2 x$ lumber	Double $2 x$ lumber
30		

- Cut backer and filler blocks to a maximum depth equal to the web depth minus $1 / 4$ " to avoid a forced fit.
- For deeper AJS® Joists, stack $2 x$ lumber or use multiple pieces of $3 / 4$ " wood panels.

WEB STIFFENER REQUIREMENTS

- See Web Stiffener Requirements on page 19.

PROTECT AJS® JOISTS FROM THE WEATHER

- AJS ${ }^{\circledR}$ Joists are intended only for applications that provide permanent protection from the weather. Bundles of product should be covered and stored off of the ground on stickers.

AJS ${ }^{\circledR}$ RIM JOISTS AND BLOCKING

Joist Depth	Vertical Load Transfer Capacity (pIf)
$9 \frac{1}{2 \prime \prime}$	1875
$111^{\prime \prime \prime}$	1680
$14^{\prime \prime}$	1500
$16^{\prime \prime}$	1340
$18^{\prime \prime} \& 20^{\prime \prime}(1)$	3200
$22^{\prime \prime} \& 24 "$ (1)	2700

1) Web stiffeners required at each end of blocking panel. Distance between stiffeners must be less than 24 ".

Filler Block Connection Specifications

Filler block connections are to be used in applications where the joists are not loaded evenly. Filler block connections shall be used for uniform and concentrated side load conditions. Top load conditions where the load is not centered or evenly distributed shall be evaluated by the project design professional of record (flange nailing is structurally adequate for non-load bearing partition walls).

AJS® Series	Depth	Filler Block	Nailing Pattern
$\begin{array}{r} \text { 140, 150, } \\ 20,190 \end{array}$	91⁄2", 11¹/8", 14", 16"	2 l lumber $+5 / 8$ " wood panel	2 rows 10d nails @ 12" o.c., staggered \& clinched
25, 30	11/8", 14", 16"	Double 2x lumber	2 rows 10d nails @ 12" o.c., staggered, nailed from both sides
25, 30	18", 20"	Double 2x lumber	3 rows 10d nails @ 12" o.c., staggered, nailed from both sides
25, 30	22", 24"	Double 2x lumber	4 rows 10d nails @ 12" o.c., staggered, nailed from both sides

Notes:

- Filler block is required between AJS ${ }^{\circledR}$ joists for the full length of span at uniform side loads, 24" minimum at concentrated side loads. Filler blocks do not need to be continuous.
- Filler block to be installed tight to bottom flange. Specified filler block material may leave gap between top of block and bottom of top flange. If receiving nails from face mount joist hangers, this gap must be filled to within $1 / 8$ " of top flange. The same filler block material may
be stacked to fill the gap. Provide one row of 10d nails @ 12" o.c., staggered \& clinched for stacked web-filler nailing in addition to nailing shown.
- Triple Members: Nail first two joists as shown, then attach third with same filler and nailing.
- Nail sheathing to all joists per diaphragm nailing schedule.

Concentrated Load Connections

Concentrated Side Loads

The following detail shows the proper connection of concentrated side loads to single and multiple AJS® members:

TOP FLANGE HANGER	FACE MOUNT HANGER Single AJS ${ }^{\circledR}$ Header (typical)	FACE MOUNT HANGER Double AJS ${ }^{\circledR}$ Header (typical)
		FACE MOUNT Double AJS - Header (typical) Hanger Max Load $=2500 \mathrm{lb}$

Notes:

- Use filler block thickness for corresponding AJS® series as specified in filler block connection table, page 3 . For single concentrated side loads, minimum filler block length is 24 " long with $6-10 \mathrm{~d}$ connecting nails.
- Nail sheathing to all joists per diaphragm nailing schedule.
- Refer to hanger manufacturer literature for reductions in hanger capacity due to l-joist headers.
- Max loads shown are for connections only. The structural adequacy of all headers, beams, girders and hangers to be determined by the design professional of record.
- All backer blocks to be nailed with 10-10d nails.
- All nails protruding more than $1 / 4^{\prime \prime}$ to be clinched.

AJS® Header Blocking at Side Loaded Conditions

Required for triple members, recommended best practices for double members.

Plan

NOTE: Nail floor sheathing to all joists, blocking and headers per diaphragm nailing schedule.

AJS ${ }^{\circledR}$ Blocking @ end blocks. Fasten blocks with (2) 8 d nails or $21 / 2$ "screws (typical).

Section A-A

AJS® Joists are manufactured with $11 / 2^{\prime \prime}$ round perforated knockouts in the web at approximately 12 on center

Minimum distance from support, listed in table below, is required for all holes greater than $11 / 2^{\prime \prime}$ MINIMUM DISTANCE (D) FROM ANY SUPPORT TO THE CENTERLINE OF THE HOLE

Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	$87 / 8$	9	10	11	12	13
Rectangular Hole Side [in]			-	-	2	4	6	6	-	-	-	-	-	-	-	-
Any 91⁄2" Joist	Span [ft]	8	2'-0"	2'-5"	2'-11"	3'-5"	3'-10"	4'-0"								
		12	3'-0"	3'-8"	4'-5"	5'-1"	5'-10"	6'-0"								
		16	4'-0"	4'-11"	5'-11"	6'-10"	7'-9"	8'-0"								
Round Hole Diameter [in]			2	3	4	5	6	61/2	7	8	87/8	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	2	3	4	5	7	8	-	-	-	-	-
Any 117/8" Joist	Span [ft$]$	8	1'-0"	1'-5"	1'-10"	2'-3"	2'-8"	2'-11"	3'-1"	3'-6"	3'-11"					
		12	1'-5"	2'-1"	2'-9"	3'-5"	4'-0"	4'-4"	4'-8"	5'-4"	5'-11"					
		16	1'-11"	2'-10"	3'-8"	4'-6"	5'-5"	5'-10"	6'-3"	7'-1"	7'-10"					
		20	2'-5"	3'-6"	4'-7"	5'-8"	6'-9"	7'-3"	7'-10"	8'-11"	9'-10"					
Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	$87 / 8$	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	-	2	3	3	5	6	6	8	9	-	-
Any 14" Joist	Span [ft]	8	1'-0"	1'-1"	1'-2"	1'-4"	1'-8"	1'-11"	2'-1"	2'-6"	2'-10"	2'-11"	3'-4"	3'-9"		
		12	1'-0"	1'-1"	1'-4"	2'-0"	2'-7"	2'-11"	3'-2"	3'-10"	4'-4"	4'-5"	5'-0"	5'-7"		
		16	1'-0"	1'-1"	1'-10"	2'-8"	3'-5"	3'-10"	4'-3"	5'-1"	5'-9"	5'-11"	6'-8"	7'-6"		
		20	1'-0"	1'-3"	2'-4"	3'-4"	4'-4"	4'-10"	5'-4"	6'-4"	7'-3"	7'-4"	8'-5"	9'-5"		
		24	1'-0"	1'-7"	2'-9"	4'-0"	5'-2'	5'-10"	6'-5"	7'-8"	8'-8"	8'-10"	10'-1"	11'-3'		
Round Hole Diameter [in]			2	3	4	5	6	$61 / 2$	7	8	$87 / 8$	9	10	11	12	13
Rectangular Hole Side [in]			-	-	-	-	-	-	2	3	5	5	6	8	9	10
Any 16" Joist	Span [ft]	8	1'-0"	1'-1"	1'-2"	1'-2"	1'-3"	1'-3"	1'-3"	1'-8"	2'-0"	2'-1"	2'-5"	2'-10"	3'-2"	3'-7"
		12	1'-0"	1'-1"	1'-2"	1'-2"	1'-4"	1'-8"	1'-11"	2'-6"	3'-0"	3'-1"	3'-8"	4'-3"	4'-10"	5'-5"
		16	1'-0"	1'-1"	1'-2"	1'-2"	1'-10"	2'-2"	2'-7"	3'-4"	4'-0"	4'-2"	4'-11"	5'-8"	6'-5"	7'-2"
		20	1'-0"	1'-1"	1'-2"	1'-4"	2'-3"	2'-9"	3'-3"	4'-3"	5'-1"	5'-2"	6'-2"	7'-1"	8'-1"	9'-0"
		24	1'-0"	$1^{\prime}-1$ "	1'-2"	1'-7"	2'-9"	3'-4"	3'-11"	5'-1"	6'-1"	6'-3"	7'-4"	8'-6"	9'-8"	10'-10"

- Select a table row based on joist depth and the actual joist span rounded up to the nearest table span. Scan across the row to the column headed by the appropriate round hole diameter or rectangular hole side. Use the longest side of a rectangular hole. The table value is the closest that the centerline of the hole may be to the centerline of the nearest support.
The entire web may be cut out. DO NOT cut the flanges. Holes apply to either single or multiple joists in repetitive member conditions.
For multiple holes, the amount of uncut web between holes must equal at least twice the diameter (or longest side) of the largest hole.
- $11 / 2^{\prime \prime}$ round knockouts in the web may be removed by using a short piece of metal pipe and hammer.
Holes may be positioned vertically anywhere in the web. The joist may be set with the $1 \frac{1}{2} 2^{\prime \prime}$ knockout holes turned either up or down.
This table was designed to apply to the design conditions covered by tables elsewhere in this publication. Use the BC CALC® software to check other hole sizes or holes under other design conditions. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.

Large Rectangular Holes in AJS® Joists

Hole size table based on maximum uniform load of 40 psf live load and 25 psf dead load, at maximum spacing of 24 " on-center.
Single Span Joist

Notes:
Additional holes may be cut in the web provided they meet the specifications as shown in the hole distance chart shown above or as allowed using BC CALC® sizing software.

Joist Depth	Maximum Hole Size	
	Simple Span	Multiple Span
91/2"	$6 " \times 12 "$	$6 " \times 7$ "
117/8"	8" x 13"	$8 " \times 8 "$
14"	9" x 16"	$8{ }^{\prime \prime} \times 13{ }^{\prime \prime}$
	$10 " \times 14 "$	$9 " \times 11 "$
16"	$11^{\prime \prime} \times 16^{\prime \prime}$	$10 "$ x 14"
	$12^{\prime \prime} \times 15{ }^{\prime \prime}$	$11{ }^{\prime \prime} \times 12$

Multiple Span Joist

Larger holes may be possible for either Single or Multiple span joists; use BC CALC ${ }^{\circledR}$ sizing software for specific analysis.

- The detail to the right on this page shows the installation of cantilever reinforcement for load-bearing cantilevers up to a maximum length of $2^{\prime}-0^{\prime \prime}$. Cantilevers longer than $2^{\prime}-0$ " cannot be reinforced. However, longer cantilevers with lower loads may be allowable without reinforcement. Analyze specific applications with the BC CALC® software.

PLYWOOD / OSB REINFORCEMENT (If Required per BC CALC ${ }^{\circledR}$ analysis)

Analyze AJS® Load Bearing Cantilevers in BC CALC ${ }^{\circledR}$ Software

- 23/32" Min. x 48" long plywood / OSB rated sheathing must match the full depth of the AJS® Joist. Nail to the AJS® Joist with 8d nails at 6" o.c. and nail with 4-8d nails into backer block. When reinforcing both sides, stagger nails to limit splitting. Install with horizontal face grain.
- These requirements assume a 100 PLF wall load and apply to AJS® Joists. Additional support may be required for other loadings. See BC CALC® ${ }^{\text {software. }}$
- Contact Boise Cascade EWP Engineering for reinforcement requirements on AJS® Joist depths greater than 16 ".

Non-Load Bearing Wall Cantilever Details

AJS® Joists are intended only for applications that provide permanent protection from the weather.

Fasten the 2×8 minimum to the AJS® Joist by nailing through the backer block and joist web with 2 rows of 10 d nails at 6 " on center. Clinch all nails.

Not to exceed 3'-0" for 100 psf live load

- These details apply to cantilevers with uniform loads only.
- It may be possible to exceed the limitations of these details by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

Web Stiffener Requirements

Structural Panel Web Stiffener

$\|c\|$ AJS® Series	In Hanger	No Hanger	Minimum Width
	$1 "$	$11 / 2^{\prime \prime}$	$25 / 16^{\prime \prime}$
$25 / 30$	2×4 lumber (vertical)		

NOTES

- Web stiffeners are optional except as noted below.
- Web stiffeners are always required in hangers that do not extend up to support the top flange of the AJS® Joist. Web stiffeners may be required with certain sloped or skewed hangers or to achieve uplift values. Refer to the hanger manufacturer's installation requirements.
- Web stiffeners are always required in certain roof applications. See Roof Framing Details on page 24.
- Web stiffeners are always required under concentrated loads that exceed 1000 pounds. Install the web stiffeners snug to the top flange in this situation. Follow the nailing schedule for intermediate bearings.
- Web stiffeners may be cut from structural rated wood panels, engineered rimboard or $2 x$ lumber (AJS® 25 and 30 series only).
- For Structural Capacity: Web stiffeners needed to increase the AJS® Joist's reaction capacity at a specific bearing location.
- Lateral Restraint in Hanger: Web stiffeners required when hanger does not laterally support the top flange (e.g., adjustable height hangers). Web stiffeners may be of multiple thickness (e.g., AJS ${ }^{\circledR} 20$ / 190: double $1 / 2^{\prime \prime}$ panel OK)
- Web stiffeners may be used to increase allowable reaction values. See AJS® Design Properties on page 24 or the $B C$ CALC ${ }^{\circledR}$ software.

Web Stiffener Nailing Schedule		
AJS® Joist Series	Joist Depth	Nailing
20	$91 / 2^{\prime \prime}-117 / 8^{\prime \prime}$	3-10d
190	$14 "-16^{\prime \prime}$	5-10d
25	$18 "-24 "$	5-10d
25		

Allowable Uniform Floor Load (in pounds per lineal foot [PLF])

100\% Load Duration

Span Length	AJS® 20 Series 2½" Flange Width								AJS® 190 Series 2½" Flange Width							
	$\begin{gathered} 91 / 2 " 1 \\ \text { AJS® } 20 \end{gathered}$		$\begin{gathered} 11^{77 / 8} \\ \text { AJS® } 20 \end{gathered}$		$\begin{gathered} \text { 14" } \\ \text { AJS® } 20 \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS® } 20 \end{gathered}$		$\begin{gathered} 91 / 2 " \\ \text { AJS® }{ }^{\circledR} 190 \end{gathered}$		$\begin{gathered} 11 / 8^{\prime \prime} \\ \text { AJS®190 } \end{gathered}$		$\begin{gathered} 14 " 1 \\ \text { AJS®190 } \end{gathered}$		$\begin{gathered} 16 " \\ \text { AJS®190 } \end{gathered}$	
	Live Load	Total Load														
6	-	313	-	318	-	320	-	323	-	313	-	318	-	320	-	323
7	-	268	-	272	-	274	-	277	-	268	-	272	-	274	-	277
8	-	235	-	238	-	240	-	242	-	235	-	238	-	240	-	242
9	-	208	-	212	-	213	-	215	-	208	-	212	-	213	-	215
10	-	188	-	191	-	192	-	194	-	188	-	191	-	192	-	194
11	161	170	-	173	-	174	-	176	168	170	-	173	-	174	-	176
12	128	156	-	159	-	160	-	161	133	156	-	159	-	160	-	161
13	102	144	-	146	-	147	-	149	107	144	-	146	-	147	-	149
14	83	134	-	136	-	137	-	138	87	134	-	136	-	137	-	138
15	69	120	113	127	-	128	-	129	72	125	118	127	-	128	-	129
16	57	106	95	119	-	120	-	121	60	117	99	119	-	120	-	121
17	48	93	80	112	-	112	-	114	50	101	83	112	-	112	-	114
18	41	82	68	106	98	106	-	107	43	86	71	106	102	106	-	107
19			58	97	84	101	-	102			61	100	88	101	-	102
20			50	88	73	96	-	97			53	95	76	96	-	97
21			44	79	63	91	85	92			46	90	66	91	89	92
22					55	87	74	88			40	80	58	87	78	88
23					49	80	65	84					51	83	69	84
24					43	73	58	80					45	80	61	80
25							51	77					40	76	54	77
26							46	72							48	74
27							41	67							43	71
28																
29																
30																

- Total Load values are limited by shear, moment, or deflection equal to L/240.
- Live Load values are limited by deflection equal to L/480. For deflection limits of L/360 and L/960, multiply the Live Load values by 1.33 and 0.50 respectively.
- Both the Total Load and Live Load columns must be checked. Where a Live Load value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC® ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Table values do not consider composite action from gluing and nailing floor sheathing (composite action is considered in floor span tables on page 4).
- Total Load values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- For assistance with floor design, consult the section About Floor Performance on page 4.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\circledR}$ software.

Allowable Uniform Floor Load
 (in pounds per lineal foot [PLF])

100\% Load Duration																
	AJS® 25 Series 3½" Flange Width															
	$\begin{gathered} 91 / 2 " \\ \text { AJS }{ }^{\text {® }} \end{gathered}$		$\begin{gathered} 117 / 8 " \\ \text { AJS® } 25 \end{gathered}$		AJS® 25		$\begin{gathered} 16 " \\ \text { AJS® } 25 \end{gathered}$		$\stackrel{18 \text { " }}{\text { AJS }}{ }^{\text {® }} 25$		$\begin{gathered} 20 " \\ \text { AJS® } 25 \end{gathered}$		$\stackrel{22^{\prime \prime}}{\text { AJS® }} 25$		$\begin{gathered} \stackrel{24 "}{ } \\ \text { AJSS® } 25 \end{gathered}$	
Span Length	Live Load	Total Load	$\begin{aligned} & \text { Live } \\ & \text { Load } \end{aligned}$	Total Load	Live Load	Total Load	$\begin{array}{\|l\|} \hline \text { Live } \\ \text { Load } \end{array}$	Total Load	Live Load	Total Load						
6	-	316	-	318	-	320	-	323	-	629	-	681	-	697	-	712
7	-	271	-	272	-	274	-	277	-	539	-	584	-	597	-	610
8	-	237	-	238	-	240	-	242	-	472	-	511	-	523	-	534
9	-	211	-	212	-	213	-	215	-	419	-	454	-	464	-	475
10	-	190	-	191	-	192	-	194	-	377	-	408	-	418	-	427
11	-	172	-	173	-	174	-	176	-	343	-	371	-	380	-	388
12	-	158	-	159	-	160	-	161	-	314	-	340	-	348	-	356
13	136	146	-	146	-	147	-	149	-	290	-	314	-	321	-	328
14	111	135	-	136	-	137	-	138	-	269	-	292	-	298	-	305
15	92	126	-	127	-	128	-	129	-	251	-	272	-	278	-	285
16	77	118	-	119	-	120	-	121	-	236	-	255	-	261	-	267
17	65	111	107	112	-	112	-	114	-	222	-	240	-	246	-	251
18	55	105	91	106	-	106	-	107	-	209	-	227	-	232	-	237
19	47	95	78	100	-	101	-	102	197	198	-	215	-	220	-	225
20	41	82	68	95	-	96	-	97	171	188	-	204	-	209	-	213
21			59	90	85	91	-	92	150	179	187	194	-	199	-	203
22			52	86	74	87	-	88	132	171	165	185	-	190	-	194
23			46	83	66	83	-	84	116	164	146	177	178	181	-	185
24			40	79	58	80	78	80	103	152	129	170	158	174	-	178
25					52	76	69	77	92	140	115	157	141	167	170	171
26					46	73	62	74	82	129	103	145	127	159	153	164
27					41	71	56	71	74	120	93	134	114	147	137	158
28							50	69	66	111	84	125	103	137	124	149
29							45	66	60	104	76	116	93	127	112	139
30							41	64	54	97	69	109	84	119	102	130

AJS® Floor Load Tables

Allowable Uniform Floor Load (in pounds per lineal foot [PLF])

100\% Load Duration

AJS® 30 Series
3½" Flange Width

Span Length	$\begin{gathered} 18 " \\ \text { AJS® } 30 \end{gathered}$		$\begin{gathered} 20 " \\ \text { AJS }{ }^{\circledR} 30 \\ \hline \end{gathered}$		$\begin{gathered} 22^{\prime \prime} \\ \text { AJS } 30 \\ \hline \end{gathered}$		$\begin{gathered} 24 " \\ \text { AJS® } 30 \end{gathered}$	
	Live Load	Total Load						
10	-	377	-	408	-	418	-	427
11	-	343	-	371	-	380	-	388
12	-	314	-	340	-	348	-	356
13	-	290	-	314	-	321	-	328
14	-	269	-	292	-	298	-	305
15	-	251	-	272	-	278	-	285
16	-	236	-	255	-	261	-	267
17	-	222	-	240	-	246	-	251
18	-	209	-	227	-	232	-	237
19	-	198	-	215	-	220	-	225
20	186	188	-	204	-	209	-	213
21	163	179	-	194	-	199	-	203
22	144	171	179	185	-	190	-	194
23	127	164	159	177	-	181	-	185
24	113	157	141	170	172	174	-	178
25	100	151	126	163	154	167	-	171
26	90	145	113	157	138	160	-	164
27	81	139	101	151	124	154	149	158
28	73	134	92	146	112	149	135	152
29	66	130	83	140	102	144	122	147
30	60	120	75	136	92	139	111	142
32	50	100	62	121	77	130	93	133
34	42	84	52	105	65	117	78	125
36			44	89	55	105	66	114
38					47	94	57	102

AJS® Roof Framing

AJS ${ }^{\circledR}$ Rafters

SAFETY WARNING

DO NOT ALLOW WORKERS ON AJS® JOISTS UNTIL ALL HANGERS, AJS® RIM JOISTS, RIM BOARDS, AJS® BLOCKING PANELS, X-BRACING AND TEMPORARY $1 x 4$ STRUT LINES ARE INSTALLED AS SPECIFIED BELOW.

SERIOUS ACCIDENTS CAN RESULT FROM INSUFFICIENT ATTENTION TO PROPER BRACING DURING CONSTRUCTION. ACCIDENTS CAN BE AVOIDED UNDER NORMAL CONDITIONS BY FOLLOWING THESE GUIDELINES:

- Build a braced end wall at the end of the bay, or permanently install the first eight feet of AJS® Joists and the first course of sheathing. As an alternate, temporary sheathing may be nailed to the first four feet of AJS ${ }^{\circledR}$ Joists at the end of the bay.
- All hangers, AJS® ${ }^{\circledR}$ rim joists, rim boards, AJS ${ }^{\circledR}$ blocking panels, and x-bracing must be completely installed and properly nailed as each AJS® Joist is set.
- Install temporary 1×4 strut lines at no more than eight feet on center as additional AJS® Joists are set. Nail the strut lines to the sheathed area, or braced end wall, and to each AJS ${ }^{\circledR}$ Joist with two 8d nails.
- The ends of cantilevers must be temporarily secured by strut lines on both the top and bottom flanges.
- Straighten the AJS ${ }^{\circledR}$ Joist to within $1 / 2$ inch of true alignment before attaching strut lines and sheathing.
- Remove the temporary strut lines only as required to install the permanent sheathing.
- Failure to install temporary bracing may result in sideways buckling or roll-over under light construction loads.

Simpson VPA or USP TMP connectors or equal can be used in lieu of beveled plate for slopes from $3 / 12$ to $12 / 12$.

Double-beveled plate, connect to ridge with 2 rows 16 d nails at 12 " o.c.

23 of this guide.

R05 Simpson or USP LSTA24

Flange of AJS ${ }^{\circledR}$ Joists may be birdsmouth cut only at the low end of the joist. Birdsmouth cut AJS ${ }^{\oplus}$ joist must bear fully on plate, web stiffener required each side. Bottom flange shall be fully supported.

R03

R06 Simpson or USP LSTA24 strap where slope exceeds 7/12 (straps may be required for lower

R07

Backer block required where top flange joist hanger load exceeds 250 lbs. Install tight to top flange.

LATERAL SUPPORT

- AJS ${ }^{\circledR}$ Joists must be laterally supported at end supports (including supports adjacent to overhangs) with hangers, rimboard, or blocking (VERSA-LAM ${ }^{\circledR}$, BOISE CASCADE ${ }^{\circledR}$ Rimboard or AJS ${ }^{\circledR}$ Joist). Metal cross bracing or other x-bracing provides adequate lateral support for AJS® Joists, consult governing building code for roof diaphragm connection provisions.
- Blocking may be required at intermediate bearings for roof diaphragm per project's structural engineer of record.
MINIMUM BEARING LENGTH FOR AJS ${ }^{\circledR}$ JOISTS
- Minimum end bearing: $1 \frac{1}{2}$ " for $91 / 2^{\prime \prime}-16$ " deep joists, $13 / 4$ " for $18^{\prime \prime}$ and deeper joists. $3^{1 ⁄ 2} 2^{\prime \prime}$ minimum bearing length at cantilever and intermediate supports.
- Longer bearing lengths allow higher reaction values. Refer to the building code evaluation report or the BC CALC ${ }^{\circledR}$ software.

NAILING REQUIREMENTS

- AJS ${ }^{\circledR}$ rim joist, rim board or closure panel to AJS ${ }^{\circledR}$ joist:
- Rims or closure panel $1 \frac{1}{4}$ inches thick and less: 2-8d nails, one each in the top and bottom flange.
- AJS® 190/20 rim joist: 2-16d box nails, one each in the top and bottom flange.
- AJS® 25/30 rim joist: Toe-nail top flange to rim joist with 2-10d box nails, one each side of flange.
- AJS ${ }^{\circledR}$ rim joist, rim board or AJS ${ }^{\circledR}$ blocking panel to support:
- Min. 8d nails @ 6" o.c. per IBC.
- Connection per design professional of record's specification for shear transfer.
- AJS ${ }^{\circledR}$ joist to support:
- 2-8d nails, one on each side of the web, placed $11 / 2$ inches minimum from the end of the AJS ${ }^{\circledR}$ Joist to limit splitting.
- Sheathing to AJS ${ }^{\circledR}$ joist:
- Minimum nailing schedule 8d common nails @ 6" o.c. on edges and 12" 0.c. in the field, see IBC Table 2304.9.1 for other fastener options.
- See closest allowable nail spacing limits on page 24 for floor diaphragm nailing specified at closer spacing than IBC.
- Maximum bracing spacing for full lateral stability: 18 " for AJS ${ }^{\circledR} 190 \& 20,24 "$ for larger AJS ${ }^{\circledR}$ joist series.
- 14 gauge staples may be substituted for 8 d nails if the staples penetrate at least 1 inch into the joist.
- Wood screws may be acceptable, contact local building official and/or Boise Cascade EWP Engineering for further information.
BACKER AND FILLER BLOCK DIMENSIONS

AJS® Series	Backer Block Thickness	Filler Block Thickness
$\begin{array}{r} 190 \\ 20 \end{array}$	$11 / 8^{\prime \prime}$ or two $1 / 22^{\prime \prime}$ wood panels	$2 x_{-}+5 / 8$ " wood panel
$\begin{aligned} & 25 \\ & 30 \end{aligned}$	2 x _ lumber	Double $2 \mathrm{x}_{\text {_ }}$ lumber

- Cut backer and filler blocks to a maximum depth equal to the web depth minus $1 / 4^{\prime \prime}$ to avoid a forced fit.

WEB STIFFENER REQUIREMENTS

- See Web Stiffener Requirements on page 18.

PROTECT AJS® JOISTS FROM THE WEATHER

- AJS ${ }^{\circledR}$ Joists are intended only for applications that provide permanent protection from the weather. Bundles of AJS ${ }^{\circledR}$ Joists should be covered and stored off of the ground on stickers.

MAXIMUM SLOPE

- Unless otherwise noted, all roof details are valid for slopes of 12 in 12 or less.

VENTILATION

- The $11 / 2$ inch, pre-stamped knock-out holes spaced at 12 inches on center along the AJS® Joist may all be knocked out and used for cross ventilation. Deeper joists than what is structurally needed may be advantageous in ventilation design. Consult local building official and/or ventilation specialist for specific ventilation requirements.

BIRDSMOUTH CUTS

- AJS ${ }^{\circledR}$ Joists may be birdsmouth cut only at the low end support. AJS ${ }^{\circledR}$ joists with birdsmouth cuts may cantilever up to $2^{\prime}-6^{\prime \prime}$ past the low end support. The bottom flange must sit fully on the support and may not overhang the inside face of the support. High end supports and intermediate supports may not be birdsmouth cut.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS® 20 Series 2½" Flange Width											
				$\begin{gathered} 91 / 2 " \\ \text { AJS }{ }^{\circledR} 20 \end{gathered}$			$\begin{gathered} 117 / 8 " \\ \text { AJS® } 20 \end{gathered}$			$\begin{gathered} \stackrel{14 "}{ } \\ \text { AJS } \end{gathered}$			$\begin{gathered} 16 " \\ \text { AJS }{ }^{\circledR} 20 \end{gathered}$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
12" o.c.	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & \text { 125\% } \end{aligned}$	20	10	27'-4"	25'-9"	23'-11"	32'-7"	30'-9"	28'-7"	37'-1"	35'-0"	32'-6"	41'-2"	38'-10"	36'-0"
		20	15	25'-10"	24'-3"	22'-5"	30'-11"	29'-0"	26'-9"	35'-2"	33'-0"	30'-5"	39'-0"	36'-7"	33'-9"
		20	20	24'-8"	23'-1"	21'-3"	29'-6"	27'-7"	25'-4"	33'-6"	31'-5"	28'-10"	37'-2"	34'-10"	32'-0"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	25'-11"	24'-6"	22'-10"	31'-0"	29'-3"	27'-3"	35'-3"	$33^{\prime}-4 "$	31'-0"	39'-1"	36'-11"	34'-4"
		25	15	24'-9"	23'-3"	21'-6"	29'-7"	27'-10"	25'-9"	33'-7"	31'-8"	29'-4"	36'-11"	35'-1"	32'-6"
		30	10	24'-9"	23'-6"	21'-11"	29'-7"	28'-0"	26'-2"	33'-8"	31'-11"	29'-9"	37'-1"	35'-4"	$33^{\prime}-0{ }^{\prime \prime}$
		30	15	23'-9"	22'-5"	20'-10"	28'-5"	26'-9"	24'-10"	32'-4"	30'-6"	28'-3"	34'-10"	33'-10'	31'-4"
		40	10	22'-6"	21'-7"	20'-5"	26'-11"	25'-10"	24'-5"	30'-8"	29'-5"	27'-9"	33'-2"	32'-7"	30'-9"
		40	15	22'-2"	21'-0"	19'-7"	26'-6"	25'-1"	23'-5"	29'-3"	28'-7"	26'-7"	31'-7"	30'-11"	29'-6"
		50	10	20'-10"	20'-0"	19'-0"	24'-11"	23'-11"	22'-9"	28'-1"	27'-3"	25'-10"	30'-3"	29'-11"	28'-8"
		50	15	20'-10"	19'-11"	18'-7"	24'-6"	23'-9"	22'-3"	26'-11"	26'-6"	25'-3"	29'-0"	28'-7"	27'-11"
16" o.c.	Non- Snow 125\%	20	10	24'-9"	23'-4"	21'-8"	29'-7"	27'-11"	25'-11"	33'-8'	31'-9"	29'-5"	$37^{\prime}-4{ }^{\prime \prime}$	35'-2"	32'-8"
		20	15	23'-5"	22'-0"	20'-4"	28'-0"	26'-4"	24'-3"	31'-10"	29'-11"	27'-7"	35'-4"	33'-2'	30'-7"
		20	20	22'-4"	20'-11"	19'-3"	26'-8"	25'-0"	23'-0"	30'-5"	28'-5"	26'-2"	33'-3"	31'-7"	29'-0"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	23'-6"	22'-2"	20'-8"	28-1"	26'-6"	24'-8"	31'-10"	30'-2"	28'-1"	$34^{\prime}-3^{\prime \prime}$	33'-6"	31'-2"
		25	15	22'-5"	21'-1"	19'-6"	26'-9"	25'-2"	23'-4"	29'-8"	28'-8"	26'-7"	32'-0"	31'-1"	29'-5"
		30	10	22'-5"	21'-3"	19'-10"	26'-10"	25'-5"	23'-9"	29'-9"	28'-11"	27'-0"	32'-1"	31'-6"	29'-11"
		30	15	21'-6"	20'-4"	18'-10"	25'-6"	24'-3"	22'-6"	28'-0"	27'-4"	25'-8"	30'-2"	29'-5"	28'-5"
		40	10	20'-5"	19'-7"	18'-6"	24'-3"	23'-5"	22'-1"	26'-8"	26'-3"	25'-2"	28'-8"	28'-3"	27'-9"
		40	15	20'-1"	19'-0"	17'-9"	23'-1"	22'-7"	21'-2"	25'-4"	24'-10"	24'-1"	27'-3"	26'-9"	26'-1"
		50	10	18'-11"	18'-1"	17'-2"	22'-2"	21'-8"	20'-7"	24'-4"	24'-0"	23'-5"	26'-2'	25'-11"	25'-5"
		50	15	18'-7"	18'-0"	16'-10"	21'-3"	20'-10"	20'-1"	23'-4"	22'-11"	22'-5"	25'-1"	24'-8"	23'-7"
19.2" o.c.	Non- Snow 125\%	20	10	23'-3"	21'-11"	20'-4"	27'-9"	26'-2"	24'-4"	31'-7"	29'-10"	27'-8"	35'-1"	33'-1"	30'-8"
		20	15	22'-0"	20'-8"	19'-1"	26'-4"	24'-8"	22'-10"	29'-11"	28'-1"	25'-11"	32'-6"	31'-2"	28'-9"
		20	20	21'-0"	19'-8"	18'-1"	25'-1"	23'-6"	21'-7"	28'-1"	26'-9"	24'-7"	$30^{\prime}-4 "$	29'-3"	27'-3"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	22'-1"	20'-10"	19'-5"	26'-4"	24'-11"	23'-3"	29'-0"	28'-4"	26'-5"	31'-3"	30'-7"	29'-3"
		25	15	21'-0"	19'-10"	18'-4"	24'-8"	23'-8"	21'-11"	27'-1"	26'-4"	24'-11"	29'-2"	28'-5"	27'-5"
		30	10	21'-1"	19'-11"	18'-8"	24'-9"	23'-10"	22'-3"	27'-2"	26'-8"	25'-4"	29'-3"	28'-9"	28'-0"
		30	15	20'-2'	19'-1"	17'-8"	23'-3"	22'-8"	21'-2"	25'-6"	24'-11"	24'-1"	27'-6"	26'-10"	26'-0"
		40	10	19'-2"	18'-5"	17'-4"	22'-1"	21'-10"	20'-9"	24'-3"	23'-11"	23'-5"	26'-2"	25'-9"	25'-3"
		40	15	18'-5"	17'-10"	16'-8"	21'-0"	20'-7"	19'-11"	23'-1"	22'-8"	22'-0"	24'-11"	24'-2"	22'-11"
		50	10	17'-8"	17'-0"	16'-2"	20'-2"	19'-11"	19'-4"	22'-2"	21'-11"	21'-6"	23'-2"	22'-7"	21'-10"
		50	15	17'-0"	16'-8"	15'-9"	19'-4"	19'-0"	18'-7"	21'-0"	20'-3"	19'-4"	21'-3"	20'-7"	19'-8"
24" o.c.	Non- Snow 125\%	20	10	21'-6"	20'-4"	18'-10"	25'-9"	24'-3"	22'-6"	29'-2'	27'-7"	25'-8"	31'-5"	30'-8"	28'-5"
		20	15	20'-4"	19'-1"	17'-8"	24'-4"	22'-10"	21'-1"	26'-11"	26'-0"	24'-0"	29'-0"	28'-2"	26'-8"
		20	20	19'-5"	18'-2"	16'-9"	22'-11"	21'-9"	20'-0"	25'-2"	24'-3"	22'-9"	27'-1"	26'-2"	24'-11"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	20'-5"	19'-4"	18'-0"	23'-7"	23'-1"	21'-6"	25'-11"	25'-5"	24'-6"	27'-11"	27-4"	26'-7"
		25	15	19'-4"	18'-4"	17'-0"	22'-0"	21'-5"	20'-4"	24'-2"	23'-6"	22'-8"	26'-1"	25'-4"	24'-3"
		30	10	19'-4"	18'-6"	17'-3"	22'-1"	21-8"	20'-8"	24'-3"	23'-10"	23'-3"	26'-2"	25'-8"	25'-0"
		30	15	18'-2"	17'-8"	16'-5"	20'-9"	20'-3"	19'-7"	22'-10"	22'-3"	21'-7"	24'-6"	23'-4"	21'-11"
		40	10	17'-4"	17'-0"	16'-1"	19'-9"	19'-6"	19'-1"	21'-8"	21'-3"	20'-5"	22'-2"	21'-6"	20'-8"
		40	15	16'-6"	16'-2"	15'-5"	18'-9"	18'-5"	17'-8"	19'-9"	19'-0"	18'-0"	20'-1"	19'-3"	18'-3"
		50	10	15'-10"	15'-7"	$14^{\prime}-11{ }^{\prime \prime}$	17'-11"	17'-6"	16'-11"	18'-2"	17'-9"	17'-2"	18'-6"	18'-0"	17'-5"
		50	15	15'-2"	14'-11"	14'-7"	16'-5"	15'-11"	15'-2"	16'-9"	16'-2"	15'-5"	17'-0"	16'-5"	15'-8"

- Table values are limited by shear, moment, total load deflection equal to $\mathrm{L} / 180$ and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Slope roof joists at least $1 / 4$ " over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Maximum clear span in feet and inches, based on horizontal spans.
115\% and 125\% Load Duration

				AJS® 190 Series 2½" Flange Width											
				$\begin{gathered} 911 / 2 \\ \text { AJS }{ }^{9} 190 \end{gathered}$			$11^{7} / 8^{\prime \prime}$ AJS® 190			$\begin{gathered} 14 " \\ \text { AJS® } 190 \end{gathered}$			$\begin{gathered} 16^{\prime \prime} \\ \text { AJS® } 190 \end{gathered}$		
		$\begin{aligned} & \hline \text { Live } \\ & \text { Load } \\ & \text { [psf] } \end{aligned}$	$\begin{aligned} & \hline \text { Dead } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
12" o.c.	NonSnow 125\%	20	10	27'-9"	26'-2"	24'-3"	33'-2'	31'-3"	29'-0"	37'-9"	35'-7"	33'-0"	41'-10"	39'-6"	$36^{\prime}-7{ }^{\prime \prime}$
		20	15	26'-3'	24'-8"	22'-9"	31'-5"	29'-6"	27'-3"	35'-9"	33'-7"	31'-0"	39'-8"	37'-3"	$34^{\prime}-4 "$
		20	20	25'-1"	23'-6"	21-7"	30'-0"	28'-1"	25'-9"	$34{ }^{\prime \prime}{ }^{\prime \prime}$	31'-11"	29'-4"	37'-10"	35'-5"	$32^{\prime}-7{ }^{\prime \prime}$
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	26'-4"	24'-11"	23'-2"	31'-6"	29'-9"	27-8"	35'-10"	33'-10"	31'-6"	39'-9"	37'-7"	34'-11"
		25	15	25'-2'	23'-8"	21'-11"	30'-0"	28'-3"	26'-2"	34'-2"	32'-2"	29'-9"	37'-11"	35'-8"	33'-0"
		30	10	25'-2'	23'-10"	22'-3"	30'-1"	28'-6"	26'-7"	34'-3"	32'-5"	30'-3"	38'-0"	36'-0"	33'-7"
		30	15	24'-2'	22'-9"	21'-2"	28'-10"	27'-3"	25'-3"	32'-10"	31'-0"	28'-9"	36'-5"	34'-4"	31'-11"
		40	10	22'-11"	22'-0"	20'-9"	27'-5"	26'-3"	24'-10"	31'-2'	29'-11"	28'-3"	34'-7"	33'-2"	31'-4"
		40	15	22'7"	21-4"	19'-11"	27-0"	$25^{\prime \prime}-6{ }^{\prime \prime}$	23'-9"	30'-8"	29'-1"	27'-1"	33'-10"	32'-3"	30'-0"
		50	10	21'-3"	20'-4"	19'-4"	25'-4"	$24^{\prime}-4^{\prime \prime}$	23'-1"	28'-11"	27'-8"	$26^{\prime}-3$ "	32'-0"	30'-9"	29'-2"
		50	15	21'-3"	20'-3"	18'-11"	25'-4"	$24^{\prime}-2$ "	22-7"	28'-10"	27'-6"	25'-8"	$31^{\prime \prime}$-1"	30'-6"	28'-6"
16" o.c.	Non- Snow 125\%	20	10	25'-2'	23'-9"	22'-0"	30'-1"	28'-4"	26'-4"	34'-2"	32'-3"	29'-11"	37'-11"	35'-9"	33'-2"
		20	15	23'-10"	22'-4"	20'-8"	28'-6"	26'-9"	24'-8"	32'-5"	30'-5"	28'-1"	35'-11"	33'-9"	31-2"
		20	20	22'-9"	21'-3"	19'-7"	27'-2"	25'-5"	23'-4"	$30^{\prime}-11^{\prime \prime}$	28'-11"	26'-7"	34'-3"	32'-1"	29'-6"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	23'-10"	22'-7"	21'-0"	28'-6"	27'-0"	25'-1"	32'-6"	30'-8"	28'-7"	36'-0"	34'-1"	31-8"
		25	15	22'-9"	21'-5"	19'-10"	27'-2"	25'-7"	23'-9"	$31^{\prime}-0{ }^{\prime \prime}$	29'-2"	27'-0"	34'-3"	32-4"	29'-11"
		30	10	22'-10"	21'-7"	20'-2"	27-3"	25'-10"	24'-1"	31'-0"	29'5"	27'-5"	34'-4"	32'-7"	30'-5"
		30	15	21'-10"	20'-8"	19'-2"	26'-2"	24'-8"	22'-11"	29'-9"	28'-1"	26'-1"	32'-4"	31'-2"	28'-11"
		40	10	20'-9"	19'-11"	18'-10"	24'-10"	23'-10"	22'-6"	28'-3'	27'-1"	25'-7"	30'-9"	30'-1"	28'-5"
		40	15	20'-5"	19'-4"	18'-0"	24'-5"	23'-1"	21'-7"	27'-2"	26'-4"	24'-6"	29'-3"	28'-8"	27'-2"
		50	10	19'-2"	18'-5"	17'-6"	22'-11"	22'-0"	20'-11"	26'-1"	25-1"	23'-10"	27'-10"	27-2"	26'-3"
		50	15	19'-2"	$18^{\prime}-4{ }^{\prime \prime}$	17'-1"	22'-9"	21'-11"	20'-5"	25'-0"	24'-5"	23'-3"	25'-7"	24'-9"	23'-7"
19.2" o.c.	Non- Snow 125\%	20	10	23'-7"	22'-3"	20'-8"	28'-3"	26'-8"	24'-9"	32'-2"	30'-4"	28'-2"	35'-8"	33'-7"	31'-3"
		20	15	22'-4"	21'-0"	19'-5"	26'-9"	25'-1"	23'-2"	30'-5"	28'-7"	26'-5"	33'-9"	31'-8"	29'-3"
		20	20	21'-4"	20'-0"	18'-4"	25'-6"	23'-10"	21'-11"	29'-0"	27'-2"	25'-0"	32'-2"	30'-2"	27'-9"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	22'-5"	21'-2"	19'-9"	26'-10"	25'-4"	23'-7"	30'-6"	28'-10"	26'-10"	33'-6"	32'-0"	29'-9"
		25	15	21'-4"	20'-2"	18-8"	25-7"	24'-1"	22-3"	29'-0"	27'-5"	25'-4"	$31^{\prime}-3 "$	30'-5"	28'-2"
		30	10	21'-5"	20'-4"	18'-11"	25'-7"	24'-3"	22'-8"	29'-1"	27'-7"	25'-9"	31'-4"	30'-8"	28'-7"
		30	15	20'-6"	19'-5"	18'-0"	24'-7"	23'-2"	21'-6"	27'-4"	26'-4"	24'-6"	29'-6"	28'-9"	27'-2"
		40	10	19'-6"	$18^{\prime}-8{ }^{\prime \prime}$	17'-8"	23'-3"	22'-4"	21'-1"	26'-0"	25'-5"	24'-0"	27'-9"	27'-0"	25'-11"
		40	15	19'-2"	$18^{\prime}-2{ }^{\prime \prime}$	16'-11"	22'-6"	21'-8"	20'-3"	24'-9"	23'-10"	22'-7"	25'-2"	24'-2"	22'-11"
		50	10	18'-0"	17'-3"	16'-5"	21'-6"	20'-8"	19-8"	22'-10"	22-3"	21'-6"	23'-2"	22-7"	21'-10"
		50	15	18'-0"	17'-2"	16'-1"	20'-7"	19'-11"	19'-0"	21'-0"	20'-3"	19'-4"	21'-3"	20'-7"	19'-8"
24" o.c.	Non- Snow 125\%	20	10	21'-10"	20'-8"	19'-2"	26'-2"	24'-8"	22'-11"	29'-9"	28'-1"	26'-1"	33'-0"	31'-2"	28'-11"
		20	15	20'-8"	19'-5"	18'-0"	24'-9"	23'-3"	21'-6"	28'-2'	26'-6"	24'-5"	31'-1"	29'-4"	27'-1"
		20	20	19'-9"	18'-6"	17'-0"	23'-7"	22'-1"	20'-4"	26'-10"	25'-2"	23'-2"	29'-0"	27'-9"	25'-3"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	20'-9"	19'-8"	18'-3"	24'-10"	23'-6"	21'-10"	27'-9"	26'-9"	24'-11"	29'-11"	29'-4"	27'-7"
		25	15	19'-9"	18'-8"	17'-3"	23'-7"	22'-3"	20'-8"	25'-11"	25'-3"	23'-6"	27'-6"	26'-1"	24'-3"
		30	10	19'-10"	18'-9"	17'-6"	23'-8"	22'-6"	21'-0"	26'-0"	25'-6"	23'-10"	27'-9"	26'-9"	25'-5"
		30	15	19'-0"	17'-11"	16'-8"	22'-3"	21'-5"	19'-11"	24'-2'	23'-0"	21-7"	24'-6"	23'-4"	21'-11"
		40	10	18'-0"	17'-3"	16'-4"	21'-2"	20'-8"	19'-7"	21'-10"	21-3"	20'-5"	22'-2"	21'-6"	20'-8"
		40	15	17'-8"	16'-9"	15'-8"	19'-5"	18'-8"	17'-8"	19'-9"	19'-0"	18'-0"	20'-1"	19'-3"	18'-3"
		50	10	16'-8"	$16^{\prime}-0 "$	15'-2"	17'-11"	17'-6"	16'-11"	18'-2'	17'-9"	17'-2"	18'-6"	18'-0"	17'-5"
		50	15	$16^{\prime}-2{ }^{\prime \prime}$	$15^{\prime}-8{ }^{\prime \prime}$	14'-10"	16'-5"	15'-11"	15'-2"	16'-9"	16'-2"	15'-5"	17'-0"	16'-5"	$15^{\prime}-8{ }^{\prime \prime}$

- Table values are limited by shear, moment, total load deflection equal to L/180 and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply
- Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less. 18" joists require web stiffeners at all bearing locations.

This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

- Slope roof joists at least $1 / 4$ " over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS® 25 Series - 91⁄2" - 16" Depths 3/8" Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
				$\begin{gathered} 91 / 2 " \\ \text { AJS }{ }^{\circledR} 25 \end{gathered}$			$\begin{gathered} 117 / "^{10} \\ \text { AJSS } 25 \end{gathered}$			$\begin{gathered} 14 " \\ \text { AJS® } 25 \end{gathered}$			$\begin{gathered} 16 " \\ \text { AJS® } 25 \end{gathered}$		
		$\begin{array}{\|l} \hline \text { Live } \\ \text { Load } \\ \text { [psf] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Dead } \\ \text { Load } \\ \text { [psf] } \end{array}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
$\begin{aligned} & 12 " 1 \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & \text { 125\% } \end{aligned}$	20	10	30'-5"	28'-9"	26'-8"	36'-4"	34'-3"	31'-10"	41'-4"	38'-11"	36'-2"	45'-9"	$43^{\prime}-2{ }^{\prime \prime}$	40'-1"
		20	15	28'-10"	27'-1"	25'-0"	34'-5"	32'-4"	29'-10"	39'-1"	36'-9"	33'-11"	$43^{\prime}-4{ }^{\prime \prime}$	40'-8"	$37^{\prime}-7{ }^{\prime \prime}$
		20	20	27'-6"	25'-9"	23'-8"	32'-10"	30'-9"	28'-3"	$37^{\prime}-4{ }^{\prime \prime}$	34'-11"	32'-2"	$41^{\prime}-4^{\prime \prime}$	38'-9"	$35^{\prime}-7{ }^{\prime \prime}$
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	28'-11"	27'-4"	25'-5"	34'-6"	32 -7"	30'-4"	39'-3"	37'-1"	$34^{\prime}-6{ }^{\prime \prime}$	$43^{\prime}-5^{\prime \prime}$	41'-1"	38'-3"
		25	15	27'-7"	25'-11"	24'-0"	32'-11"	31'-0"	28'-8"	$37^{\prime}-5^{\prime \prime}$	35'-3"	32'-7"	$41^{\prime}-5^{\prime \prime}$	39'-0"	36'-2"
		30	10	27'-8"	26'-2"	24'-5"	33'-0"	$31{ }^{\prime}-3 "$	29'-2"	$37^{\prime}-6{ }^{\prime \prime}$	35'-6"	33'-2"	$41^{\prime}-6{ }^{\prime \prime}$	39'-4"	36'-8"
		30	15	26'-6"	25'-0"	23'-2"	$31^{\prime \prime} 8^{\prime \prime}$	29'-10"	27'-8"	35'-11"	33'-11"	31'-6"	39'-10"	37'-7"	34'-11"
		40	10	25'-2"	24'-1"	22'-9"	$30^{\prime}-0^{\prime \prime}$	28'-9"	27'-2"	34'-1"	32'-9"	$30^{\prime}-11^{\prime \prime}$	37'-10"	36'-3"	$34^{\prime}-3{ }^{\prime \prime}$
		40	15	24'-9"	23'-5"	21'-10"	29'-7"	28'-0"	26'-1"	33'-7"	31'-10"	29'-8"	$37^{\prime}-3^{\prime \prime}$	$35^{\prime}-3$ "	32'-10"
		50	10	23'-3"	22'-4"	21'-2"	27'-9"	26'-8"	25'-4"	31'-7"	$30^{\prime}-4 "$	28'-9"	35'-0"	33'-7"	31'-11"
		50	15	23'-3"	22'-2"	20'-9"	27'-9"	26'-6"	24'-9"	$31{ }^{\prime}-7{ }^{\prime \prime}$	30'-1"	28'-2"	$35^{\prime}-0^{\prime \prime}$	$33^{\prime}-4{ }^{\prime \prime}$	31'-2"
$\begin{aligned} & \text { 16" } \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & 125 \% \end{aligned}$	20	10	27'-7"	26'-0"	24'-2"	32'-11"	31'-1"	28'-10"	37'-5"	35'-4"	32'-9"	41'-6"	39'-2"	36'-4"
		20	15	26'-1"	24'-6"	22'-8"	31'-2'	29'-3"	27'-1"	35'-5"	33'-4"	30'-9"	39'-3"	36'-11"	$34^{\prime}-1{ }^{\prime \prime}$
		20	20	24'-11"	23'-4"	$21^{\prime \prime} \mathbf{5}^{\prime \prime}$	29'-9"	27'-10"	25'-7"	$33^{\prime}-10{ }^{\prime \prime}$	31 '-8"	29'-1"	$37^{\prime}-6 "$	35'-1"	32'-3"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	26'-2"	24'-9"	23'-1"	31'-3"	29'-7"	27'-6"	35'-6"	$33^{\prime}-7{ }^{\prime \prime}$	31'-3"	$39^{\prime}-5^{\prime \prime}$	37'-3"	34'-8"
		25	15	25'-0"	23'-6"	21'-9"	29'-10"	28'-1"	26'-0"	33'-11"	31'-11"	29'-7"	37'-7"	$35^{\prime}-4{ }^{\prime \prime}$	32'-9"
		30	10	$25^{\prime}-0{ }^{\prime \prime}$	23'-8"	22'-1"	29'-10"	28'-4"	26'-5"	34'-0"	32'-2"	30'-0"	37'-8"	35'-8"	33'-3"
		30	15	24'-0"	22'-8"	21'-0"	28'-8"	27'-0"	25'-1"	32'-7"	30'-9"	28'-6"	36'-1"	34'-1"	31'-7"
		40	10	22'-9"	21'-10"	20'-7"	27'-2"	26'-1"	24'-8"	$33^{\prime}-11^{\prime \prime}$	29'-8"	28'-0"	$34^{\prime}-3^{\prime \prime}$	32'-10"	31'-0"
		40	15	22'-5"	21'-2"	19'-9"	26'-9"	25'-4"	23'-7"	30'-5"	28'-10"	26'-10"	$33^{\prime}-8{ }^{\prime \prime}$	31'-11"	29'-9"
		50	10	21'-0"	20'-2"	19'-2"	25'-2"	24'-2"	22'-11"	28'-7"	27'-5"	26'-1"	31'-8"	30'-5"	28'-11"
		50	15	21'-0"	20'-1"	18'-9"	25'-2"	24'-0"	22'-5"	28'-7"	27'-3"	25'-6"	29'-7"	28'-8"	$27^{\prime}-4{ }^{\prime \prime}$
$\begin{array}{\|l\|} 19.2^{\prime \prime} \\ \text { o.c. } \end{array}$	Non- Snow 125\%	20	10	25'-11"	24'-5"	22'-8"	30'-11"	29'-2"	27'-1"	35'-2"	33'-2"	30'-10"	39'-0"	36'-9"	34'-2"
		20	15	24'-6"	23'-0"	21'-3"	29'-3"	27'-6"	25'-5"	33'-3"	31'-3"	28'-11"	36'-11"	34'-8"	32'-0"
		20	20	23'-5"	21'-11"	20'-2"	27'-11"	26'-2"	24'-1"	31'-9"	29'-9"	27'-4"	$35^{\prime}-2^{\prime \prime}$	32'-11"	$30^{\prime}-4{ }^{\prime \prime}$
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	24'-7"	23'-3"	21'-8"	29'-4"	27'-9"	25'-10"	$33^{\prime}-5{ }^{\prime \prime}$	$31^{\prime}-7{ }^{\prime \prime}$	29'-5"	$37^{\prime}-0{ }^{\prime \prime}$	35'-0"	32'-7"
		25	15	23'-5"	22'-1"	20'-5"	28'-0"	26'-4"	24'-5"	31'-10"	$30^{\prime}-0$ "	27'-9"	$35^{\prime}-3 "$	$33^{\prime}-3 "$	30'-9"
		30	10	23'-6"	22'-3"	20'-9"	28'-1"	26'-7"	24'-10"	31'-11"	$30^{\prime}-3 "$	28'-3"	$35^{\prime}-4{ }^{\prime \prime}$	$33^{\prime}-6{ }^{\prime \prime}$	31'-3"
		30	15	22'-6"	21'-3"	19'-9"	26'-11"	25'-5"	23'-7"	30'-7"	28'-10"	26'-10"	33'-11"	$32^{\prime}-0$ "	29'-8"
		40	10	21'-4"	20'-6"	19'-4"	25'-6"	24'-6"	23'-2"	29'-0"	27'-10"	26'-4"	32'-2"	30'-10"	29'-2"
		40	15	21'-0"	19'-11"	18'-7"	25'-1"	23'-9"	22'-2"	28'-3"	27'-0"	25'-3"	29'-1"	28'-0"	26'-6"
		50	10	19'-9"	18'-11"	18'-0"	23'-7"	22'-8"	21'-6"	26'-1"	25'-5"	24'-6"	26'-10"	26'-2"	25'-3"
		50	15	19'-9"	18'-10"	17'-7"	23'-3"	22'-6"	21'-0"	23'-11"	23'-2"	22'-1"	24'-8"	23'-10"	22'-9"
$\begin{aligned} & 24 " 1 \\ & \text { o.c. } \end{aligned}$	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & 125 \% \end{aligned}$	20	10	$24^{\prime}-0{ }^{\prime \prime}$	22'-8"	21'-0"	28'-8"	27'-0"	25'-1"	32 -7"	30'-9"	28'-6"	36'-1"	34'-1"	31'-7"
		20	15	22'-8"	21'-4"	19'-8"	27'-1"	25'-6"	23'-6"	30'-10"	29'-0"	26'-9"	34'-2"	32'-1"	29'-8"
		20	20	21'-8"	20'-3"	18'-8"	25'-10"	24'-3"	22'-3"	29'-5"	27'-6"	25'-4"	32'-7"	30'-6"	28'-1"
	$\begin{array}{\|l\|} \hline \text { Snow } \\ 115 \% \end{array}$	25	10	22'-9"	21'-6"	20'-1"	27'-2"	25'-9"	23'-11"	30'-11"	29'-3"	27'-3"	$34^{\prime}-3 "$	$32 \cdot$-5"	30'-2"
		25	15	21'-8"	20'-5"	18'-11"	25'-11"	24'-5"	22'-7"	29'-5"	27'-9"	25'-9"	31'-10"	30'-2"	28'-1"
		30	10	21'-9"	20'-7"	19'-3"	25'-11"	24'-7"	23'-0"	29'-6"	28'-0"	26'-2"	32'-1"	30'-11"	28'-11"
		30	15	20'-10"	19'-8"	18'-3"	24'-10"	23'-6"	21-10"	27'-7"	26'-3"	24'-7"	28'-4"	27'0"	25'-4"
		40	10	19'-9"	18'-11"	17'-11"	23'-7"	22'-8"	21'-5"	24'-11"	24'-3"	23'-3"	25'-8"	24'-11"	23'-11"
		40	15	19'-5"	18'-5"	17'-2"	21'-11"	21'-1"	19'-11"	22'-7"	21'-8"	20'-7"	23'-3"	22'-4"	21'-2"
		50	10	18'-3"	17'-6"	16'-8"	20'-2"	19'-8"	19'-0"	20'-9"	20'-3"	19'-7"	21'-5"	20'-11"	20'-2"
		50	15	17'-11"	$17^{\prime}-4{ }^{\prime \prime}$	$16^{\prime}-3{ }^{\prime \prime}$	18'-7"	17'-11"	17'-1"	19'-1"	$18^{\prime}-6{ }^{\prime \prime}$	17'-8"	19'-8"	19'-0"	$18^{\prime}-2^{\prime \prime}$

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS ${ }^{\circledR} 25$ Series — Deeper Depths - 18" - 24" Depths $3 / 8$ " Web Thickness - $3122^{\prime \prime}$ Flange Width											
				$\stackrel{18 "}{\text { AJS® }} 25$			$\begin{gathered} 20 " \\ \text { AJS }^{\circledR} 25 \end{gathered}$			$\stackrel{22^{\prime \prime}}{\text { AJS }{ }^{\circledR} 25}$			$\stackrel{24 "}{\text { AJS® }} 25$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psff } \end{aligned}$	$\begin{aligned} & \hline \text { Dead } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \\ \hline \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
$\begin{aligned} & 12 " 1 \\ & \text { o.c. } \end{aligned}$	Non- Snow 125\%	20	10	48'-0"	47'-5"	44'-0"	$48{ }^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0$ "	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0$ "	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$
		20	15	47'-8"	44'-9"	$41^{\prime}-3$ "	$48{ }^{\prime}-0{ }^{\prime \prime}$	48'-0"	44'-9"	$48^{\prime}-0$	48'-0"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	48'-0"
		20	20	45'-5"	42'-7"	39'-1"	48'-0"	$46^{\prime}-1{ }^{\prime \prime}$	42'-5"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$45^{\prime}-7{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	47'-9"	45'-2"	42'-0"	48'-0"	48'-0"	45'-6"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$
		25	15	45'-7"	42'-11"	39'-8"	48'-0"	46'-6"	$43^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	46'-3"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$
		30	10	45'-8"	43'-3"	40'-4"	48'-0"	46'-10"	$43^{\prime}-8{ }^{\prime \prime}$	$48^{\prime}-0^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	$47^{\prime}-0^{\prime \prime}$	$48^{\prime}-0^{\prime \prime}$	48'-0"	$48^{\prime}-0^{\prime \prime}$
		30	15	43'-10"	41'-4"	38'-4"	47'-6"	44'-9"	41'-7"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	44'-8"	48'-0"	48'-0"	47'-8"
		40	10	$41^{\prime}-7{ }^{\prime \prime}$	39'-10"	37'-7"	45'-1"	43'-2'	40'-9"	48'-0"	46'-5"	43'-10"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	46'-10"
		40	15	40'-11"	38'-9"	36'-1"	44'-4"	42'-0"	39'-1"	46'-10"	45'-2"	42'-0"	48'-0"	47'-11"	44'-11"
		50	10	38'-6"	36'-11"	35'-1"	41'-9"	40'-0"	38'-0"	44'-11"	$43^{\prime}-0{ }^{\prime \prime}$	40'-10"	46'-11"	46'-0"	43'-7"
		50	15	38'-6"	36 '-8"	$34^{\prime}-3 "$	41'-2"	39'-9"	37'-2"	$43^{\prime}-1{ }^{\prime \prime}$	$42^{\prime}-5^{\prime \prime}$	39'-11"	44'-11"	44'-3"	42'-8"
$\begin{aligned} & \text { 16" } \\ & \text { o.c. } \end{aligned}$	NonSnow 125\%	20	10	45'-7"	43'-0"	39'-11"	48'-0"	46'-7"	$43^{\prime}-3 "$	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0^{\prime \prime}$	$46^{\prime}-6{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$
		20	15	43'-2"	40'-7"	37'-5"	46'-10"	43'-11"	40'-7"	48'-0"	47'-3"	43'-7"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	46'-7"
		20	20	41'-2"	38'-7"	35'-6"	44'-8"	41'-10"	38'-5"	$48^{\prime}-0{ }^{\prime \prime}$	44'-11"	41'-4"	$48^{\prime}-0^{\prime \prime}$	48'-0"	44'-2"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	43'-4"	40'-11"	38'-1"	46'-11"	44'-4"	41'-3"	48'-0"	47'-8"	44'-5"	48'-0"	48'-0"	47'-5"
		25	15	$41^{\prime}-4{ }^{\prime \prime}$	38'-11"	36'-0"	44'-9"	42'-2"	39'-0"	$47^{\prime}-5^{\prime \prime}$	$45 '-4 "$	41'-11"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	44'-10"
		30	10	$41^{\prime}-5{ }^{\prime \prime}$	39'-2"	36'-7"	44'-10"	42'-6"	39'-8"	47'-7"	$45 '$-8"	$42^{\prime}-7{ }^{\prime \prime}$	48'-0"	48'-0"	$45 '$-6"
		30	15	39'-8"	37'-5"	34'-9"	42'-9"	40'-7"	$37^{\prime}-8{ }^{\prime \prime}$	44'-9"	$43^{\prime}-8{ }^{\prime \prime}$	40'-6"	46'-8"	45'-7"	43'-3"
		40	10	37'-8"	36'-2"	34'-1"	40'-8"	39'-2'	37'-0"	42'-7"	42'-0"	39'-9"	44'-5"	43'-9"	42'-5"
		40	15	36'-7"	35'-1"	32'-9"	38'-8"	37'-11"	35'-5"	40'-6"	39'-9"	38'-1"	42'-3"	41'-5"	40'-4"
		50	10	34'-11"	33'-6"	31'-9"	37'-2"	36'-3"	$34^{\prime}-5^{\prime \prime}$	38'-11"	38'-5"	37'-0"	40'-7"	40'-1"	39'-5"
		50	15	33'-8"	$33^{\prime}-1{ }^{\prime \prime}$	$31^{\prime \prime} \mathbf{1 ' ~}^{\prime \prime}$	35'-7"	35'-0"	$33^{\prime}-8{ }^{\prime \prime}$	37'-4"	36'-8"	35'-10"	38'-11"	38'-3"	$37^{\prime \prime}-5^{\prime \prime}$
$\begin{gathered} 19.2 " \\ \text { o.c. } \end{gathered}$	$\begin{array}{\|l\|l} \text { Non- } \\ \text { Snow } \\ 125 \% \\ \hline \end{array}$	20	10	42'-10"	40'-5"	37'-6"	46'-5"	43'-10"	40'-8"	48'-0"	47'-1"	43'-8"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	46'-8"
		20	15	40'-7"	38'-1"	35'-2"	44'-0"	41'-4"	38'-2"	47'-3"	44'-5"	$41^{\prime}-0{ }^{\prime \prime}$	48'-0"	47'-5"	43'-9"
		20	20	38'-9"	36'-3"	$33^{\prime}-4{ }^{\prime \prime}$	41'-11"	39'-3"	36'-2"	$45^{\prime}-0{ }^{\prime \prime}$	$42^{\prime}-3 "$	38'-10"	46'-11"	45'-1"	41'-6"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	40'-8"	38'-6"	35'-10"	44'-1"	41'-8"	38'-10"	46'-5"	44'-10"	41'-9"	48'-0"	47'-5"	44'-7"
		25	15	38'-10"	36'-6"	33'-10"	41'-4"	39'-7"	36'-8"	$43^{\prime}-3^{\prime \prime}$	42'-2"	39'-5"	45'-2"	43'-11"	42'-1"
		30	10	38'-11"	36'-10"	34'-4"	$41^{\prime}-5^{\prime \prime}$	39'-11"	$37^{\prime}-3^{\prime \prime}$	$43^{\prime}-5^{\prime \prime}$	42'-8"	40'-1"	$45^{\prime}-3 "$	44'-6"	42'-9"
		30	15	36'-10"	35'-2"	32'-8"	39'-0"	38'-1"	$35^{\prime}-5^{\prime \prime}$	40'-10"	39'-11"	38'-1"	42'-7"	41'-7"	40'-3"
		40	10	35'-1"	33'-11"	32'-1"	37'-1"	36'-7"	34'-9"	38'-10"	38'-4"	37'-4"	40'-6"	39'-11"	39'-2"
		40	15	33'-4"	32'-9"	30'-9"	35'-4"	34'-7"	33'-4"	37'-0"	$36^{\prime}-3$ '	35'-3"	38'-7"	37'-10"	36'-10"
		50	10	32'-0"	$31^{\prime}-5^{\prime \prime}$	29'-10"	33'-11"	33'-6"	32'-4"	35'-6"	35'-1"	$34^{\prime}-6^{\prime \prime}$	37'-0"	36'-7"	35'-11"
		50	15	30'-8"	$30^{\prime}-2{ }^{\prime \prime}$	29'-2"	32'-6"	31'-11"	31'-3"	$34^{\prime}-0^{\prime \prime}$	33'-6"	32 '-8"	35'-6"	34'-11"	$34^{\prime}-1{ }^{\prime \prime}$
$\begin{aligned} & 24 " 1 \\ & \text { o.c. } \end{aligned}$	NonSnow 125\%	20	10	39'-8"	37'-5"	34'-9"	43'-0"	40'-7"	37'-8"	46'-3"	43^{\prime}-8"	40'-6"	$48^{\prime}-0{ }^{\prime \prime}$	46'-7"	$43^{\prime}-3 "$
		20	15	37'-7"	35'-4"	32'-7"	40'-9"	38'-3"	35'-4"	43'-1"	41'-2"	38'-0"	44'-11"	$43^{\prime}-7{ }^{\prime \prime}$	40'-7"
		20	20	35'-10"	33'-7"	30'-11"	38'-5"	36'-5"	33'-6"	40'-2"	38'-10"	36'-0"	41'-11"	40'-6"	38'-5"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	37'-5"	35'-8"	33'-2'	39'-7"	38'-8"	$36^{\prime}-0{ }^{\prime \prime}$	41'-6"	40'-8"	38'-8"	$43^{\prime}-3 "$	42'-4"	41'-2"
		25	15	34'-11"	33'-10"	31'-4"	36'-11"	35'-11"	$34^{\prime}-0^{\prime \prime}$	38'-8"	37'-8"	36'-4"	40'-4"	39'-3"	37'-11"
		30	10	35'-0"	34'-1"	31'-10"	37'-1"	36'-5"	$34^{\prime}-6{ }^{\prime \prime}$	38'-10"	38'-1"	37'-1"	40'-6"	39'-9"	38'-9"
		30	15	32'-11"	32'-2"	30'-3"	34'-10"	34'-0"	32'-10"	36'-6"	35'-8"	34'-6"	38'-1"	37'-2"	$36^{\prime}-0{ }^{\prime \prime}$
		40	10	$31^{\prime}-4{ }^{\prime \prime}$	30'-11"	29'-8"	33'-2"	32'-8"	32'-0"	34'-9"	$34^{\prime}-3 "$	$33^{\prime}-7{ }^{\prime \prime}$	36'-3"	35'-8"	35'-0"
		40	15	29'-10"	29'-3"	28'-5"	31'-6"	30'-11"	30'-1"	33'-0"	32'-5"	31'-6"	$34^{\prime}-6{ }^{\prime \prime}$	33'-9"	32'-11"
		50	10	28'-7"	28'-3"	27'-8"	30'-3"	29'-11"	29'-5"	31'-9"	31'-4"	30'-10"	33'-1"	32'-8"	32'-2"
		50	15	27'-5"	27'-0"	26'-4"	29'-0"	28'-7"	27'-11"	30'-5"	29'-11"	29'-3"	31'-9"	$31^{\prime}-2$ "	30'-6"

- Table values are limited by shear, moment, total load deflection equal to L/180 and live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Table values represent the most restrictive of simple or multiple span applications. Analyze multiple span joists with the BC Calc software if the length of any span is less than half the length of an adjacent span.
- Table values assume: minimum bearing lengths, no web stiffeners for joist depths of 16 " and less, web stiffeners required at all bearing locations for 18 " and deeper joists.

This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.

- Slope roof joists at least $1 / 4$ " over 12 " to minimize ponding.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Maximum clear span in feet and inches, based on horizontal spans.

115\% and 125\% Load Duration															
				AJS ${ }^{\circledR} 30$ Series - 18" - 24" Depths $3 / 8$ " Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
				$\begin{gathered} 18 " \\ \text { AJS } \end{gathered}$			$\begin{gathered} 20 " \\ \text { AJS }{ }^{\circledR} 30 \end{gathered}$			$\stackrel{22^{\prime \prime}}{\text { AJS }} 30$			$\stackrel{24 "}{\text { AJS }} 2$		
		$\begin{aligned} & \text { Live } \\ & \text { Load } \\ & \text { [psf] } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Dead } \\ \text { Load } \\ \text { [psf] } \\ \hline \end{array}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{aligned} & 4 / 12 \\ & \text { or } \\ & \text { Less } \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{aligned} & 8 / 12 \\ & \text { to } \\ & 12 / 12 \end{aligned}$	$\begin{gathered} 4 / 12 \\ \text { or } \\ \text { Less } \end{gathered}$	$\begin{gathered} 4 / 12 \\ \text { to } \\ 8 / 12 \end{gathered}$	$\begin{gathered} 8 / 12 \\ \text { to } \\ 12 / 12 \end{gathered}$
$\begin{array}{\|l\|l\|} \hline 12 " 1 \\ \text { o.c. } \end{array}$	Non- Snow 125\%	20	10	48'-0"	48'-0"	45'-5"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0$ "	48'-0"	48'-0"	$48{ }^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	48'-0"
		20	15	48'-0"	$46^{\prime}-3{ }^{\prime \prime}$	42'-8"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	46'-2"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$
		20	20	47'-0"	$44{ }^{\prime}-0{ }^{\prime \prime}$	40'-5"	48'-0"	47'-7"	43'-9"	48'-0"	48'-0"	$47^{\prime}-1{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"
	$\begin{aligned} & \text { Snow } \\ & 115 \% \end{aligned}$	25	10	48'-0"	46'-8"	43'-5"	$48^{\prime}-0^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	47'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$
		25	15	47'-1"	44'-4"	41'-0"	48'-0"	48'-0"	44'-5"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	47'-9"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"
		30	10	47'-2"	44'-8"	41'-8"	48'-0"	48'-0"	45'-2"	48'-0"	$48{ }^{\prime}-0{ }^{\prime \prime}$	48'-0"	48'-0"	48'-0"	48'-0"
		30	15	$45 \cdot-3 "$	42'-8"	39'-7"	48'-0"	46'-3"	42'-11"	48'-0"	48'-0"	46'-1"	48'-0"	48'-0"	48'-0"
		40	10	43'-0"	$41^{\prime}-2{ }^{\prime \prime}$	38'-11"	46'-6"	44'-7"	42'-1"	48'-0"	47'-11"	45'-3"	48'-0"	48'-0"	48'-0"
		40	15	42'-4"	40'-0"	37'-3"	45'-10"	43'-4"	40'-5"	48'-0"	46'-7"	43'-5"	48'-0"	48'-0"	46'-4"
		50	10	39'-10"	38'-2'	36'-3"	43'-1"	41'-4"	39'-3"	46'-4"	44'-5"	42'-2"	48'-0"	47'-6"	45'-0"
		50	15	39'-10"	37'-11"	35'-5"	43'-1"	41'-1"	38'-4"	$46^{\prime}-4$ "	44'-2"	$41^{\prime}-3{ }^{\prime \prime}$	48'-0"	47'-2"	$44^{\prime}-0^{\prime \prime}$
$\begin{array}{\|l\|l\|} \hline 16 " 1 \\ \text { o.c. } \end{array}$	Non- Snow 125\%	20	10	47'-1"	44'-5"	41'-3"	48'-0"	48'-0"	44'-8"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"	$48^{\prime}-0$ "	48'-0"
		20	15	44'-7"	41'-11"	38'-8"	48'-0"	45'-5"	41'-11"	48'-0"	48'-0"	45'-0"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"
		20	20	42'-7"	39'-10"	36'-8"	46'-1"	43'-2"	39'-8"	48'-0"	$46^{\prime}-5{ }^{\prime \prime}$	42'-8"	48'-0"	48'-0"	45 '-7"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	44'-9"	42'-4"	39'-4"	48'-0"	45'-10"	42'-8"	48'-0"	48'-0"	45'-10"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"
		25	15	42'-8"	40'-2"	37'-2"	46'-3"	43'-6"	40'-4"	48'-0"	46'-9"	43'-4"	48'-0"	48'-0"	$46^{\prime}-3^{\prime \prime}$
		30	10	42'-9"	40'-6"	37'-9"	$46^{\prime}-4{ }^{\prime \prime}$	43'-11"	40'-11"	48'-0"	47'-2"	44'-0"	48'-0"	48'-0"	47'-0"
		30	15	41'-0"	38'-8"	35'-11"	44'-5"	41'-11"	38'-11"	47'-9"	45'-1"	41'-10"	48'-0"	48'-0"	44'-8"
		40	10	38'-11"	37'-4"	35'-3"	42'-2"	40'-5"	38'-2"	45'-4"	43'-6"	$41^{\prime}-0{ }^{\prime \prime}$	48'-0"	46'-5"	43'-10"
		40	15	38'-4"	36 '-3"	33'-10"	41'-6"	39'-4"	36 '-7"	44'-8"	42'-3"	39'-4"	47'-7"	45'-1"	42'-0"
		50	10	36'-1"	$34^{\prime}-7{ }^{\prime \prime}$	32'-10"	39'-1"	37'-6"	$35 '-7{ }^{\prime \prime}$	42'-0"	40'-3"	38'-3"	44'-10"	43'-0"	40'-10"
		50	15	36'-1"	$34^{\prime}-4{ }^{\prime \prime}$	32'-1"	39'-1"	37'-2"	34'-9"	42'-0"	40'-0"	37'-5"	43'-10'	42'-9"	39'-11"
$\begin{array}{\|c\|c\|} \hline 19.2^{\prime \prime} \\ \text { o.c. } \end{array}$	Non- Snow 125\%	20	10	44'-3"	41'-9"	38'-9"	47'-11"	45'-3"	42'-0"	48'-0"	48'-0"	45'-1"	48'-0"	$48^{\prime}-0{ }^{\prime \prime}$	48'-0"
		20	15	41'-11"	39'-5"	36'-4"	45'-5"	42'-8"	39'-5"	48'-0"	45'-10"	42'-4"	48'-0"	48'-0"	45'-2"
		20	20	40'-0"	37'-5"	$34^{\prime}-5^{\prime \prime}$	43'-4"	40'-7"	37'-4"	46'-7"	43'-7"	40'-1"	48'-0"	46'-7"	42'-10"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	42'-0"	39'-9"	$37{ }^{-1} 0^{\prime \prime}$	45'-6"	43'-1"	40'-1"	48'-0"	46'-3"	43'-1"	48'-0"	48'-0"	46'-0"
		25	15	40'-1"	37'-9"	35'-0"	43'-5"	40'-11"	37'-10'	$46^{\prime}-8{ }^{\prime \prime}$	43'-11"	40'-8"	48'-0"	46'-11"	43'-6"
		30	10	40'-2"	38'-1"	35'-6"	43'-6"	41'-3"	38'-6"	46'-9"	44'-4"	41'-4"	48'-0"	47'-4"	44'-2"
		30	15	38'-6"	36'-4"	33'-9"	41'-9"	39'-5"	36'-7"	44'-10"	42'-4"	39'-4"	47'-11"	45'-3"	42'-0"
		40	10	36'-7"	$35{ }^{\prime}-1$ "	33'-1"	39'-7"	38'-0"	35'-11"	42'-7"	40'-10"	38'-7"	45'-6"	43'-7"	41'-2"
		40	15	36'-0"	34'-1"	31'-9"	39'-0"	36'-11"	34'-5"	41'-8"	39'-8"	37'-0"	43'-5"	42'-5"	39'-6"
		50	10	33'-10"	32'-6"	30'-10"	36'-8"	35'-2"	$33^{\prime}-5^{\prime \prime}$	39'-5"	37'-10"	35'-11"	41'-8"	40'-5"	38'-4"
		50	15	33'-10"	32'-3"	$30^{\prime}-2{ }^{\prime \prime}$	36'-7"	34'-11"	32'-8"	38'-4"	37'-7"	$35{ }^{\prime}-1{ }^{\prime \prime}$	40'-0"	39'-4"	37'-6"
$\begin{aligned} & 24 " \\ & \text { o.c. } \end{aligned}$	Non- Snow 125\%	20	10	41'-0"	38'-8"	35'-11"	$44^{\prime}-5^{\prime \prime}$	41'-11"	38'-11"	47'-9"	45'-1"	41'-10"	48'-0"	48'-0"	44'-8"
		20	15	38'-10"	36'-6"	33'-8"	42'-1"	39'-6"	36'-6"	45'-3"	42'-6"	39'-3"	48'-0"	45'-4"	41'-11"
		20	20	37'-0"	$34^{\prime}-8{ }^{\prime \prime}$	31'-11"	40'-2"	37'-7"	34'-7"	43'-2"	40'-5"	37'-2"	46'-1"	43'-2"	39'-8"
	$\begin{aligned} & \text { Snow } \\ & \text { 115\% } \end{aligned}$	25	10	38'-11"	36'-10"	34'-3"	42'-2"	39'-11"	37'-2"	45'-4"	42'-11"	39'-11"	48'-0"	45'-9"	42'-8"
		25	15	37'-1"	35'-0"	32'-5"	40'-3"	37'-11"	35'-1"	43'-3"	40'-9"	37'-9"	45'-5"	43'-6"	40'-3"
		30	10	37 '-3"	35'-3"	32'-11"	40'-4"	38'-2"	35'-8"	43'-4"	$41^{\prime \prime} 1^{\prime \prime}$	38'-4"	$45^{\prime}-7{ }^{\prime \prime}$	43'-10"	40'-11"
		30	15	35'-8"	$33^{\prime}-8{ }^{\prime \prime}$	31'-3"	38'-8"	36'-6"	33'-11"	41'-1"	39'-3"	$36^{\prime}-5^{\prime \prime}$	42'-10"	41'-10"	38'-11"
		40	10	33'-10'	32'-6"	$30^{\prime}-8{ }^{\prime \prime}$	$36^{\prime}-8{ }^{\prime \prime}$	35'-2"	$33^{\prime}-3{ }^{\prime \prime}$	39'-1"	37'-10"	35'-9"	40'-10"	40'-3"	38'-2'
		40	15	$33^{\prime}-4{ }^{\prime \prime}$	$31^{\prime}-7{ }^{\prime \prime}$	29'-5"	35'-6"	34'-2"	31'-10"	37'-3"	36'-6"	$34{ }^{\prime}-3 "$	38'-10"	38'-1"	36'-7"
		50	10	31'-4"	30'-1"	28'-7"	33'-11"	32'-7"	30'-11"	35'-9"	35'-0"	$33^{\prime}-3^{\prime \prime}$	37'-3"	36'-10"	35'-6"
		50	15	30'-11"	29'-10"	27'-11"	32'-8"	32'-2"	$30^{\prime}-3 "$	$34^{\prime}-3 "$	$33^{\prime}-8{ }^{\prime \prime}$	32 '-6"	35'-9"	35'-2"	34'-3"

Allowable Uniform Roof Load
 (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less. For steeper slopes, see pages 27-31.												
	AJS ${ }^{\circledR} 20$ Series 2½" Flange Width											
	9½" AJS ${ }^{\text {® }} 20$			117\%" AJS® 20			14" AJS® 20			16" AJS® 20		
	Total	Load	Deflect.	Tota	Load	Deflect.	Total	oad	Deflect.	Tota	Load	Deflect.
Span Length	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{aligned} & \text { Non- } \\ & \text { Snow } \\ & (125 \%) \end{aligned}$	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	L/240
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	192	209	-	195	212	-	196	213	-	198	216	-
12	176	191	-	179	194	-	180	196	-	182	198	-
13	162	177	-	165	179	-	166	180	-	168	182	-
14	151	164	-	153	167	-	154	168	-	156	169	-
15	136	147	128	143	155	-	144	156	-	145	158	-
16	119	129	106	134	146	-	135	147	-	136	148	-
17	105	115	89	126	137	-	127	138	-	128	139	-
18	94	99	76	119	129	-	120	130	-	121	132	-
19	84	85	65	109	119	108	113	123	-	115	125	-
20	73	73	56	99	107	94	108	117	-	109	118	-
21	63	63	48	89	97	81	103	112	-	104	113	-
22	55	55	42	81	89	71	98	106	-	99	108	-
23	48	48	37	74	81	62	90	98	-	95	103	-
24	43	43	33	68	72	55	82	90	80	91	99	-
25				63	64	49	76	83	71	87	95	-
26				57	57	44	70	76	63	81	89	-
27				51	51	39	65	71	57	75	82	-
28				46	46	35	60	66	51	70	76	69
29				41	41	32	56	60	46	65	71	62
30							53	55	42	61	66	56
31							49	50	38	57	62	51
32							45	45	34	54	58	47
33							41	41	31	50	55	43
34										47	51	39
35										45	47	36
36										42	43	33
37										40	40	30
38												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to $\mathrm{L} / 240$. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load
 (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less.
For steeper slopes, see pages 27-31.

Span Length	AJS® 190 Series 2½" Flange Width											
	91⁄2" AJS® 190			117/8" AJS® 190			14" AJS® 190			16" AJS® 190		
	Total Load		Deflect. L/240	Total Load		Deflect.L/240	Total Load		Deflect.L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)	
6	353	383	-	358	389	-	360	392	-	364	396	-
7	302	329	-	307	334	-	309	336	-	312	339	-
8	264	287	-	269	292	-	270	294	-	273	297	-
9	235	255	-	239	259	-	240	261	-	242	264	-
10	211	230	-	215	233	-	216	235	-	218	237	-
11	192	209	-	195	212	-	196	213	-	198	216	-
12	176	191	-	179	194	-	180	196	-	182	198	-
13	162	177	-	165	179	-	166	180	-	168	182	-
14	151	164	-	153	167	-	154	168	-	156	169	-
15	141	153	134	143	155	-	144	156	-	145	158	-
16	132	143	111	134	146	-	135	147	-	136	148	-
17	121	123	94	126	137	-	127	138	-	128	139	-
18	104	104	79	119	129	-	120	130	-	121	132	-
19	89	89	68	113	123	-	113	123	-	115	125	-
20	77	77	59	107	116	98	108	117	-	109	118	-
21	67	67	51	102	111	85	103	112	-	104	113	-
22	58	58	44	93	97	74	98	106	-	99	108	-
23	51	51	39	85	86	65	94	102	-	95	103	-
24	45	45	34	76	76	58	90	98	84	91	99	-
25	40	40	30	67	67	51	86	94	75	87	95	-
26				60	60	46	80	87	67	84	91	-
27				54	54	41	75	78	60	80	88	-
28				48	48	37	69	70	54	78	84	72
29				43	43	33	63	63	48	75	81	65
30							57	57	44	70	76	59
31							52	52	40	66	70	54
32							47	47	36	61	64	49
33							43	43	33	58	59	45
34							40	40	30	54	54	41
35										49	49	38
36										45	45	35
37										42	42	32
38												

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume minimum bearing lengths without web stiffeners for joist depths of 16 inches and less.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load
 (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less.
For steeper slopes, see pages 27-31.

Span Length	AJS ${ }^{\circledR} 25$ Series - $91 / 2^{\prime \prime}-16$ " Depths $3 / 8^{\prime \prime}$ Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
	91⁄2" AJS® 25			111/8" AJS® 25			14" AJS® 25			16" AJS® 25		
	Total Load		Deflect. L/240	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect.L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \\ \hline \end{gathered}$		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \end{gathered}$		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \end{gathered}$		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \\ \hline \end{gathered}$	
6	356	387	-	358	389	-	360	392	-	364	396	-
7	305	332	-	307	334	-	309	336	-	312	339	-
8	267	290	-	269	292	-	270	294	-	273	297	-
9	237	258	-	239	259	-	240	261	-	242	264	-
10	214	232	-	215	233	-	216	235	-	218	237	-
11	194	211	-	195	212	-	196	213	-	198	216	-
12	178	193	-	179	194	-	180	196	-	182	198	-
13	164	179	-	165	179	-	166	180	-	168	182	-
14	152	166	-	153	167	-	154	168	-	156	169	-
15	142	155	-	143	155	-	144	156	-	145	158	-
16	133	145	-	134	146	-	135	147	-	136	148	-
17	125	136	121	126	137	-	127	138	-	128	139	-
18	118	129	103	119	129	-	120	130	-	121	132	-
19	112	116	88	113	123	-	113	123	-	115	125	-
20	100	100	76	107	116	-	108	117	-	109	118	-
21	87	87	66	102	111	-	103	112	-	104	113	-
22	76	76	58	93	102	-	98	106	-	99	108	-
23	67	67	51	85	93	-	94	102	-	95	103	-
24	59	59	45	78	85	75	90	98	-	91	99	-
25	52	52	40	72	79	67	86	94	-	87	95	-
26	46	46	35	67	73	59	80	87	-	84	91	-
27	42	42	32	62	67	53	75	81	-	80	88	-
28				58	63	48	69	75	-	78	84	-
29				54	57	43	65	70	63	75	81	-
30				50	51	39	60	66	57	70	76	-
31				47	47	35	56	61	52	66	71	-
32				42	42	32	53	58	47	61	67	-
33							50	54	43	58	63	-
34							47	51	39	54	59	53
35							44	47	36	51	56	49
36							42	44	33	48	53	45
37										46	50	41
38										43	47	38

- Total Load values are limited by shear,
moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume: minimum bearing lengths, no web stiffeners for joist depths of

16 "and less, web stiffeners required at all bearing locations for 18" and deeper joists.

- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load
 (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2^{\prime \prime}$ per foot or less.
For steeper slopes, see pages 27-31.

Span Length	AJS ${ }^{\circledR} 25$ Series - Deeper Depths - 18" - 24" Depths $3 / 8$ " Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
	18" AJS® 25			20" AJS® 25			22" AJS® 25			24" AJS® 25		
	Total Load		Deflect.$\mathrm{L} / 240$	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{aligned} & \hline \text { Non- } \\ & \text { Snow } \end{aligned}$ (125%)		$\begin{aligned} & \text { Snow } \\ & (115 \%) \end{aligned}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \end{gathered}$		$\begin{aligned} & \text { Snow } \\ & (115 \%) \end{aligned}$	NonSnow (125\%)	
6	709	770	-	767	834	-	785	854	-	803	873	-
7	607	660	-	658	715	-	673	732	-	688	748	-
8	531	578	-	575	625	-	589	640	-	602	654	-
9	472	513	-	511	556	-	523	569	-	535	582	-
10	425	462	-	460	500	-	471	512	-	481	523	-
11	386	420	-	418	455	-	428	465	-	438	476	-
12	354	385	-	383	417	-	392	427	-	401	436	-
13	327	355	-	354	385	-	362	394	-	370	402	-
14	303	330	-	329	357	-	336	366	-	344	374	-
15	283	308	-	307	333	-	314	341	-	321	349	-
16	265	289	-	287	312	-	294	320	-	301	327	-
17	250	272	-	271	294	-	277	301	-	283	308	-
18	236	256	-	255	278	-	261	284	-	267	291	-
19	223	243	-	242	263	-	248	269	-	253	275	-
20	212	231	-	230	250	-	235	256	-	240	261	-
21	202	220	-	219	238	-	224	244	-	229	249	-
22	193	210	-	209	227	-	214	232	-	219	238	-
23	185	201	-	200	217	-	205	222	-	209	227	-
24	171	186	-	191	208	-	196	213	-	200	218	-
25	158	172	-	177	192	-	188	205	-	192	209	-
26	146	159	-	163	177	-	179	195	-	185	201	-
27	135	147	-	151	164	-	166	180	-	178	194	-
28	126	137	124	141	153	-	154	168	-	168	182	-
29	117	127	112	131	142	-	144	156	-	156	170	-
30	109	119	101	122	133	-	134	146	-	146	159	-
31	102	111	92	115	125	-	126	137	-	137	149	-
32	96	105	84	108	117	106	118	128	-	128	139	-
33	90	98	77	101	110	97	111	121	-	121	131	-
34	85	92	70	95	104	89	104	114	-	114	123	-
35	80	85	65	90	98	82	99	107	-	107	117	-
36	76	78	59	85	92	75	93	101	-	101	110	-
37	72	72	55	80	87	69	88	96	86	96	104	-
38	66	66	51	76	83	64	84	91	79	91	99	-
39	62	62	47	72	78	60	79	86	74	86	94	-
40	57	57	44	69	72	55	75	82	68	82	89	-

- Total Load values are limited by shear, moment, or deflection equal to L/180.
- Deflection values (Deflect.) are limited by live load deflection equal to L/240. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC® ${ }^{\text {s }}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
- Table values assume: minimum bearing lengths, no web stiffeners for joist depths of 16" and less, web stiffeners required at all bearing locations for 18 " and deeper joists.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.

Allowable Uniform Roof Load
 (in pounds per linear foot [PLF])

115\% and 125\% Load Duration

Use of these tables should be limited to roof slopes of $31 / 2$ " per foot or less.
For steeper slopes, see pages 21-31.

Span Length	AJS® 30 Series - Deeper Depths - 18" - 24" Depths $3 / 8$ " Web Thickness - $31 / 2^{\prime \prime}$ Flange Width											
	18" AJS® 30			20" AJS® 30			22" AJS® 30			24" AJS® 30		
	Total Load		Deflect. L/240	Total Load		Deflect.L/240	Total Load		Deflect. L/240	Total Load		Deflect. L/240
	$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	NonSnow (125\%)		$\begin{aligned} & \text { Snow } \\ & (115 \%) \end{aligned}$	$\begin{aligned} & \hline \text { Non- } \\ & \text { Snow } \end{aligned}$ (125%)		$\begin{gathered} \text { Snow } \\ (115 \%) \end{gathered}$	$\begin{gathered} \text { Non- } \\ \text { Snow } \\ (125 \%) \end{gathered}$		$\begin{aligned} & \text { Snow } \\ & (115 \%) \end{aligned}$	NonSnow (125\%)	
6	709	770	-	767	834	-	785	854		803	873	-
7	607	660	-	658	715	-	673	732		688	748	-
8	531	578	-	575	625	-	589	640	-	602	654	-
9	472	513	-	511	556	-	523	569	-	535	582	-
10	425	462	-	460	500	-	471	512	-	481	523	-
11	386	420	-	418	455	-	428	465	-	438	476	-
12	354	385	-	383	417	-	392	427	-	401	436	-
13	327	355	-	354	385	-	362	394	-	370	402	-
14	303	330	-	329	357	-	336	366	-	344	374	-
15	283	308	-	307	333	-	314	341	-	321	349	-
16	265	289	-	287	312	-	294	320	-	301	327	-
17	250	272	-	271	294	-	277	301	-	283	308	-
18	236	256	-	255	278	-	261	284	-	267	291	-
19	223	243	-	242	263	-	248	269	-	253	275	-
20	212	231	-	230	250	-	235	256	-	240	261	-
21	202	220	-	219	238	-	224	244	-	229	249	-
22	193	210	-	209	227	-	214	232	-	219	238	-
23	185	201	-	200	217	-	205	222	-	209	227	-
24	177	192	-	191	208	-	196	213	-	200	218	-
25	170	185	-	184	200	-	188	205	-	192	209	-
26	163	177	-	177	192	-	181	197	-	185	201	-
27	157	171	150	170	185	-	174	189	-	178	194	-
28	151	165	136	164	178	-	168	183	-	172	187	-
29	146	159	123	158	172	154	162	176	-	166	180	-
30	139	145	111	153	166	140	157	170	-	160	174	-
31	130	132	101	145	158	127	152	165	-	155	168	-
32	121	121	92	136	148	116	147	160	143	150	163	-
33	110	110	84	128	139	106	141	153	131	146	158	-
34	101	101	77	121	128	98	132	144	120	141	154	-
35	93	93	71	114	117	90	125	136	110	136	148	134
36	86	86	65	108	108	83	118	128	102	128	140	123
37	79	79	60	100	100	76	112	121	94	122	132	114
38	73	73	56	92	92	71	106	114	87	115	125	105
39	68	68	52	86	86	65	101	106	81	109	119	98
40	63	63	48	79	79	61	96	98	75	104	113	91

- Total Load values are limited by shear, moment, or deflection equal to $L / 180$.
- Deflection values (Deflect.) are limited by live load deflection equal to $L / 240$. Check the local building code for other deflection limits that may apply.
- Both the Total Load and Deflection columns must be checked. Where a Deflection value is not shown, the Total Load value will control.
- Table values apply to either simple or multiple span joists. Span is measured center to center of the minimum required bearing length. Analyze multiple span joists with the BC CALC ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
- Slope roof joists at least $1 / 4$ inch over 12 inches to minimize ponding.
of 16 " and less, web stiffeners required at all bearing locations for 18" and deeper joists.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC ${ }^{\circledR}$ software.
- Allowable spans and loads shall be adjusted and checked for wind load as required by local building code.
- Table values assume: minimum bearing lengths, no web stiffeners for joist depths

Joist Series	Depth [inches]	Weight [plf]	Moment [ft-lbs]	$\left[\begin{array}{l} \mathrm{El} \times 106 \\ {\left[\mathrm{lb}-\mathrm{in}^{2}\right]} \end{array}\right.$	$\begin{gathered} \mathrm{K} \times 10^{6} \\ {[\mathrm{lbs}]} \end{gathered}$	Shear [lbs]	End Reaction [lbs]				Intermediate Reaction [lbs]			
							11/2" Bearing (4)		312/ Bearing		31⁄2" Bearing		51⁄4" Bearing	
							No WS(1)	WS(2)						
$\begin{gathered} \text { AJS® } \\ 20 \end{gathered}$	9112	2.5	3395	232	5.2	1250	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.8	4400	394	6.6	1570	955	1335	1215	1595	2390	2800	2390	2800
	14	3.0	5295	578	7.8	1850	960	1420	1250	1700	2430	3130	2430	3130
	16	3.3	6140	786	9.0	2100	970	1500	1285	1800	2465	3435	2465	3435
$\begin{gathered} \text { AJS® } \\ 190 \end{gathered}$	91/2	2.5	3895	244	5.2	1250	950	1240	1175	1480	2350	2450	2350	2450
	117/8	2.8	5045	414	6.6	1570	955	1335	1215	1595	2390	2800	2390	2800
	14	3.0	6070	608	7.8	1850	960	1420	1250	1700	2430	3130	2430	3130
	16	3.3	7040	827	9.0	2100	970	1500	1285	1800	2465	3435	2465	3435
	18	3.9	8045	1100	12.1	3010	N/A ${ }^{(3)}$	2160	N/A ${ }^{(3)}$	2620	N/A ${ }^{(3)}$	4720	N/A ${ }^{(3)}$	4720
	20	4.2	8990	1402	13.5	3240	N/A ${ }^{(3)}$	2160	N/A ${ }^{(3)}$	2980	N/A ${ }^{3}$)	4780	N/A ${ }^{3}$)	5110
$\begin{gathered} \text { AJS® } \\ 25 \end{gathered}$	91/2	3.1	5370	322	5.3	1250	950	1240	1175	1480	2600	2850	2600	2850
	117/8	3.4	6960	545	6.7	1570	955	1335	1215	1595	2690	3190	2690	3190
	14	3.7	8380	798	7.9	1850	960	1420	1250	1700	2770	3500	2770	3500
	16	3.9	9720	1082	9.1	2100	970	1500	1285	1800	2850	3800	2850	3800
	18	4.6	10975	1427	12.3	3010	N/A ${ }^{(3)}$	2240	N/A ${ }^{(3)}$	2620	N/A ${ }^{(3)}$	4720	N/A ${ }^{(3)}$	4720
	20	4.9	12270	1813	13.7	3240	N/A ${ }^{(3)}$	2490	N/A ${ }^{(3)}$	2980	N/A ${ }^{(3)}$	5110	N/A ${ }^{(3)}$	5110
	22	5.1	13455	2249	15.0	3470	N/A ${ }^{(3)}$	2490	N/A ${ }^{(3)}$	3150	N/A ${ }^{(3)}$	5230	N/A ${ }^{(3)}$	5505
	24	5.4	14625	2737	16.5	3690	N/A ${ }^{3}$)	2490	N/A ${ }^{(3)}$	3320	N/A ${ }^{(3)}$	5345	N/A ${ }^{(3)}$	5900
$\begin{gathered} \text { AJS® } \\ 30 \end{gathered}$	18	4.6	13905	1575	12.3	3010	N/A ${ }^{(3)}$	2240	N/A ${ }^{(3)}$	2620	N/A ${ }^{(3)}$	4720	N/A ${ }^{(3)}$	4720
	20	4.9	15540	1998	13.7	3240	N/A ${ }^{(3)}$	2490	N/A ${ }^{(3)}$	2980	N/A ${ }^{(3)}$	5110	N/A ${ }^{(3)}$	5110
	22	5.1	17040	2477	15.0	3470	N/A ${ }^{(3)}$	2490	N/A ${ }^{(3)}$	3150	N/A ${ }^{(3)}$	5230	N/A ${ }^{(3)}$	5505
	24	5.4	18525	3012	16.5	3690	N/A ${ }^{(3)}$	2490	N/A ${ }^{(3)}$	3320	N/A ${ }^{(3)}$	5345	N/A ${ }^{(3)}$	5900

NOTES:
(1) No web stiffeners required.
(2) Web stiffeners required.
(3) Not applicable, web stiffeners required.
(4) $13 / 4$ " minimum end bearing for 18 " and deeper joists.

- Moment, shear and reaction values based upon a load duration of 100% and may be adjusted for other load durations.
- Design values listed are applicable for Allowable Stress Design (ASD).
- No additional repetitive member increase allowed.

$$
\Delta=\frac{5 w l^{4}}{384 E I}+\frac{w l^{2}}{K}
$$

$\Delta=$ deflection [in]
$\mathrm{w}=$ uniform load [lb/in]
l = clear span [in]
EI = bending stiffness [lb-in²]
$\mathrm{K}=$ shear deformation coefficient [lb]

BUILDING CODE EVALUATION REPORT

- ICC ESR 1144 (IBC, IRC)

AJS® Closest Allowable Nail Spacing / Diaphragm Design

Nailing Perpendicular to Glue Lines (Wide Face)

- For AJS® flange nailing, lateral and withdrawal design values may be determined per the National Design Specification (NDS) for Wood Construction, using a specific gravity of 0.42 .
- Nail spacing shall comply with the minimum spacing requirements prescribed by the NDS for nails installed in sawn lumber.
- AJS® joists may be substituted for sawn lumber framing in horizontal wood diaphragms, as referenced in section 2306.2 of the 2012 International Building Code to Table 4.2A of ANSI/ AF\&PA SDPWS-2002. Reductions in diaphragm values shall be calculated per note 2 using the 0.42 specific gravity value.
- Wood screws may be substituted for nails per approval of the local building official. Consult the fastener manufacturer for diaphragm values.

*18 - 24 inch deep rimboard are special order products, contact local supplier or Boise Cascade representative for product availability.

BOISE CASCADE® Rimboard Properties

Product	Vertical Load Capacity						Maximum Floor Diaphragm Lateral Capacity [$\mathrm{lb} / \mathrm{ft}$]	Specific Gravity for Lateral Nail Design	Allowable Design Values			
	Uniform [plf]			Point [lb]								
	$\begin{gathered} 16 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{gathered} 18 " \& \\ 20 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{gathered} 22^{\prime \prime} \text { \& } \\ 24 "^{\prime \prime} \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$16 "$ Depth \& Less	$\begin{gathered} 18 " \& \\ 20 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$	$\begin{gathered} 22 " \& \\ 24 " \\ \text { Depth } \\ \text { \& Less } \end{gathered}$			Flexural Stress [lb/in²]	Modulus of Elasticity [lb/in²]	Horizonta Shear [lb/in²]	Compression Perpendicular to Grain [lb/in²]
$\begin{aligned} & \text { 1" BOISE CASCADE® } \\ & \text { RIMBOARD (2) \& } \\ & \text { 1" BOISE CASCADE® } \\ & \text { RIMBOARD OSB (2) } \end{aligned}$	3300	1650	1650	3500	3500	3500	180	0.5	Limi	ed span ca	pabilities,	ee note 2
11⁄" BOISE CASCADE® RIMBOARD OSB (2)	4400	3000	3000	3500	3500	3500	180	0.5	Limi	d span ca	pabilities,	see note 2
$\begin{gathered} \text { 15/16" } \\ \text { VERSA-LAM }^{\circledR} 1.41800(1) \end{gathered}$	6000	5450	-	4450	4450	-	Permitted per building code for all nominal 2 " thick framing blocked and unblocked diaphragms (4" nail spacing \& greater)	0.5	1800	1,400,000	225	525
$\begin{gathered} 13 / 4 " \\ \text { VERSA-LAM }{ }^{\circledR} 2.03100 \text { (1) } \end{gathered}$	5700	4300	-	4300	3900	-	Permitted per building code for all nominal 2" thick framing blocked and unblocked diaphragms (4" nail spacing \& greater)	0.5	2800	2,000,000	285	750

	Closest Allowable Nail Spacing - Narrow Face [in]					
Product	$\begin{gathered} 8 \mathrm{~d} \\ \mathrm{Box} \end{gathered}$	8d Common	$\begin{gathered} \text { 10d \& 12d } \\ \text { Box } \end{gathered}$	$\begin{aligned} & 16 d \\ & \text { Box } \end{aligned}$	10d, 12d Common \& 16d Sinker	16d Common
```1" BOISE CASCADE® RIMBOARD (2)```	3	3	-	-	-	-
1 " or $111 / 8^{\prime \prime}$ BOISE CASCADE RIMBOARD OSB (2)	3	3	See note 2 for nailing information			
15/16" VERSA-LAM ${ }^{\circledR} 1.41800{ }^{(1)}$	3	3	3	3	4	6
13/4" VERSA-LAM ${ }^{\text {® }} 2.03100{ }^{(1)}$	2	3	3	3	4	6

## Notes

1. Per ICC ESR-1040.
2. See Performance Rated Rim Boards, APA EWS \#W345K for further product information.
3. Not all products and depths may be available, check with Boise Cascade representative for product availability.


When you specify VERSA-LAM® laminated veneer headers/beams, you are building quality into your design. They are excellent as floor and roof framing supports or as headers for doors, windows and garage doors and columns.

Because they have no camber, VERSA-LAM ${ }^{\circledR}$ LVL products provide flatter, quieter floors, and consequently, the builder can expect happier customers with significantly fewer call backs.

## VERSA-LAM ${ }^{\circledR}$ Beam Architectural Specifications

Scope: This work includes the complete furnishing and installation of all VERSALAM ${ }^{\circledR}$ beams as shown on the drawings, herein specified and necessary to complete the work.

Materials: Southern Pine or Douglas fir veneers, laminated in a press with all grain parallel with the length of the member. Glues used in lamination are phenol formaldehyde and isocyanate exterior-type adhesives which comply with ASTM D2559.

Design: VERSA-LAM ${ }^{\circledR}$ beams shall be sized and detailed to fit the dimensions and loads indicated on the plans. All designs shall be in accordance with allowable values developed in accordance with ASTM D5456 and listed in the governing
code evaluation service's report and section properties based upon standard engineering principles. Verification of design of the VERSA-LAM ${ }^{\circledR}$ beams by complete calculations shall be available upon request.

Drawings: Additional drawings showing layout and detail necessary for determining fit and placement in the buildings are (are not) to be provided by the supplier.

Fabrication: VERSA-LAM ${ }^{\circledR}$ beams shall be manufactured in a plant evaluated for fabrication by the governing code evaluation service and under the supervision of a third-party inspection agency listed by the corresponding evaluation service.

Storage and Installation: VERSALAM ${ }^{\circledR}$ beams, if stored prior to erection, shall be stored on stickers spaced a maximum of 15 ft . apart. Beams shall be stored on a dry, level surface and protected from the weather. They shall be handled with care so they are not damaged.
VERSA-LAM ${ }^{\circledR}$ beams are to be installed in accordance with the plans and Boise Cascade EWP's Installation Guide. Temporary construction loads which cause stresses beyond design limits are not permitted. Erection bracing shall be provided to assure adequate lateral support for the individual beams and the entire system until the sheathing material has been applied.
Codes: VERSA-LAM ${ }^{\circledR}$ beams shall be evaluated by a model code evaluation service.

## Allowable Holes in VERSA-LAM® Beams

## Notes

1. Square and rectangular holes are not permitted.
2. Round holes may be drilled or cut with a hole saw anywhere within the shaded area of the beam.
3. The horizontal distance between adjacent holes must be at least two times the size of the larger hole.
4. Do not drill more than three access holes in any four foot long section of beam.
5. The maximum round hole diameter permitted is:

Beam Depth	Max. Hole Diameter
$51 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$
$71 / 4^{\prime \prime}$	$1 "$
$91 / 4^{\prime \prime}$ and greater	$2 "$


6. These limitations apply to holes drilled for plumbing or wiring access only. The size and location of holes drilled for fasteners are governed by the provisions of the National Design Specification ${ }^{\circledR}$ for Wood Construction.
7. Beams deflect under load. Size holes to provide clearance where required.
8. This hole chart is valid for beams supporting uniform load only. For beams supporting concentrated loads or for beams with larger holes, contact Boise Cascade EWP Engineering.

## VERSA-LAM® Beam Details



VERSA-LAM® Installation Notes

- Minimum of $1 / 2^{\prime \prime}$ air space between beam and wall pocket or adequate barrier must be provided between beam and concrete/masonry
- Adequate bearing shall be provided. If not shown on plans, please refer to load tables in
your region's Specifier Guide.
- VERSA-LAM ${ }^{\circledR}$ beams are intended for interior applications only and should be kept as dry as possible during construction
- Continuous lateral support of top of beam shall be provided (side or top bearing framing).


## Multiple Member Connectors

Side-Loaded Applications								
Number   of   Members	Maximum Uniform Side Load [plf]							
	Nailed		$1 / 2$ " Dia. Through Bolt ${ }^{(1)}$			5/8" Dia. Through Bolt ${ }^{(1)}$		
	$\begin{array}{\|c\|} \hline 2 \text { rows } 16 \mathrm{~d} \\ \text { Sinkers @ } \\ 12^{\prime \prime} \text { o.c. } \end{array}$	3 rows 16 d   Sinkers @ 12" o.c.	2 rows @ 24" o.c. staggered	$\begin{aligned} & \hline 2 \text { rows @ } \\ & \text { 12" o.c. } \\ & \text { staggered } \end{aligned}$	2 rows @ 6" o.c. staggered	$\begin{aligned} & \hline 2 \text { rows @ } \\ & 24 \text { " o.c. } \\ & \text { staggered } \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \text { rows @ } \\ 12 " \text { o.c. } \\ \text { staggered } \end{array}$	2 rows @ 6" o.c. staggered
13/4" VERSA-LAM ${ }^{\text {® }}$ (Depths of 18" and less)								
2	470	705	505	1010	2020	560	1120	2245
$3{ }^{(2)}$	350	525	375	755	1515	420	840	1685
4(3)	use bolt schedule		335	670	1345	370	745	1495
3½" VERSA-LAM ${ }^{\text {® }}$								
2(3)	use bolt schedule		855	1715	N/A	1125	2250	N/A
13/4" VERSA-LAM ${ }^{\circledR}$ (Depths of 24")								
$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Members } \end{array}\right\|$	Nailed		½ Dia. Through Bolt ${ }^{(1)}$			5/8" Dia. Through Bolt ${ }^{(1)}$		
	$\begin{array}{\|c\|} \hline 3 \text { rows 16d } \\ \text { Sinkers @ } \\ 12 " \text { o.c. } \\ \hline \end{array}$	4 rows 16d Sinkers @ 12" o.c.	$\begin{array}{\|l\|} \hline 3 \text { rows @ } \\ 24 " \text { o.c. } 8 \\ \text { staggered } \end{array}$	$\begin{aligned} & \hline 3 \text { rows @ } \\ & \text { 18" o.c. 6" } \\ & \text { staggered } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 3 \text { rows @ } \\ 12 " \text { ".c. } \mathbf{4 "}^{\prime} \\ \text { staggered } \end{array}$	$\begin{array}{\|l\|} \hline 3 \text { rows @ } \\ 24 " \text { o.c. } 8 " \\ \text { staggered } \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline 3 \text { rows @ } \\ 18 " \text { o.c. }{ }^{\prime \prime} \\ \text { staggered } \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline 3 \text { rows @ } \\ 12 " \text { o.c. } 4^{\prime \prime} \\ \text { staggered } \\ \hline \end{array}$
2	705	940	755	1010	1515	840	1120	1685
3(2)	525	705	565	755	1135	630	840	1260
$4{ }^{(3)}$	use bolt	schedule	505	670	1010	560	745	1120

1. Design values apply to common bolts that conform to ANSI/ ASME standard B18.21-1981 (ASTM A307 Grades A\&B, SAE J429 Grades 1 or 2 , or higher). A washer not less than a standard cut washer shall be between the wood and the bolt head and between the wood and the nut. The distance from the edge of the beam to the bolt holes must be at leas
$2^{\prime \prime}$ for $1 / 2$ bolts and $2^{1} / 2$ " for $5 / 8$ " bolts. Bolt holes shall be the same diameter as the bolt.
2. The nail schedules shown apply to both sides of a 3 -member beam.
3. 7" wide beams must be top-loaded or loaded from both sides (lesser side shall be no less than $25 \%$ of opposite side).

## Top-Loaded Applications

Plies	Depth	Nailing	Maximum Uniform Load From One Side
(2) $13 / 4 \mathrm{l}$ plies	Depths $117 / 8$ \& less	2 rows 16d box/sinker nails @ 12" o.c.	400 plf
	Depths 14" - 18"	3 rows 16d box/sinker nails @ 12" o.c.	600 plf
	Depth $=24{ }^{\prime \prime}$	4 rows 16d box/sinker nails @ 12" o.c.	800 plf
(3) $13 / 4$ " plies	Depths $117 / 8{ }^{\text {" }}$ \& less	2 rows 16d box/sinker nails @ 12" o.c., both sides	300 plf
	Depths 14"-18"	3 rows 16d box/sinker nails @ 12" o.c., both sides	450 plf
	Depth $=24{ }^{\prime \prime}$	4 rows 16d box/sinker nails @ 12" o.c., both sides	600 plf
(4) $13 / 4$ " plies	Depths 18" \& less	2 rows $1 / 2$ " bolts @ 24" o.c., staggered	335 plf
	Depth = 24"	3 rows $1 / 2$ " bolts @ 24" o.c., staggered every 8"	505 plf
(2) $3112 / \mathrm{plies}$	Depths 18" \& less	2 rows $1 / 2$ " bolts @ 24" o.c., staggered	855 plf
	Depth 20" - 24"	3 rows $1 / 2$ " bolts @ 24" o.c., staggered every 8"	1285 plf

1. Beams wider than 7 " must be designed by the engineer of record.
2. All values in these tables may be increased by $15 \%$ for snow-load roofs and by $25 \%$ for non-snow load roofs where the building code allows.
3. Use allowable load tables or BC CALC® software to size beams.
4. An equivalent specific gravity of 0.5 may be used when designing specific connections with VERSA-LAM ${ }^{\circledR}$
5. Connection values are based upon the 2012 NDS.
6. FastenMaster TrussLok, Strong-Tie SDS and SDW, and USP WS screws may also be used to connect multiple member VERSALAM ${ }^{\circledR}$ beams, contact Boise Cascade EWP Engineering for urther information

## Designing Connections for Multiple VERSA-LAM ${ }^{\circledR}$ Members

When using multiple ply VERSA-LAM ${ }^{\circledR}$ beams to create a wider member, the connection of the plies is as critical as determining the beam size. When side loaded beams are not connected properly, the inside plies do not support their share of the load and thus the load-carrying capacity of the full member decreases significantly. The following is an example of how to size and connect a multiple-ply VERSA-LAM ${ }^{\circledR}$ floor beam.

Given: Beam shown below is supporting residential floor load (40 psf live load, 10 psf dead load) and is spanning $16^{\prime}-0^{\prime \prime}$. Beam depth is limited to $14^{\prime \prime}$


Find: A multiple $13 / 4$ " ply VERSA-LAM ${ }^{\circledR}$ that is adequate to support the design loads and the member's proper connection schedule.

1. Calculate the tributary width that beam is supporting: $14^{\prime} / 2+18^{\prime} / 2=16^{\prime}$
2. Use PLF tables on page 40 of ECG or BC CALC ${ }^{\circledR}$ to size beam. A Triple VERSA-LAM ${ }^{\oplus} 2.0310013 / 4^{\prime \prime} \times 14^{\prime \prime}$ is found to adequately support the design loads
3. Calculate the maximum plf load from one side (the right side in this case)

Max. Side Load $=\left(18^{\prime} / 2\right) \times(40+10 \mathrm{psf})=450$ plf
4. Go to the Multiple Member Connection Table, Side-Loaded Applications, $13 / 4$ " VERSA-LAM ${ }^{\circledR}$, 3 members.
5. The proper connection schedule must have a capacity greater than the max. side load:

Nailed: 3 rows 16 d sinkers @ 12" o.c: 525 plf is greater than 450 plf OK Bolts: $1 / 2{ }^{\prime \prime}$ diameter 2 rows @ 12" staggered: 755 plf is greater than 450 plf OK

## Heavy Storage: 250 psf Live Load / 25 psf Dead Load

	1½' VERSA-LAM ${ }^{\circledR} 1.72650$				1½" VERSA-LAM® 1.72650					13/4" VERSA-LAM ${ }^{\circledR} 2.03100$			
Sp	$71 / 4$	91/4	111/4	14	71/4	91/2	117/8	14	16	91/2	117/8	14	16
12	7'-8"	9'-10"	12'-0"	15'-0"	8'-1'	10'-8"	13'-4"	15'-9"	18'-1"	11'-3"	14'-1"	16'-8'	19'-1"
$16^{\prime \prime}$	7'-0'	8'-11"	10'-11"	13'-7"	7'-4"	9'-8"	12'-1'	14'-4"	16'-5"	10'-3'	12'-10"	15'-1"	17'-4'
19.2"	$6^{\prime}-7{ }^{\prime \prime}$	8'-5"	10'-3"	12'-9"	6'-11'	9'-1"	11'-5"	13'-6"	15'-5"	9'-7"	12'-0"	14'-3"	16'-3"
$24 "$	5'-10"	7'-6"	9'-1"	11'-4"	6'-5"	8'-5'	10'-7"	12'-6"	14'-3"	8'-11"	11'-2"	13'-2"	15'-1"

- Loading based upon Heavy Storage - Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of L/240. Live load deflection limited to L/600 with 50 psf, L/360 with 250 psf.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.
- Table values assume web stiffeners at each bearing location, minimum $21 / 4$ " end bearing.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\circledR}$ sizing software.
- Table based upon bearing supports of $2 \times 6$ framing.
- Bold spans indicate applications where bearing wider than $2 \times 6$ framing may be needed at intermediate supports.


## Light Storage: 125 psf Live Load / 25 psf Dead Load

O.C. Spacing	1½ VERSA-LAM ${ }^{\circledR} 1.72650$				13/4" VERSA-LAM ${ }^{\circledR} 1.72650$					13/4" VERSA-LAM® ${ }^{\text {® }} 2.03100$			
	$71 / 4$	91/4	111/4	14	$71 / 4$	91/2	117/8	14	16	91/2	117/8	14	16
12"	9'-9"	12'-5"	15'-2"	18'-11"	10'-3"	13'-6"	16'-10"	19'-11"	22'-9"	14'-3"	17'-10"	21'-0"	24'-1'
$16 "$	8'-10"	11'-3"	13'-9"	17'-2"	9'-3'	12'-3"	15'-4"	18'-1"	20'-8"	12'-11"	16'-2"	19'-1"	21'-10"
19.2"	8'-3'	10'-7"	12'-11"	16'-2"	8'-9"	11'-6"	14'-5"	17'-0"	19'-5"	12'-2"	15'-2"	17'-11"	20'-6"
$24 "$	7'-8"	9'-10"	12'-0"	15'-0"	8'-1'	10'-8"	13'-4"	15'-9"	18'-1"	11'-3"	14'-1"	16'-8"	19'-1"

- Loading based upon Light Storage - Table 1607.1 of 2009/2012 International Building Code.
- Spans limited by allowable moment and reaction values, total load deflection of $\mathrm{L} / 240$. Live load deflection limited to L/600 with 50 psf, L/360 with 125 psf.
- Table values represent the most restrictive of simple or multiple span applications.
- Table values are the maximum allowable clear distance between supports.

Table values assume web stiffeners at each bearing location, minimum $2 \frac{1}{4}$ " end bearing.

- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® ${ }^{\circledR}$ sizing software.
- Table based upon bearing supports of $2 \times 6$ framing.
- Bold spans indicate applications where bearing wider than $2 \times 6$ framing may be needed at intemediate supports.


# VERSA-LAM® 2.03100 (100\% Load Duration) 



- Total Load values are limited by shear, moment or deflection equal to L/240. Total Load values are the capacity of the beam in addition to its own weight.
Live Load values are limited by deflection equal to $L / 360$. Check the local building code for other deflection limits that may apply.
Where a Live Load value is not shown, the Total Load value will control.
- Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
- Table values assume that lateral support is provided at each support and continuously along the top edge and applicable compression edges of the beam.
- Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations, such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.
- For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
- $13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.
- This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.


## VERSA-LAM® 2.03100 (115\% Load Duration)

			KEY TO TABLE					Top Figure			Allowable Total Load [plf]													
								Middle Figure - Allowable Live Load [plf]																
								Bottom Figures			Minimum Required Bearing Length at End / Intermediate Supports [inches]													
Span [ft]	13/4" VERSA-LAM ${ }^{\text {® }} 2.03100$				Double Ply 13/4" VERSA-LAM ${ }^{\oplus} 2.03100$ or 3½" VERSA-LAM 2.03100							Triple Ply 13/4" VERSA-LAM ${ }^{\circledR} 2.03100$ or 5¼" VERSA-LAM 2.03100							Quadruple Ply $13 / 4^{\prime \prime}$ VERSA-LAM ${ }^{\circledR} 2.03100$ or 7" VERSA-LAM 2.03100					
	71/4"	91⁄2"	117/8"	14"	71/4"	9112"	117/8"	14"	16"	18"	24"	91⁄2"	117/8"	14"	16"	18"	20"	24"	117/8"	$14 "$	16"	18"	20"	24"
6	878	1223	1639	2065	1755	2446	3278	4130	5047	5232	5226	3669	4917	6195	7570	7848	7845	7838	6556	8260	10094	10463	10459	10451
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2/5	2.8/7	3.8/9.4	4.7/11.8	2/5	2.8/7	3.8/9.4	4.7111 .8	5.8/14.5	6/15	6/15	2.8/7	3.8/9.4	4.7/11.8	5.8/14.5	6/15	6/15	6/15	3.8/9.4	7/111.8	.8/14.5	6/15	6/15	6/15
8	598	858	1126	1389	1197	1717	2252	2779	3321	3915	3913	2575	3379	4168	4981	5872	5876	5870	4505	5558	6642	7829	7834	7826
	482	-	-	-	965	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1.8/4.6	2.6/6.6	3.5/8.6	4.3/10.6	1.8/4.6	2.6/6.6	3.5/8.6	4.3/10.6	1/12.7	6/15	6/15	2.6/6.6	3.5/8.6	3/10.6	1/12.7	6/15	6/15	6/15	3.5/8.6	3/10.	.1/12.7	6/15	6/15	6/15
10	326	637	857	1046	651	1274	1714	2092	2472	2880	3126	1912	2571	3138	3709	4320	4695	4688	3429	4184	4945	5759	6259	6251
	247	556	-	-	494	1111	-	-	-	-	-	1667	-	-	-	-	-	-	-	-	-	-	-	-
	1.5/3.1	2.4/6.1	3.3/8.2	4/10	1.5/3.1	2.4/6.1	3.3/8.2	4/10	4.7/11.9	5/13.8	6/15	2.4/6.1	3.3/8.2	4/10	4.7/11.9	5/13.8	6/15	6/15	3.3/8.2	4/10	4.7/11.9	5/13.8	6/15	6/15
11	244	526	765	931	487	1052	1531	1861	2192	2543	2839	1577	2296	2792	3288	3814	4265	4259	3062	3723	4383	5085	5687	5679
	186	418	-	-	371	835	-	-	-	-	-	1253	-	-	-	-	-	-	-	-	-	-	-	-
	1.5/3	2.2/5.6	3.2/8.1	3.9/9.8	1.5/3	2.2/5.6	3.2/8.1	3.9/9.8	.6/11.6	4/13.4	6/15	2.2/5.6	3.2/8.1	3.9/9.8	.6/11.65	4/13.4	6/15	6/15	3.2/8.1	3.9/9.8	4.6/11.6	4/13.4	6/15	6/15
12	187	424	674	838	374	848	1347	1676	1968	2276	2601	1272	2021	2514	2952	3414	3903	3901	2694	3353	3936	4552	5203	5201
	143	322	628	-	286	643	1256	-	-	-	-	965	1884	-	-	-	-	-	2512	-	-	-	-	-
	1.5/3	2/4.9	3.1/7.8	3.9/9.7	1.5/3	2/4.9	3.1/7.8	3.9/9.7	4.5/11.3	2/13.1	6/15	2/4.9	3.1/7.8	3.9/9.7	4.5/11.3	5.2/13.1	6/15	6/15	3.1/7.8	3.9/9.7	4.5/11.3	.2/13.1	6/15	6/15
13	146	332	573	762	292	665	1146	1524	1785	2060	2399	997	1719	2287	2678	3089	3522	3598	2292	3049	3571	4119	4696	4797
	112	253	494	-	225	506	988	-	-	-	-	759	1482	-	-	-	-	-	1976	-	-	-	-	-
	1.5/3	1.7/4.2	2.9/7.2	3.8/9.5	1.5/3	1.7/4.2	2.9/7.2	2 3.8/9.5	4.5/11.2	5.1/12.9	6/15	1.7/4.2	2.9/7.2	3.8/9.5	4.5/11.2	5.1/12.95	5.9/14.7	6/15	2.9/7.2	3.8/9.5	4.5/11.2	5.1/12.95	.9/14.7	6/15
14	116	265	493	674	233	530	987	1349	1634	1880	2226	796	1480	2023	2450	2821	3208	3338	1973	2697	3267	3761	4278	4451
	90	203	396	648	180	405	791	1296	-	-	-	608	1187	1944	-	-	-	-	1582	2593	-	-	-	-
	1.5/3	1.5/3.6	2.7/6.7	3.6/9.1	1.5/3	1.5/3.6	$2.7 / 6.7$	7 3.6/9.1	4.4/11	5.1/12.7	6/15	1.5/3.6	2.716.7	3.6/9.1	4.4/11	5.1/12.75	5.8/14.4	6/15	2.716.7	3.6/9.1	4.4/11	5.1/12.75	.8/14.4	6/15
15	94	215	423	586	188	429	846	1173	1505	1730	2076	644	1268	1759	2258	2595	2946	3113	1691	2346	3011	3459	3928	4151
	73	165	322	527	146	329	643	1054	-	-	-	494	965	1581	-	-	-	-	1286	2108	-	-	-	-
	1.5/3	1.5/3.1	2.5/6.1	3.4/8.5	1.5/3	1.5/3.1	2.5/6.1	$13.4 / 8.5$	4.3/10.9	5/12.5	6/15	1.5/3.1	2.5/6.1	3.4/8.5	4.3/10.9	5/12.5	5.7/14.2	6/15	2.5/6.1	3.4/8.5	4.3/10.9	5/12.5	5.7/14.2	6/15
16	77	176	347	515	153	352	695	1029	1327	1601	1944	528	1042	1544	1990	2402	2723	2917	1389	2058	2653	3202	3630	3889
	60	136	265	434	121	271	530	868	1296	-	-	407	795	1303	1944	-	-	-	1060	1737	2593	-	-	-
	1.5/3	1.5/3	2.2/5.4	3.2/7.9	1.5/3	1.5/3	2.2/5.4	4 3.2/7.9	4.1/10.2	4.9/12.3	6/15	1.5/3	2.2/5.4	3.2/7.9	4.1/10.2	4.9/12.3	5.6/14	6/15	2.2/5.4	3.2/7.9	4.1/10.2	.9/12.3	5.6/14	6/15
17	63	146	289	455	127	292	577	910	1173	1468	1829	438	866	1365	1760	2201	2531	2743	1154	1820	2346	2935	3374	3657
	50	113	221	362	101	226	442	724	1081	-	-	339	663	1086	1621	-	-	-	884	1448	2161	-	-	-
	1.5/3	1.5/3	1.9/4.8	3/7.5	1.5/3	1.5/3	1.9/4.8	3/7.5	3.9/9.6	4.8/12	6/15	1.5/3	1.9/4.8	3/7.5	3.9/9.6	4.8/12	5.5/13.8	6/15	1.9/4.8	3/7.5	3.9/9.6	4.8/12	5/13.8	6/15
18	53	122	242	399	106	244	484	799	1045	1307	1726	367	726	1198	1567	1961	2364	2588	968	1598	2089	2614	3151	3451
	42	95	186	305	85	191	372	610	910	1296	-	286	558	915	1366	1944	-	-	744	1220	1821	2593	-	-
	1.5/3	1.5/3	1.7/4.3	2.8/7	1.5/3	1.5/3	1.7/4.3	2.8/7	3.6/9.1	4.5/11.4	6/15	1.5/3	1.7/4.3	2.8/7	3.6/9.1	4.5/11.45	5.5/13.7	6/15	1.7/4.3	2.8/7	3.6/9.1	4.5/11.4	.5/13.7	6/15
19		103	205	339	89	206	410	677	936	1171	1634	310	615	1016	1404	1757	2147	2450	820	1354	1872	2342	2862	3267
		81	158	259	72	162	316	519	774	1102	-	243	475	778	1161	1653	-	-	633	1037	1548	2204	-	-
		1.5/3	1.5/3.8	2.5/6.3	1.5/3	1.5/3	1.5/3.8	2.5/6.3	3.4/8.6	4.3/10.8	6/15	1.5/3	1.5/3.8	2.5/6.3	3.4/8.6	4.3/10.85	5.3/13.1	6/15	1.5/3.8	2.5/6.3	3.4/8.6	4.3/10.85	.3/13.1	6/15
20		88	175	289	75	176	350	579	843	1055	1551	263	525	868	1265	1583	1934	2326	699	1157	1686	2110	2579	3101
		69	136	222	62	139	271	445	664	945	-	208	407	667	996	1418	-	-	543	889	1327	1890	-	-
		1.5/3	1.5/3.4	2.3/5.6	1.5/3	1.5/3	1.5/3.4	2.3/5.6	3.3/8.2	4.1/10.2	6/15	1.5/3	1.5/3.4	2.3/5.6	3.3/8.2	4.1/10.2	5/12.5	6/15	1.5/3.4	2.3/5.6	3.3/8.2	4.1/10.2	5/12.5	6/15
22		65	130	216	54	130	260	431	649	869	1407	194	390	647	973	1303	1593	2111	520	862	1297	1738	2124	2815
		52	102	167	46	104	204	334	499	710	-	157	306	501	748	1065	1461	-	408	668	997	1420	1948	-
		1.5/3	1.5/3	1.9/4.7	1.5/3	1.5/3	1.5/3	1.9/4.7	2.8/7	3.7/9.3	6/15	1.5/3	1.5/3	1.9/4.7	2.8/7	3.7/9.3	4.5/11.3	6/15	1.5/3	1.9/4.7	2.8/7	3.7/9.3	4.5/11.3	6/15
24			99	164		98	197	329	496	711	1259	146	296	493	744	1066	1334	1889	395	658	992	1422	1779	2518
			79	129		80	157	257	384	547	-	121	236	386	576	820	1125	-	314	515	768	1094	1500	-
			1.5/3	1.6/3.9		1.5/3	1.5/3	1.6/3.9	2.3/5.9	3.3/8.3	5.9/14.7	1.5/3	1.5/3	1.6/3.9	2.3/5.9	3.3/8.3	4.2/10.45	5.9/14.7	1.5/3	1.6/3.9	2.3/5.9	3.3/8.3	4.2/10.45	5.9/14.7
26			76	128		75	153	256	387	555	1069	112	229	383	580	833	1132	1604	305	511	773	1110	1510	2139
			62	101		63	124	202	302	430	1020	95	185	304	453	645	885	1529	247	405	604	860	1180	2039
			1.5/3	1.5/3.3		1.5/3	1.5/3	1.5/3.3	$2 / 5$	2.8/7.1	5.4/13.5	1.5/3	1.5/3	1.5/3.3	$2 / 5$	2.8/7.1	3.8/9.6	5.4/13.5	1.5/3	1.5/3.3	$2 / 5$	2.8/7.1	3.8/9.6 5	5.4/13.5
28			60	101		58	120	202	306	441	919	87	180	303	459	661	914	1378	240	404	612	882	1219	1837
			49	81		51	99	162	242	344	816	76	148	243	363	517	709	1224	198	324	484	689	945	1633
			1.5/3	1.5/3		1.5/3	1.5/3	1.5/3	1.7/4.3	2.4/6.1	5/12.6	1.5/3	1.5/3	1.5/3	1.7/4.3	2.4/6.1	3.4/8.4	5/12.6	1.5/3	1.5/3	1.7/4.3	2.4/6.1	3.4/8.4	5/12.6
30				81			95	161	246	355	797	68	143	242	369	533	738	1196	190	323	492	710	984	1594
				66			80	132	197	280	664	62	121	198	295	420	576	996	161	263	393	560	768	1327
				1.5/3			1.5/3	1.5/3	1.5/3.7	2.1/5.3	4.7/11.7	1.5/3	1.5/3	1.5/3	1.5/3.7	2.1/5.3	2.9/7.3	4.7/11.7	1.5/3	1.5/3	1.5/3.7	2.1/5.3	2.9/7.3	4.7/11.7

[^0]
## VERSA-LAM ${ }^{\circledR}$ Roof Load Tables

## VERSA-LAM ${ }^{\circledR} 2.03100$ (125\% Load Duration)



[^1] edge and applicable compression edges of the beam.

# VERSA-LAM ${ }^{\circledR}$ Allowable Nailing and Design Values 

## Closest Allowable Nail Spacing

VERSA-LAM ${ }^{\circledR}$ \& VERSA-RIM ${ }^{\circledR}$ Products

Nail Size							Nailing Perpendicular to Glue Lines (Wide Face)	
	$\begin{gathered} \text { VERSA-LAM } ® \\ 1.4 \text { 1800 Rimboard } \\ 15 / 16^{\prime \prime} \end{gathered}$		$\underset{13 / 4^{\prime \prime}}{\text { VERSA }^{\circledR}}$		VERSA-LAM ${ }^{\circledR}$ 3½" \& Wider		All Products	
	O.C. [inches]	End [inches]	$\begin{gathered} \text { O.C. } \\ \text { [inches] } \end{gathered}$	End [inches]	$\begin{aligned} & \text { O.C. } \\ & \text { [inches] } \end{aligned}$	End [inches]	$\begin{aligned} & \text { O.C. } \\ & \text { [inches] } \end{aligned}$	End [inches]
8d Box	3	$11 / 2$	2	1	2	$1 / 2$	2	1/2
8d Common	3	2	3	2	2	1	2	1
10d \& 12d Box	3	2	3	2	2	1	2	1
16d Box	3	2	3	2	2	1	2	1
10d \& 12d Common	4	3	4	3	2	2	2	2
16d Sinker	4	3	4	3	2	2	2	2
16d Common	6	4	6	3	2	2	2	2

- Offset and stagger nail rows from floor sheathing and wall sole plate.
- Simpson Strong-Tie A35 and LPT4 connectors may be attached to the side VERSA-LAM ${ }^{\circledast} /$ VERSA-RIM ${ }^{\oplus}$. Use nails as specified by Simpson Strong-Tie.

Nailing Parallel to Glue Lines
(Narrow Face)


Nailing Perpendicular to Glue Lines (Wide Face)
Nailing Notes

1) For $13 / 4$ " thickness and greater, 2 rows of nails (such as for a metal strap) are allowed (use $1 / 2^{\prime \prime}$ minimum offset between rows and stagger nails).

## VERSA-LAM ${ }^{\circledR}$ Design Values

Grade	Width [in]	Depth [in]	Weight [lb/ft]	Allowable Shear [lb]	Allowable Moment [ft-lb]	Moment of Inertia [in4]	Grade	Width [in]	Depth   [in]	Weight [lb/ft]	Allowable Shear [lb]	Allowable Moment [ft-lb]	Moment of Inertia [in4]
	11/2	3112	1.5	998	776	5.4		$51 / 4$	$51 / 4$	8.0	5237	6830	63.3
		$51 / 2$	2.4	1568	1821	20.8			51/2	8.4	5486	7457	72.8
									71/4	11.0	7232	12566	166.7
		71/4	3.2	2066	3069	47.6			91/4	14.1	9227	19908	346.3
		$31 / 2$	1.8	1164	1058	6.3			91/2	14.5	9476	20937	375.1
		51/2	2.8	1829	2486	24.3							
		711/4	3.7	2411	4189	55.6			111/4	17.1	11222	28814	622.9
		91/4	4.7	3076	6636	115.4			117/8	18.1	11845	31913	732.6
		91/2	4.8	3159	6979	125.0			14	21.3	13965	43552	1200.5
	$13 / 4$	111/4	5.7	3741	9605	207.6			16	24.4	15960	56046	1792.0
		117/8	6.0	3948	10638	244.2							
		14	7.1	4655	14517	400.2			18	27.4	17955	70011	2551.5
		16	8.1	5320	18682	597.3			20	30.4	19950	85428	3500.0
		18	9.1	5985	23337	850.5			24	36.5	23940	120549	6048.0
		24	12.2	7980	40183	2016.0			911/4	16.6	12303	26544	461.7
		51/2	5.6	3658	4971	48.5			9112	17.1	12635	27916	500.1
		$71 / 4$	7.4	4821	8377	111.1			9/2	17.1	12635	27916	
		91/4	9.4	6151	13272	230.8			111/4	20.2	14963	38419	830.6
		91/2	9.6	6318	13958	250.1			117/8	21.4	15794	42550	976.8
	$311 / 2$	111/4	11.4	7481	19210	415.3		7	14	25.2	18620	58069	1600.7
	$31 / 2$	117/8	12.1	7897	21275	488.4			16	28.8	21280	74728	2389.3
		14	14.2	9310	29035	800.3			18	32.4	23940	93348	3402.0
		16	16.2	10640	37364	1194.7							
		18	18.3	11970	46674	1701.0			20	36.0	26600	113904	4666.7
		20	20.3	13300	56952	2333.3			24	43.2	31920	160732	8064.0


		Modulus of Elasticity	Bending	Horizontal Shear	Tension Parallel to Grain	Compression Parallel to Grain	Compression Perpendicular to Grain	Equivalent Specific Gravity for Fastener Design
Design Property	Grade	$\mathrm{E}\left(\mathrm{x} 10^{6} \mathrm{psi}\right)^{(1)}$	$\mathrm{F}_{\mathrm{b}}(\mathrm{psi})^{(2)(3)}$	$\mathrm{F}_{\mathrm{v}}(\mathrm{psi})^{(2)(4)}$	$\mathrm{F}_{\mathrm{t}}(\mathrm{psi})^{(2)(5)}$	$\mathrm{F}_{\text {cll }}(\mathrm{psi})^{(2)}$	$\mathrm{F}_{\mathrm{c}} \perp(\mathrm{psi})^{(1)(6)}$	(SG)
VERSA-LAM® Beams	2.03100	2.0	3100	285	2150	3000	750	0.5
VERSA-LAM® Studs	1.72650	1.7	2650	285	1650	3000	750	0.5
VERSA-LAM ${ }^{\text {® }}$ Columns	1.82750	1.8	2750	285	1825	3000	750	0.5

1. This value cannot be adjusted for load duration.
2. This value is based upon a load duration of $100 \%$ and may be adjusted for other load durations.
3. Fiber stress bending value shall be multiplied by the depth factor, $(12 / \mathrm{d})^{1 / 9}$ where $\mathrm{d}=$ member depth [in].
4. Stress applied perpendicular to the gluelines.

Boise Cascade EWP • ALLJOIST® Commercial Specifier Guide 01/09/2015 r9/29/2017
5. Tension value shall be multiplied by a length factor, (4/L) $)^{1 / 8}$ where L $=$ member length $[\mathrm{ft}]$. Use $\mathrm{L}=4$ for members less than four feet long.
6. Stress applied parallel to the gluelines.

* Design properties are limited to dry conditions of use where the maximum moisture content of the material will not exceed $16 \%$.



## VERSA-STUD® 1.72650

## Allowable Design Values

Product	Bending   $\mathrm{F}_{\mathrm{b}}[\mathrm{psi}]$	Compression   Parallel to Grain   $\mathrm{F}_{\mathrm{c}}[\mathrm{psi}]$	Modulus of   Elasticity   $\mathrm{E}[\mathrm{psi}]$	Horizontal   Shear   $\mathrm{F}_{\mathrm{v}}[\mathrm{psi}]$
VERSA-STUD® 1.7 2650	$\mathbf{2 6 5 0}$	$\mathbf{3 0 0 0}$	$\mathbf{1 , 7 0 0 , 0 0 0}$	$\mathbf{2 8 5}$
Spruce Pine Fir (North) \# 1/2 Grade	875	1150	$1,400,000$	135
Hem-Fir\# Grade	850	1300	$1,300,000$	150
Western Woods \# 2 Grade	675	900	$1,000,000$	135

## Notes:

- Design values are for loads applied to the narrow face of the studs.
- Dimension lumber values taken from 2012 NDS Supplement: Design Values for Wood Construction (per 2012 IBC/IRC).
- Repetitive member and size factors have not been applied.

For further design information, please see VERSA-STUD 1.72650 Eastern Tall Wall Guide.

## BC FRAMER

New BC FRAMER ${ }^{\circledR}$ represents a huge technological leap to help you improve the efficiency and profitability of your engineered wood products business. Boise Cascade will provide you what we believe is now the industry's best design software, offering far greater productivity than even our current version of BC FRAMER®. This new software package will help your design department work faster and accomplish more. You don't get paid to do drawings, but at least now you can do them in less time, and better.

- Shrink design time with BC FRAMER® model sharing.
- Save time \& prevent mistakes with best-in-industry file integration.
- Experience the efficiencies of BC FRAMER® whole house modeling.
- Draw floor and wall plans simultaneously with BC FRAMER ${ }^{\circledR}$ :
- Check the plan every possible way with BC FRAMER ${ }^{\circledR}$ full 3-D viewer.
- Create a master plan and multiple options that can be quickly selected and exported to a plot-specific file in a few minutes a fraction of the time it could have taken in the past.
Information can also be obtained at 1-800-405-5969 or email us at EWPSupport@BC.com.



## BC CALC® Sizing Software

This generation of BC CALC® was redesigned from the ground up with a focus on productivity and expanded functionality. BC CALC® ${ }^{\circledR}$ performs engineering analysis to help our customers size beams, joists, columns, studs and tall walls for their building projects. It is simple to use, yet flexible enough to analyze a variety of common applications. The user enters the member geometry, adds loads, holes and other relevant data and then selects a product for analysis. The program helps the user identify which of Boise Cascade's engineered wood products meet the demands of the application.
After the analysis has been run, the user can create an easy-toread PDF design report that clearly shows important span and load information as well as the analysis results.

Boise Cascade has
provided BC CALC® free of charge to the design community since 1994.


Analysis for Engineered Wood Products

## COMPUTER REQUIREMENTS

BC CALC ${ }^{\circledR}$ is now a web-based application available online and can be used on Windows or Apple operating systems via Internet Explorer, Edge, Chrome or Safari browsers. Additionally, iOS and Android tablets are now supported. For questions regarding BC CALC ${ }^{\circledR}$, call 1-800-405-5969 or email EWPSupport@BC.com.


Boise Cascade EWP • ALLJOIST® Commercial Specifier Guide 01/09/2015 r9/29/2017

Single Joist - Top Flange						Single Joist - Face Mount						Face Mount Skewed $45^{\circ}$ Joist Hanger										
JoistDepth												Joist Depth			SUR/L							
	AJS®	Hanger	$\begin{aligned} & \text { Capacity } \\ & {[\mathrm{lbs}]} \end{aligned}$	Header	ailing	Joist Depth	AJS®	Hanger	Capacity [lbs]	Header	$\text { ailing }_{\text {Joist }}$											
91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	ITS2.56/9.5	1006	6-10d	-	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	IUS2.56/9.5	950	8-10d	-		AJS®	Hanger	Capacity [lbs]		Nailing					
																Head						
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	ITS3.56/9.5	1006	6-10d	-		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	IUS3.56/9.5	1006	10-10d	-	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SUR/L2.56/9	1139	14-16d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$					
117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	ITS2.56/11.88	1020	6-10d	-	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	IUS2.56/11.88	1020	10-10d	-		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	SUR/L410	1076	14-16d	6-16d					
	25						25					117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SUR/L2.56/11	1174	16-16d	$2-10 \mathrm{dx} 1$ 1/2"					
	30	ITS3.56/11.88	1020	6-10d	-		30	IUS3.56/11.88	1020	12-10	-		25	SUR/L410	1101	14-16d	6-16d					
14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	ITS2.56/14	1032	6-10d	-	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	IUS2.56/14	1032	12-10d	-	14"	$\begin{gathered} 30 \\ 20 \\ 190 \end{gathered}$	SUR/L2.56/14	1204	18-16d	$2-10 \mathrm{~d} \times 11 / 2^{\prime \prime}$					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	ITS3.56/14	1032	6-10d	-		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	IUS3.56/14	1032	12-10d	-		25 30	SUR/L414	1123	18-16d	8-16d					
16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	ITS2.56/16	1048	6-10d	-	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	IUS2.56/16	1048	14-10d	-	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SUR/L2.56/14	1235	18-16d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	ITS3.56/16	1048	6-10d	-		25 30	IUS3.56/16	1048	14-10d	-		25 30	SUR/L414	1127	18-16d	8-16d					
Double Joist - Top Flange						Double Joist - Face Mount						Field Slope and Skew Joist Hanger										
												Joist Depth										
Joist	AJS®	Hanger	Capacity	Nailing								AJS®	Hanger	Capacity [lbs]	Nailing							
Depth		Hanger		Header	Joist	Joist   Depth			[lbs]	Header	Joist					Header	Joist					
91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIT39.5-2	2125	8-16d	2-10dx11⁄2"	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIU5.12/9	2125	16-16d	2-10dx11⁄2"		$91 / 2$ "	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSUH310	1480	14-10d	$12-10 \mathrm{dx} 1^{112}{ }^{\prime \prime}$				
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	B7.12/9.5	2720	14-16d	6-16d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	HU410-2	2680	18-16d	8-16d	$\begin{aligned} & 25 \\ & 30 \end{aligned}$		LSSU410	1480	14-10d	12-10dx $1^{1 / 2}{ }^{\prime \prime}$					
117/8"	20	MIT311.88-2	2170	8-16d	2-10dx11⁄2 ${ }^{\text {" }}$	117/8"	20	MIU5.12/11	2170	20-16d	$2-10 \mathrm{dx1} 11 / 2^{\prime \prime}$	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSUH310	1595	14-10d	12-10dx11⁄2"					
	190 25	B7.12/11.88	2930	14-16d	6-16d			HU412-2	2930	22-16d	8-16d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	LSSU410	1595	14-10d	12-10dx $1^{1 / 2}{ }^{\prime \prime}$					
	30						30					14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSUH310	1600	14-10d	12-10dx11/2"					
14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIT314-2	2210	8-16d	$2-10 \mathrm{dx1} 1 / 2^{\prime \prime}$	$14 "$	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIU5.12/14	2210	22-16d	2-10dx11⁄2"		190 25 30	LSSU410	1625	14-10d	$12-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	B7.12/14	3120	14-16d	6-16d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	HU414-2	3120	26-16d	12-16d	$16 "$	$\begin{gathered} 20 \\ 190 \end{gathered}$	-	-	-	-					
16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIT5.12/16	2255	8-16d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$	$16 "$	$\begin{gathered} 20 \\ 190 \end{gathered}$	MIU5.12/16	2255	24-16d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$		25 30	-	-	-	-					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	B7.12/16	3305	14-16d	6-16d		25 30	HU414-2	3305	26-16d	12-16d	SMMPSON			For more information, call Simpson Strong-Tie							
Adjustable Height Joist Hanger						Variable Pitch Joist Connector						Strong-Tie $\quad$ at ${ }^{\oplus} \quad$ at $1-800-999-5099$										
THAI												General Notes   - Bold Italic hangers require web stiffeners.   - Capacities will vary with different nailing criteria and/or support conditions; contact supplier or Simpson Strong-Tie for further information.   - Capacity values shown are either hanger capacity values (see support requirements below) or AJS ${ }^{\circledast}$ Joist end reaction capacities - whichever is less.   - All capacity values are downward loads at $100 \%$ load duration.   - Use sloped seat hangers and beveled web stiffeners when										
Joist Depth	AJS®	Hanger	$\begin{gathered} \text { Capacity } \\ \text { [bs] } \end{gathered}$	Nailing		Joist   Depth	AJS®	Hanger	Capacity[lbs] Top Plate Rafter													
				Header	Joist	91/2"	20					AJS ${ }^{\circledR}$ Joist slope exceeds $1 / 4$ " per foot.										
91/2"	190	THAI2.06/22	21181	6-10d	2-10dx11/2"		190	VPA3	1006	9-10d	2-10dx11⁄2"	- Leave $1 / 16^{\prime \prime}$ clearance ( $1 / 8^{\prime \prime}$ maximum) between the end of the supported joist and the head of the hanger.										
	25 30	THAI322	1393	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	VPA4	1006	11-10d	2-10dx11/2"											
117/8"	20 190	THAI2.06/22	21443	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	VPA3	1020	9-10d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$	- For proper installation of the VPA, the $2-10 \mathrm{~d} \times 1^{1 / 2 "}$ joist nails through the bend tabs must be installed at approximately a 45 degree angle.										
	25 30	THA1422	1715	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$		25 30	VPA4	1020	11-10d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$		$5 \text {-degree }$ port Re	ngle.   uirements								
14"	20 190	THAI2.06/22	21600	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$	14"	20	VPA3	1032	9-10d	$2-10 \mathrm{dx} 1 \frac{1}{2}{ }^{\prime \prime}$	- Support material assumed to be Boise Cascade structural composite lumber or sawn lumber (Douglas fir or southern										
	25 30	THAI3522	1600	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$		25 30	VPA4	1032	11-10d	2-10dx $11 / 2^{\prime \prime}$		ine spec inimum	s).		double-joi	ist top mount					
16"	20	THAI3522	1582	6-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$	16"	20	VPA3	1048	9-10d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$		angers is inimum	port width for fa		thangers	with 10 d and					
	25 30	THA1422	1715	6-10d	$2-10 \mathrm{dx1} 1 / 2^{\prime \prime}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	VPA4	1048	11-10d	$2-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$											


Single Joist - Top Flange						Single Joist - Face Mount						Face Mount Skewed $45^{\circ}$ Joist Hanger					
Joist Depth	AJS®	Hanger	Capacity		ailing Joist	Joist Depth	AJS®	Hanger	Capacity		ailing	Joist Depth	AJS®	Hanger	Capacity [lbs]		${ }_{\text {ailing }}$
				Header	Joist					Header	Joist					Header	Joist
91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TFL2595	1006	6-10d	2-10dx $11 / 2{ }^{\prime \prime}$	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25925	1062	12-10d	2-10dx $11 / 2^{\prime \prime}$	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SKH2520L/R	992	14-10d	$10-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THO35950	1048	10-10d	2-10dx $11 / 2{ }^{\prime \prime}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THF35925	1062	12-10d	2-10dx $11 / 2^{\prime \prime}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	SKH410L/R	1062	16-16d	10-16d
117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TFL25118	1020	6-10d	2-10dx $11 / 2{ }^{\prime \prime}$	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25112	1085	14-10d	2-10dx $11 / 2^{\prime \prime}$	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SKH2520L/R	1003	14-10d	$10-10 \mathrm{dx1} 11 / 2^{\prime \prime}$
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THO35118	1068	10-10d	2-10dx $11 / 2$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THF35112	1085	16-10d	2-10dx $11 / 2{ }^{\prime \prime}$		25 30	SKH410L/R	1085	16-16d	10-16d
14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TFL2514	1032	6-10d	2-10dx $11 / 2^{\prime \prime}$	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25140	1105	18-10d	2-10dx $11 / 2^{\prime \prime}$	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SKH2524L/R	1014	16-10d	10-10dx11⁄2"
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THO35140	1086	12-10d	2-10dx11⁄2"		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	THF35140	1105	20-10d	2-10dx $11 / 2{ }^{\prime \prime}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	SKH414L/R	1105	22-16d	10-16d
16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TFL2516	1048	6-10d	2-10dx $11 / 2^{\prime \prime}$	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25160	1127	22-10d	2-10dx $11 / 2{ }^{\prime \prime}$	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	SKH2524L/R	1029	16-10d	10-10dx11⁄2"
	25 30	THO35160	1107	12-10d	2-10dx $11 / 2$		25 30	THF35157	1127	22-10d	$2-10 \mathrm{dx} 11 / 2^{\prime \prime}$		25 30	SKH414L/R	1127	22-16d	10-16d
Double Joist - Top Flange						Double Joist - Face Mount						Field Slope and Skew Joist Hanger					
$\begin{aligned} & \text { Joist } \\ & \text { Depth } \end{aligned}$	THO Double					THF Double   HD											
	AJS®	Hanger	Capacity		ailing	Joist	AJS®	Hanger	Capacity		ailing	Joist	AJS®	Hanger	Capacity		Joist
	AJS	Hanger	[lbs]	Header	Joist	Depth	AJS	Hanger	[lbs]	Header	Joist	Depth	AJS	Hanger	[lbs]	Header	Joist
91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THO25950-2	2237	10-16d	6-10d	91/2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25925-2	1390	12-10d	6-10d	9112"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSH25	1420	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	BPH7195	2690	10-16d	6-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	HD7100	1690	12-10d	6-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	LSSH35	1420	14-16d	$12-10 \mathrm{dx} 1^{112} \mathbf{2}^{\prime \prime}$
117/8"	2	THO25118-2	2300	10-16d	6-10d	117/8"	20	THF25112-2	1855	16-10d	6-10d	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSH25	1530	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
		BPH71118											$\begin{aligned} & 25 \\ & 30 \end{aligned}$	LSSH35	1530	14-16d	$12-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$		3060	10-16d	6-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	HD7120	2255	16-10d	6-10d	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSH25	1630	14-16d	12-10dx $11 / 2^{\prime \prime}$
14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THO25140-2	2355	12-16d	6-10d	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25140-2	2210	20-10d	6-10d		25 30	LSSH35	1630	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	BPH7114	3260	10-16d	6-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	HD7140	2820	20-10d	8-10d	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	LSSH35	1725	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THO25160-2	2412	12-16d	6-10d	16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	THF25160-2	2255	24-10d	8-10d		25 30	LSSH35	1725	14-16d	$12-10 \mathrm{dx} 11 / 2^{\prime \prime}$
	25 30	BPH7116	3452	10-16d	6-10d		25 30	HD7160	3305	24-10d	8-10d	For more information, contact USP Structural Connectors at 1-800-328-5934 or					
Adjustable Height Joist Hanger						Variable Pitch Joist Connector											
						TMP						General Notes   www.uspconnectors.com   - Bold Italic hangers required web stiffeners.   - Capacities will vary with different nailing criteria and/or support conditions: contact supplier or USP Structural Connectors for further information.					
Joist Depth	AJS®	Hanger	Capacity [lbs]	Header	$\begin{aligned} & \text { Jailing } \\ & \text { Joist } \end{aligned}$	Joist Depth	AJS®	Hanger	Capacity [lbs]	$\begin{array}{r} \mathrm{Fa} \\ \hline \text { Top Plate } \end{array}$	stener Rafter						
91⁄2"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MSH322	1270	16-10d	4-10dx11/2"	$9112 "$	$\begin{gathered} 20 \\ 190 \end{gathered}$	TMP25	1175	6-10d	$4-10 \mathrm{dx} 1 \frac{1}{2}{ }^{\prime \prime}$	Capacity values shown are either hanger capacity values (see support requirements below) or AJS® Joist end reaction capacities - whichever is less. All capacity values are downward loads at $100 \%$ load					
	25 30	MSH422IF	1270	22-10d	4-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	TMP4	1175	6-10d	$4-10 \mathrm{dx} \times 1 / 2^{\prime \prime}$		ll capac uration	ity values are d	ownward	oads at 1	0\% load
117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MSH322	1367	16-10d	4-10dx11/2"	117/8"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TMP25	1215	6-10d	$4-10 \mathrm{dx} 1^{1 / 2}{ }^{\prime \prime}$	Use sloped seat hangers and beveled web stiffeners when AJS® Joist slope exceeds $1 / 4$ per foot.   Leave $1 / 16^{\prime \prime}$ clearance ( $1 / 8$ " maximum) between the end of the supported joist and the head of the hanger.   - For AJS® Joist applications, consult USP for capacity reduction.					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	MSH422IF	1367	22-10d	4-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	TMP4	1215	6-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$						
14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MSH322	1455	16-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$	14"	$\begin{gathered} 20 \\ 190 \end{gathered}$	TMP25	1250	6-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$	Support Requirements   - Support material assumed to be Boise Cascade structural composite lumber or sawn lumber (Douglas fir or southern pine species).   - Minimum support width for single- and double-joist top mount hangers is 3 ": ( $11 / 2^{\prime \prime}$ for THO hangers).   - Minimum support width for face mount hangers with 10d and 16 d nails is $13 / 4$ " and $2 "$, respectively.					
	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	MSH422IF	1455	22-10d	4-10d		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	TMP4	1250	6-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$						
16"	$\begin{gathered} 20 \\ 190 \end{gathered}$	MSH322	1413	16-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$	$16 "$	$\begin{gathered} 20 \\ 190 \end{gathered}$	TMP25	1285	6-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$						
	25 30	MSH422IF	1413	22-10d	4-10d		25 30	TMP4	1285	6-10d	4-10dx $1^{1 / 2}{ }^{\prime \prime}$						

Notes
NOTES
Boise Cascade Engineered Wood Products

## NOTES

Boise Cascade Engineered Wood Products

Boise Cascade Engineered Wood Products has a proven track record of providing quality wood products and a nationwide building materials distribution network for our customers, helping them to enhance their own businesses.

Boise Cascade Engineered Wood Products build better homes with stronger, stiffer floors using only wood purchased in compliance with a number of green building programs. Take a moment to view our sustainability certification site at http://www.bc.com/ sustainability/certification-audits/ or view our green brochure at www.bc.com/inst11.

Boise Cascade Engineered Wood Products throughout North America can now be ordered FSC ${ }^{\circledR}$ Chain-of-Custody (COC) certified, enabling homebuilders to achieve LEED® points residential and commercial green building programs including LEED for Homes and LEED for New Construction. Boise Cascade Engineered Wood Products are available as PEFC® ${ }^{\circledR}$ Chain-of-Custody certified, SFI® Chain-of-Custody certified and SFI® FiberSourcing certified, as well as NAHB Research Center Green Approved, enabling homebuilders to also obtain green building points through the Green Building Standards.

## Lifetime Guaranteed Quality and Performance

Boise Cascade warrants its $\mathrm{BCI}{ }^{\circledR}$ Joist, VERSA-LAM ${ }^{\circledR}$, and ALLJOIST® products to comply with our specifications, to be free from defects in material and workmanship, and to meet or exceed our performance specifications for the normal and expected life of the structure when correctly stored, installed and used according to our Installation Guide.


BOISE CASCADE, TREE-IN-A-CIRCLE, AJS, ALLJOIST, BCI, BC CALC, BC COLUMN, BC FRAMER, BOISE CASCADE RIM BOARD, BOISE GLULAM, SIMPLE FRAMING SYSTEM, VERSA-LAM, VERSA-RIM, VERSA-STRAND, and VERSA-STUD are trademarks of Boise Cascade Company or its affiliates.

For information about Boise Cascade Engineered Wood Products, including sales terms and conditions, warranties and disclaimers,
visit our website at www.BCewp.com
Your Dealer is:


[^0]:    Total Load values are limited by shear, moment or deflection equal to L/180. Total Load values are the capacity of the beam in addition to its own weight.
    Live Load values are limited by deflection equal to $L / 240$. Check the local building code for other deflection limits that may apply.
    Where a Live Load value is not shown, the Total Load value will control.
    Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC® software if the length of any span is less than half the length of an adjacent span.
    Table values assume that lateral support is provided at each support and continuously along the top edge and applicable compression edges of the beam.

    Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations, such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.

    - For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
    - $13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.

    This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.

[^1]:    Total Load values are limited by shear, moment or deflection equal to L/180. Total Load values are the capacity of the beam in addition to its own weight.

    - Live Load values are limited by deflection equal to $L / 240$. Check the local building code for other deflection limits that may apply.
    - Where a Live Load value is not shown, the Total Load value will control.
    - Table values represent the most restrictive of simple or multiple span applications. Span is measured center to center of the supports. Analyze multiple span beams with the BC CALC® ${ }^{\circledR}$ software if the length of any span is less than half the length of an adjacent span.
    - Table values assume that lateral support is provided at each support and continuously along the top

    Table values for Minimum Required Bearing Lengths are based on the allowable compression design value perpendicular to grain for the beam and the Total Load value shown. Other design considerations, such as a weaker support material, may warrant longer bearing lengths. Table values assume that support is provided across the full width of the beam.
    For 2-ply, 3-ply or 4-ply beams; double, triple or quadruple Allowable Total Load and Allowable Live Load values. Minimum Required Bearing Lengths remain the same for any number of plies.
    $13 / 4$ inch members deeper than 14 inches are to be used as multiple-member beams only.
    This table was designed to apply to a broad range of applications. It may be possible to exceed the limitations of this table by analyzing a specific application with the BC CALC® software.

